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SUMMARY
The functional impact of the vast majority of cancer somatic mutations remains unknown, representing a
critical knowledge gap for implementing precision oncology. Here, we report the development of a moder-
ate-throughput functional genomic platform consisting of efficient mutant generation, sensitive viability as-
says using two growth factor-dependent cell models, and functional proteomic profiling of signaling effects
for select aberrations. We apply the platform to annotate >1,000 genomic aberrations, including gene ampli-
fications, point mutations, indels, and gene fusions, potentially doubling the number of driver mutations
characterized in clinically actionable genes. Further, the platform is sufficiently sensitive to identify weak
drivers. Our data are accessible through a user-friendly, public data portal. Our study will facilitate biomarker
discovery, prediction algorithm improvement, and drug development.
INTRODUCTION identified thousands of unique mutations and fusions across
Next-generation sequencing technologies, including recent con-

sortium projects such as The Cancer Genome Atlas (TCGA) have
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suppression to no obvious functional impact. Importantly,

diverse mutations in the same gene have been observed, often

depending on tumor contexts (Chang et al., 2016; Kandoth

et al., 2013; Yi et al., 2017). Classical gene knockout or knock-

down approaches for characterizing gene function cannot

resolve the diverse functional impacts caused by different muta-

tions in the same gene. Even for themost actively studied cancer

genes, such as PIK3CA, only a fraction of the variants identified

in tumors have been functionally characterized (Cheung et al.,

2011; Dogruluk et al., 2015). A critical challenge in developing

and implementing cancer therapies and improving patient care

is to distinguish causal driver mutations from non-pathogenic

passenger variants and elucidate their oncogenic mechanisms

(Sahni et al., 2013; Scott and Powers, 2016; Takiar et al.,

2017). Therefore, there is an urgent need to functionally charac-

terize large numbers of cancer variants of unknown significance

(VUS) in a systematic way.

More than a dozen computational algorithms have been devel-

oped to predict functional impacts of cancer mutations based on

frequency, conservation, and the 3D protein structure (Carter

and Karchin, 2014; Porta-Pardo et al., 2017). However, the re-

sults of these methods vary greatly, their accuracy is often

limited, and there is no ‘‘gold standard’’ for rigorously evaluating

their predictive power. Further, computational algorithms can

only identify general impact and fail to pinpoint the detailed func-

tional effects of specific mutations. Conventional experimental

studies can only characterize a small number of variants in an

inefficient way. This is due at least in part to the difficulty in

creating, expressing, and characterizing large numbers of spe-

cific mutants in sensitive functional assay systems.

Several recent studies have functionally characterized a large

number of VUS using systematic approaches including pooled

(in vitro and in vivo) strategies (Berger et al., 2016; Kim et al.,

2016; Kohsaka et al., 2017), which represent significant ad-

vances in the field. However, the competition betweenmutations

with different activities in the pooled assays remains a critical

concern. Strong drivers can become dominant in the pool and

outcompete with many others that have lower activity levels,

which decreases the sensitivity of the assay. In addition, in vivo

assays are highly time and resource consuming. Therefore, it is

necessary to develop more sensitive, efficient, and systematic

approaches to assess how and to what extent a particular so-

matic mutation contributes to cancer development.

RESULTS

Development of a Versatile Functional Genomic
Platform
To annotate the functional impact of VUS, we developed a mod-

erate-throughput functional genomic platform. Different from the

in vivo ‘‘pooled-format’’ screening used in other studies, our plat-

form testedmutations and fusions on an individual basis using an

in vitro system that shortened the time-to-result interval to

approximately 6 weeks and avoided the potential masking effect

of strong activating mutations for identifying weak drivers. Our

platform consists of four main steps: (1) selection of somatic mu-

tations from large-scale patient cohort data; (2) generation and

sequence confirmation of bar-coded expression clones by a

HiTMMoB approach (Tsang et al., 2016); (3) in vitro screening
in two growth factor-dependent cell models to generate

consensus functional annotation of mutations and fusion genes;

and (4) functional proteomic profiling of selected mutations

through reverse-phase protein arrays (RPPAs) (Li et al., 2017)

(Figure 1A).

Our primary mutation list was based on TCGA mutation data-

sets of 33 cancer types, including recurrent mutations in

selected clinically actionable genes (such as EGFR, PIK3CA,

BRAF, and ERBB2). The list was further expanded with selected

mutations in more potentially druggable genes, such as PTEN,

ALK, PDGFRA, and FGFR2, identified in the MD Anderson

Cancer Center patient database. We generated 1,049 mutations

and 95 wild-type lentivirus constructs using the HiTTMoB tech-

nique and sequenced all constructs in full-length to confirm

that unexpected mutations were not introduced in the template

(wild-type) clones (Table S1). We estimated how many of the

mutations we tested have not been previously annotated in the

literature by comparing our mutation list with publicly available

knowledge-based mutation annotation databases OncoKB

(Chakravarty et al., 2017) and Personalized Cancer Therapy

(PCT) (Kurnit et al., 2017) and via text mining in PubMed. Impor-

tantly, only 21.3% of mutations (using OncoKB) and 18.4%

(using PCT) had been previously annotated, and 22.8% of muta-

tions were found through text mining in PubMed (Figure 1B).

Among the top 10 mutated genes surveyed, the literature

coverage was in the range of 0%–40.3%, with an average of

19.1% (Figure 1C). Altogether, the resource presented provides

functional annotations of >1,000mutations, including >800 VUS.

To examine whether screening individual mutations can over-

come the potential masking effect of highly active driver

mutations in the pooled format, we carried out parallel pooled

and individual screens of 29 PIK3CA mutants and wild-type

PIK3CA in the Ba/F3 cell line under both in vivo and in vitro

settings (Figure S1). Ba/F3 cells depend on interleukin-3 (IL-3)

for growth and proliferation, but can be transformed to IL-3 in-

dependence in the presence of an oncogenic event, making it

useful for detecting driver mutations that affect cell proliferation

and survival (Warmuth et al., 2007). PIK3CAK111delK had the

strongest activating mutation score in both the pooled and in-

dividual in vitro formats. Six more mutations were also scored

in the pooled format, among which five were also captured in

the individual format. Notably, ten mutations (e.g., E39K,

G106V, and I112N) were only scored (i.e., >2-fold change to

the wild-type) when screened as individual mutations (Fig-

ure S1A). For the in-vivo-pooled format (Figure S1B), the

enrichment of three mutations (E110delE, K111delK, and

C604R) was found to be less than that from the in-vitro-pooled

screening, which is consistent with higher sensitivity for detect-

ing driver mutations in vitro. To further test whether the effects

of moderately active oncogenic mutations were masked in

the pooled in vivo screen, G106V, a moderate driver scored

in the individual in vitro screening, was tested individually

in vivo, with PIK3CAK111delK and wild-type PIK3CA as controls.

Tumor growth of Ba/F3 expressing K111delK was the stron-

gest, while the wild-type counterpart did not form a tumor

during the experiment duration (Figure S1C). Consistent with

the individual in vitro screening, G106V induced weaker tumor

growth than K111delK, but had significantly stronger tumor for-

mation effects than wild-type. Thus an individual evaluation of
Cancer Cell 33, 450–462, March 12, 2018 451



A
G

A
G

C
T

C
T

C
A

T
G

A
G C

T

at
tB

2

Gene of Interest
att B2

at
tB

2

Gene of Interest
attB 2 WTMUT at

tB
2

Gene of Interest
a ttB2

a t
tB

2

Gene of Interest
att B2WT MUT

Ba/F3 
(1048 muts, 94 WT, 93 fusions)

Candidate list (1120 muts, 95 WT, 93 fusions)

Classification of variants

MCF10A
(1029 muts, 95 WT, 60 fusions)

RPPA

In vitro growth factor dependent 
cell viability assay

Classification of variants

A
G

A
G

C
T

C
T

C
A

Sequence-verified clones made by HiTMMoB (1049 muts, 95 WT, 93 fusions)

at
tB

2

Gene of Interest
att B2

at
tB

2

Gene of Interest
attB 2 WTMUT

Cell viability 
assay & functional 
annotation

Ba/F3 (1042 muts, 94 WT, 93 fusions) MCF10A (951 muts, 95 WT, 59 fusions)

RPPA assay
for selected 
mutations

A

Consensus functional calls (1049 muts, 95 WT)

B

C

OncoKB PCT

223 (21.3%)

826 (78.7%)

193 (18.4%)

856 (81.6%)

PubMed

239 (22.8%)

810 (77.2%)

0

10

20

30

40

EG
FR
BR
AF

PI
K3
CA

ER
BB
2

PI
K3
CB

PI
K3
R1
RA
F1 AL

K

FG
FR
3
PT
EN

%
 o

f m
ut

at
io

ns
 te

st
ed

OncoKB PCT PubMed

Generation of
sequence-verified
clones

Selection of 
mutations

MDACCTCGA

Figure 1. Overview of the Functional Genomic Platform and Cancer Mutations Tested

(A) Mutations (muts), corresponding wild-type (WT), and fusion genes were selected from TCGA projects and MD Anderson Cancer Center patient databases.

Clones were generated by the HiTMMoB approach, and tested in in vitro growth factor-dependent cell-viability assays with Ba/F3 and MCF10A cell models.

Mutations and wild-type variants were classified into functional categories based on these results. MCF10A cell lines stably expressing selected mutations were

generated for reverse-phase protein array (RPPA) analysis. The numbers of mutant, wild-type, and fusion constructs are annotated at each step.

(B) Pie charts showing the proportions of the mutations annotated in OncoKB or Personalized Cancer Therapy (PCT) or PubMed literature among all the

1,049 mutations tested.

(C) Bar plots showing the literature coverage of mutations for the top 10 genes with the greatest number of mutations tested, as shown by the percentages of

tested mutations per gene annotated in OncoKB or PCT or PubMed. See also Figure S1 and Table S1.
mutations can improve sensitivity and subsequent classifica-

tion of individual aberrations.

We next tested the candidates in IL-3-dependent Ba/F3 cells

and EGF- and insulin-dependent MCF10A cells (a non-tumori-

genic breast epithelial cell line) in parallel, using a lentiviral

approach with wild-type counterparts, as well as negative and

positive experimental controls in each screen (STAR Methods).

Our hypothesis was that activating mutations, also known as

‘‘drivers,’’ would confer survival advantage to cells in the

absence of dependent growth factors; while non-functional

mutations, also known as ‘‘passengers,’’ would not. We classi-

fied wild-type genes and mutations into different functional

categories. Overall, we obtained qualified functional annotation

for 1,042 mutations and 94 wild-type genes in Ba/F3 cells

and 951 mutations and 95 wild-type genes in MCF10A cells

(Table S1).

Fusion genes caused by genomic rearrangements can be

drivers and important therapeutic targets. We generated 93 fu-

sions identified from human cancers using a modified HiTTMoB
452 Cancer Cell 33, 450–462, March 12, 2018
approach (Li et al., 2017), and assessed their activity in our

platform. Among them, 15 fusions increased proliferation

compared with GFP-negative controls (NCs) (Table S1). This

provides functional annotation of a large collection of fusion

genes and highlights the versatility of the platform.

Functional Classification of Wild-Type Genes and
Mutations
We annotated wild-type genes and mutations in both Ba/F3 and

MCF10A models separately based on their cell-viability data. To

allow accurate comparison across different screens, corre-

sponding wild-type controls were always run in parallel with

the mutations of interest in each batch. The first step of the

decision tree (Figure S2A) is annotating the wild-type genes,

which were classified into three categories (positive, no effect,

and negative) by comparing viability measurements to GFP/

mCherry/luciferases (NCs) that were run in each experiment

batch. If a wild-type gene had a higher mean cell viability than

the NC, it was classified as positive (e.g., EGFR in both models);
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Figure 2. Functional Annotation Summary of

Wild-Type Genes and Mutations

(A) The numbers of missense (purple), indel (or-

ange), nonsense (red), and silent (white) mutations

tested are shown in parentheses.

(B) The distribution of mutation types tested per

gene for the 21 genes with >10 mutations tested is

shown.

(C and D) The functional annotations for wild-type

genes (C) and mutations (D) in Ba/F3 (blue) and

MCF10A (red) cell line models are presented based

on the growth factor-independent cell-viability

assay results.

(E) The number of mutations in each functional

annotation is shown in parentheses. Eleven muta-

tions with inconclusive functional annotations in

Ba/F3 and MCF10A models were excluded. See

also Figure S2 and Table S2.
if a wild-type gene had a cell viability lower than the NC, it was

classified as negative (e.g., PTEN in both models); otherwise,

the gene was classified as no effect (e.g., BRAF in Ba/F3 and

PIK3CA in MCF10A). Next, mutations were annotated by

comparing cell-viability signals to their corresponding wild-

type genes. For positive wild-type genes, mutations were anno-

tated as activating if the cell viability of the mutations was higher

than that of thewild-type gene at the same time point in the same

experiment; the mutations were annotated as neutral or inacti-

vating if their cell-viability measurements was similar to or lower

than that of the corresponding wild-type constructs, respec-

tively. For inactivating mutations, the viability of cells overex-

pressing the mutations was lower than that of the NC, so they

were annotated as inhibitory to indicate that the mutations may

potentially inhibit cell viability rather than simply inactivate

wild-type function. For no effect wild-type genes, mutations

were annotated as activating, neutral, or inhibitory in the same

way. For negative wild-type genes, mutations were classified

as neutral or non-inhibitory if their cell viability was no different

from or higher than that of the wild-type construct, respectively.

Among the non-inhibitory mutations, if the cell viability of the

mutations was higher than that of the NC, they were annotated

as activating to distinguish them from typical non-inhibitory

mutations that inactivate tumor suppressor genes. Activating

mutations in a negative wild-type gene therefore actively pro-

mote cell growth/proliferation instead of relieving the inhibitory

effect of the wild-type gene. Furthermore, for some genes,

such as ERBB4, CDH1, and IDH1, none of the mutations and

corresponding wild-type constructs tested showed any activity

(either activating or inhibitory) in the cell models. We cannot

determine whether the cell models were not responsive to the

gene product, or whether the mutation functions were not

different from wild-type. We therefore annotated these wild-

type genes and their mutations as non-informative. It is impor-

tant to note that non-informative mutations are not necessarily

non-functional, as theymay exhibit functional effects if evaluated

in other model systems.
Ca
We functionally annotated 1,049 muta-

tions, including 923 missense, 74 indel,

and 25 nonsense mutations (Figure 2A).
In addition, 27 silent mutations across multiple genes were

included to serve as controls for annotation. The overall data-

set consists of 95 genes, including 21 genes with more than 10

mutations per gene (Figure 2B). Four major allelic series of

clinically actionable cancer genes, EGFR, BRAF, PIK3CA,

and ERBB2, contributed 479 mutations. For PTEN, a known

tumor suppressor gene, and PIK3R1, a gene with tumor sup-

pressive properties (Cheung et al., 2011), more indel and

nonsense mutations were included. In Ba/F3 cells, 14, 10,

and 8 wild-type genes were annotated as positive, no effect,

and negative, respectively (Figure 2C). A similar pattern with

more positive genes was found in MCF10A cells: 29, 13, and

7 wild-types genes were annotated as positive, no effect,

and negative, respectively (Figure 2C). Notably, 62 and 45

genes were respectively classified as non-informative in the

Ba/F3 and MCF10A models. The number of non-informative

genes using the consensus annotation was reduced to 40,

whereby the gene was reclassified if functional in one of the

two models. Another potential contributing factor to the

number of non-informative genes is that only a few mutations

were tested since the median number of mutations assessed

was only two for the non-informative genes. Presumably, this

issue could be addressed by including more mutations, more

cell lines and orthogonal functional assays.

For individual mutations, we annotated 228 activating,

532 neutral, 32 inactivating, 31 non-inhibitory, and 4 inhibitory

mutations in the Ba/F3 model (Figure 2D). Similarly, we anno-

tated 231 activating, 539 neutral, 80 inactivating, 22 non-inhib-

itory, and 5 inhibitory mutations in the MCF10A model

(Figure 2D). Across the two cell models, 753 mutations had

informative annotations, with 570 (75.7%) having concordant

functional calls (Figure S2B). The mutation-level concordance

between the two models was likely underestimated since

one major reason for discordance was differential wild-type

gene activity between the two models. For example, BRAF

and ERBB2 wild-type genes were highly active (i.e., positive)

in MCF10A cells, but were annotated as having no effect in
ncer Cell 33, 450–462, March 12, 2018 453



Ba/F3 cells. Further, high activity of the wild-type gene

narrowed the window to observe effects of activating muta-

tions in the MCF10A model. For example, BRAFP731S,

BRAFT599_V600insP, and ERBB2V659E were annotated as neutral

in MCF10A, but as activating in Ba/F3. However, since the

BRAF and ERBB2 wild-type genes were annotated as having

no effect in Ba/F3 cells, we were unable to observe any inac-

tivating mutations in the Ba/F3 model. For example,

BRAFD594H/A/V and ERBB2V308M were called inactivating in

MCF10A, but neutral in Ba/F3. To estimate the concordance

of these two cell models in more detail, we further divided

the dataset into two groups: mutations with concordant wild-

type annotation and mutations without concordant wild-type

annotation (Figures S2C and S2D). The concordance rate of

mutation annotation was 79.6% for the concordant wild-type

group and 73.3% for the discordant wild-type group.

We generated consensus functional annotation for each

mutation or wild-type gene by combining the functional anno-

tations of Ba/F3 and MCF10A models based on an ‘‘OR gate’’

logic. In brief, whenever an aberration was functional (i.e.,

positive and negative for wild-type genes; activating, inactivat-

ing, inhibitory, and non-inhibitory for mutations) in either cell

model, we used that call in the consensus annotation. In total,

we made consensus functional annotations for 1,049 unique

mutations (Figure 2E) and 95 wild-type genes (Table S1).

Virus infection rate and expression of transgenes are key

factors affecting functional consequence of a mutation. To

determine their effects on our functional annotation, we

measured virus titers used for infection and mRNA expression

of transgenes in independent experiments. We observed no

significant difference in virus titers or the expression levels of

transgenes among different functional annotation groups (Fig-

ures S2E and S2F), confirming that their variations were rela-

tively small. More importantly, our functional annotation did

not correlate with these factors.

We rigorously assessed the reproducibility of functional

annotation. First, we examined the performance of five exper-

imental controls (mCherry and GFP/Luc, PIK3CA wild-type,

M1043I, and H1047R) in 60 independent Ba/F3 and 57 inde-

pendent MCF10A experiments. In the Ba/F3 model, two NCs

did not demonstrate activity among all 60 experiments, while

the PIK3CA wild-type, M1043I and H1047R exhibited weak,

moderate and strong activities, respectively, as reported in a

prior study (Dogruluk et al., 2015), in 57–59 out of 60 (95%–

98%) experiments (Figure S2G). In the MCF10A model, the

NCs did not demonstrate activity among all 57 experiments,

while the PIK3CA wild-type and the two mutants exhibited

expected activities in the majority (77%–88%) of experiments

(Figure S2H). Second, we ran an independent repeat experi-

ment of 34 selected mutations and corresponding wild-type

with different functional annotations of each of four allelic

series, BRAF, EGFR, PIK3CA, and ERBB2 (Table S2). Based

on this subset, the reproducibility rate was 92.5%. Third, for

EGFR mutations, we compared our Ba/F3 functional annota-

tion with those characterized by a recent study (Kohsaka

et al., 2017) using a similar in-vitro-arrayed approach, and

found that the concordant rate was 90.5% (Figure S2I). Collec-

tively, these results highlight the robustness of functional

annotation made by our approach.
454 Cancer Cell 33, 450–462, March 12, 2018
High-Sensitivity Functional Mutation Annotation
We compared our annotations with the results from the two pub-

lished studies (Berger et al., 2016; Kim et al., 2016) that involved

in-vivo-pooled screens. Only 3 out of 21 mutations assayed in

both Berger et al. and our platform were positive in Berger

et al. (Figure S3A; Table S3), while our platform captured both

positive overlapping mutations from the in-vivo-pooled screen

plus 15 additional mutations as activating. Only 4 out of 14 over-

lapping mutations assayed in both Kim et al. and our platform

were positive (>1% of reads) in Kim et al. (Figure S3B; Table

S3), while our platform captured all four positive overlapping mu-

tations plus classified seven additional mutations as activating.

These results suggest that individual mutation-based functional

screening is more sensitive in identifying activating mutations,

including well-known and, importantly, weak-to-moderate acti-

vating mutations.

Due to the limited number of mutations that could be directly

compared with in-vivo-pooled screening studies, we compared

our annotation calls (only activating and neutral mutations) with

OncoKB (Chakravarty et al., 2017), which classifies mutations

as oncogenic, likely oncogenic, likely neutral and inconclusive.

Among 193 mutations annotated in both OncoKB and our data-

set, OncoKB only has positive annotations (i.e., oncogenic/likely

oncogenic), while our dataset has both positive (i.e., activating/

positive) and negative (e.g., inactivating and inhibitory) direc-

tions. To provide an accurate comparison, negative annotations

were excluded from the comparison. Among 187 shared

annotated mutations (Figure 3A), 76 out of 94 (80.9%) oncogenic

mutations and 57 out of 79 (72.2%) likely oncogenic mutations

were annotated as activating in our dataset. The discrepancies

between OncoKB and our dataset may arise from different

experimental conditions or context-dependent functional

effects. For example, ERBB3V104M is oncogenic in OncoKB

based on the finding that it activated signaling and induced cell

survival only when co-expressed with wild-type ERBB2 (Jaiswal

et al., 2013). In addition, 6 out of 14 likely neutral mutations in

OncoKB were annotated as activating in our dataset. We further

categorized our activating mutations into strong, moderate, and

weak activating mutations based on the degree of activation

compared with that of the corresponding wild-type genes

in the cell-viability assay. Interestingly, strong activating

mutations were enriched in the oncogenic category (Fisher’s

exact test, p < 0.01), and the proportion gradually decreased

from oncogenic to likely oncogenic and likely neutral. We per-

formed a similar analysis using the mutational effects of the

two in-vivo-screening studies (Figure S3C). We also found addi-

tional evidence supporting the vast majority of weak activating

mutations identified (Table S3). These results further indicate

that our platform has a high sensitivity to capture mutational

functionality and associated information.

Systematic assessment on computational algorithms for pre-

dicting mutation effects has been limited due to the lack of large-

scale experimental data. We tested 21 computational algorithms

commonly used with our annotation as the reference standard

(Figure 3B). The receiver operating characteristic (ROC) analysis

showed that the 21 algorithms yielded an area under the

ROC curve (AUC) ranging from 49.7% to 76.0%. The top three

algorithms were CanDrA plus (Mao et al., 2013) (AUC: 76.0%),

CHASM (Wong et al., 2011) (AUC: 73.4%), and VEST3 (Carter



592

263

12

55

40

132

61

189

0%

25%

50%

75%

100%

To
ta

l m
iss

en
se

 

m
ut

at
ion

s

3D
 H

ot
sp

ot
s

Hot
M

APS

Hot
Spo

t3
D

%
 m

ut
at

io
ns

Activating
Non−activating

Strong
activating

Moderate
activating

Weak
activating

Neutral

A B C
****

****
****

18

10

21

45

22

11

31

15

8

2

3

1

0

25

50

75

100

Onc
og

en
ic

Lik
ely

 on
co

ge
nic

Lik
ely

 ne
utr

al

%
 m

ut
at

io
ns

1 − Specificity(%)

S
en

si
tiv

ity
 (%

)

0 20 40 60 80 100

0

20

40

60

80

100

revel 67.6% 
mutpred 68.2% 

vest3 72.9% 
CHASM 73.4% 

CanDrA_plus 76.0% 

AUCs:

Figure 3. Comparison of Our Functional

Annotationwith Literature Data andCompu-

tational Predictions

(A) Activating and neutral mutations from our

(non-pooled) in vitro platform results were

compared with oncogenic, likely oncogenic, and

likely neutral mutations annotated from OncoKB.

The percentage of mutations in each category is

shown. Activating mutations were further classi-

fied into strong, moderate, and weak based on the

degree of activating compared with the corre-

sponding wild-type genes. Numbers on the bars

indicate the mutation numbers in each group.

(B) ROC curves of 21 commonly used computa-

tional algorithms based on the functional calls in

this study, with AUC scores for the top 5 algo-

rithms.

(C) Enrichment of activating mutations in three

3D computational algorithms. Numbers on the

bars indicate the mutation numbers in each group.

****p < 10�5. See also Figure S3 and Table S3.
et al., 2013) (AUC: 72.9%). Although these computational algo-

rithms achieved some level of accuracy, none fully recapitulated

our experimental results. Apart from the conventional prediction

algorithms that are mainly based on the sequence information of

the gene or protein, computational predictions using 3D informa-

tion have been recently developed. We therefore tested whether

the mutations in clusters detected by 3D prediction algorithms

are more likely to be activating compared with those not in a

cluster. We compared 855 missense mutations with informative

functional annotations to the 3D cluster predictions of TCGA

mutation dataset from 3D hotspots (Gao et al., 2017), HotSpot3D

(Niu et al., 2016), and HotMAPS (Tokheim et al., 2016).

We observed significant enrichment of activating mutations

in 3D clusters using all three predictions (Fisher’s exact test,

p < 2.2310�16, Figure 3C).

We further examined the associations of our functional anno-

tations with a number of common mutation properties, including

the mutation position in a protein, mutation frequency, and

amino acid conservation. As expected, mutations located in

protein domains, hotspot positions, or in conserved amino acids

were more likely to be functional (Figures S3D–S3H). We also

found that mutations in amino acids that have lower relative

surface accessibility (i.e., tend to be inside the core of the protein

3D structure) or those that caused changes in amino acid

charge from positive to negative weremore likely to be functional

(Figures S3G and S3H). These results support prior work relating

protein biophysics to functional mutations (Bustamante et al.,

2000; Wang and Moult, 2001).

Functional Proteomic Analysis of Annotated Mutations
Signaling aberrations downstream of mutations inform us of the

biological functions of mutations and can elucidate related

therapeutic vulnerabilities. We performed functional proteomic

analysis of 256 MCF10A cell lines that stably expressed different

mutations using RPPAs with 304 antibodies (including 69 anti-

bodies that specifically target post-translational modification

events). The expression of the introduced mutations of all cell

lines was verified at the RNA level by qPCR prior to RPPA

analysis. Importantly, concordant with the transcripts, overex-
pression of the construct was also observed at the protein level

(Figure S4A). We first focused on BRAF and EGFR allele series

to assess whether RPPA profiling can capture functional annota-

tions of different mutations within the same gene. We ranked the

effects of specific mutations relative to a line expressing a refer-

ence mutation based on protein expression similarity between

samples using all proteins profiled. We found that mutations

with the same annotation tended to cluster together in rank-

based maps based on the patterns of all proteins expressed in

the cells (Figures 4A and 4B). We next performed unsupervised

clustering analysis across all the mutations in different genes to

assess the global signaling pattern. We found that mutations

were grouped into six main clusters, primarily based on gene of

origin (Figure 4C).BRAFmutations and ERBB2mutations formed

their own clusters, and EGFR mutations formed two clusters

(EGFR1 and EGFR2), suggesting that the signaling pathways

altered by the different EGFRmutationswere distinct. In contrast,

most mutations of phosphatidylinositol 3-kinase (PI3K) signaling

pathway genes (PIK3CA, PIK3CB, and PTEN) grouped together

in the same cluster, indicating common altered signaling path-

ways. This was somewhat surprising based on PTEN functioning

as a tumor suppressor and PIK3CA and PIK3CB being onco-

genic, andmay be due to thePTENmutations potentially demon-

strating gain of function compared with the wild-type gene.

We observed activation of target proteins and linked activation

of downstream signaling targets in the stable lines. For example,

high expression levels of p-B-Raf p-RAF1 and p-MEK1 were

associated with BRAF mutations; high expression levels of

p-EGFR, p-SHP-2, and p-Stat3 were linked to EGFR mutations;

and high levels of p-Akt or p-HER2 were associated with

PIK3CAmutations and ERBB2mutations, respectively. Interest-

ingly, a large proliferative group of mutations, defined by high

expression of proliferation-related proteins (cyclin-B1, CDK1,

FoxM1, PLK1, and p-Rb), were found across cell lines carrying

BRAF mutations in the BRAF cluster, EGFR mutations in

EGFR1 cluster, ERBB2 mutations in the ERBB2 cluster and all

PIK3CA, PIK3CB, andPTENmutations.We also found activation

of mTOR signaling defined by p-S6, p-mTOR, and p-4EBP1 in a

subgroup of BRAF and EGFR mutant cell lines.
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Figure 4. Functional Proteomic Profiling of Select Mutations in MCF10A

(A and B) A rank order plot showing the overall RPPA protein expression pattern of each BRAFmutation relative to BRAFL584F (A) or each EGFRmutation relative

to EGFRG719D (B). Spearman rank correlations were calculated based on all the proteins profiled, and themutants are color coded by their functional annotations.

(C) RPPA unsupervised clustering analysis of 268 MCF10A cell lines stably overexpressing selected mutations was performed. Cluster names are annotated in

the top row of the feature track. Gene names and functional calls are also presented in the feature track. Key differentially expressed proteins across clusters are

highlighted on the right.

(D) Differential cell-cycle pathway activities among different clusters.

(E) Differential PI3K/Akt pathway activities between activating and non-activating mutations in the PI3K cluster.

(F) Differential EMT pathway activities between activating and non-activatingmutations in the BRAF cluster. (D–F) Themiddle lines indicatemedian values, the top

and bottom of the box indicate 25th and 75th percentiles, and whiskers indicate 10th and 90th percentiles. See also Figure S4 and Table S4.
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All mutations within the PI3K cluster (PIK3CA, PIK3CB, and

PTEN mutations) displayed high levels of p-Chk2 and, surpris-

ingly, Bcl2 and IGFRb. The three PTEN frameshift mutants in

the cluster exhibited decreased PTEN protein levels and were

associated with high p-Akt, p-S6, and p-mTOR levels, compara-

ble with those of PIK3CA mutations. Three PIK3CA mutations

(E39K, R38C, and I112N) were not clustered with the rest of

the PIK3CA mutations, and did not display high expression

of Bcl2, IGFRb, and p-Akt. Instead, high expression levels of

p-NF-kB and p-YAP suggested that these mutations were

signaling rewired variants (i.e., neomorphs). Strikingly, our find-

ings align with the notion that p110a (encoded by PIK3CA) and

p110b (encoded by PIK3CB) mediate distinct signaling cas-

cades (Thorpe et al., 2017).

We also performed pathway analysis based on pathway

scores, which were indicative of pathway signaling activity

(Akbani et al., 2014). Across different clusters, there were signif-

icant differences in cell-cycle score: PI3K and EGFR2 clusters

showed the highest cell-cycle scores, while EGFR1 and mixed

clusters had the lowest scores (Figure 4D; Table S4). Within

the PI3K cluster, activating mutations showed higher PI3K

pathway activity than other mutations (Figure 4E); and in the

BRAF cluster, activating mutations showed a higher epithelial-

mesenchymal transition score than other mutations (Figure 4F).

Multiple pathways showed differential activities between the

two EGFR clusters (Figure S4B). These results illustrate the utility

of RPPA analysis to elucidate the functional effects of driver mu-

tations on pathway activities.

Analysis of EGFR and BRAF Mutant Allelic Series
EGFR and BRAF are among the most important clinically action-

able genes, and their mutation status has been routinely used to

guide clinical cancer therapies. We assessed >120mutations for

each of these genes (Figures 5 and S5; Table S1) in the two

cell models, facilitating the development of new predictive

biomarkers for existing clinical therapeutics.

For EGFR, we used our platform to screen 138 mutations,

including 12 indel, 1 frameshift, and 8 silent mutations (Figures

5A and S5A). We identified 71 activating mutations, including

known driver hotspot mutations A289D/T/V, G719A/C/D/S,

and L858R. Among these mutations, 34 have been annotated

in OncoKB, and 32 out of 34 (94.1%) were classified as onco-

genic or likely oncogenic. The remaining 37 activating muta-

tions were not annotated in OncoKB. Our study has therefore

likely doubled the number of potential driver mutations in this

therapeutically relevant gene. Importantly, 63 of the VUS

assessed in EGFR are unlikely to engender sensitivity to ther-

apeutics that target EGFR, enhancing our ability to stratify pa-

tients for the appropriate treatment regimens. Further,

compared with non-hotspot mutations, we found that there

was >2-fold enrichment in the likelihood that hotspot muta-

tions are functional in the cell lines tested (Figures 5A and

S5A, Fisher’s exact test, p < 0.001). However, most activating

mutations identified were still of low frequency, highlighting

the need to functionally annotate rare mutations identified in

cancer tissues. Our data also showed that some rare func-

tional mutations are only detected by 3D prediction algorithms

and not by conventional algorithms. For example, L62R is

neither annotated in OncoKB nor classified as hotspot (Fig-
ures 5A and S5A). Although far away from any known driver

in the linear protein sequence, L62R clustered with three

oncogenic mutations (R108K, T263P, and A289V) based on

HotMAPS and HotSpot3D prediction (Figure 5B).

Since exon 19 deletions and exon 21 mutations (L858R) are

Food and Drug Administration (FDA)-approved predictive bio-

markers for afatinib and erlotinib in metastatic non-small-cell

lung cancer, any other activating mutations in exons 19 and 21

may be potential predictive biomarkers for these agents. We

examined 7 exon 19 indels and 25 missense mutations (5 in

exon 19, 20 in exon 21) using our platform (Figure S5A). All 7 in-

dels and 12 missense mutations (2 in exon 19 and 10 in exon 21)

were activating, including L858R, which suggests their potential

as predictive biomarkers for EGFR tyrosine kinase inhibitors.

Apart from the deletions in exon 19, 3 deletions in exon 20

were annotated as activating. Thus these newly identified

mutations should be considered as potential predictive bio-

markers for EGFR inhibitors.

For BRAF, we screened 129 mutations, including 7 indel,

2 frameshift, and 2 silent mutations (Figures 5A and S5B).

Among them, 54 mutations were annotated as activating,

including well-known V600 mutations. Of the 31 aberrations

annotated in OncoKB, 29 (93.5%) were annotated as onco-

genic and likely oncogenic, and the 23 remaining mutations

are UVS. Similar to EGFR, although an enrichment of activating

mutations in hotspots was observed, a number of functional

mutations were not hotspots. From 3D predictions, novel

activating mutations (e.g., L613F and S467L) were found in a

cluster with well-known driver mutations, but they are far apart

in the linear sequence (Figure 5B). BRAF inhibitors (vemurafe-

nib or dabrafenib) alone or combined with MEK inhibitors

(trametinib) are FDA approved for treating melanoma with

BRAFV600 mutations. Since several activating mutations were

in the same structural cluster with V600 (Figure 5B), the possi-

bility of using the V600 clustered activating mutations as

predictive biomarkers for BRAF inhibitors is worthy of further

assessment.

Web Portal for Exploring Functional Effects of Cancer
Somatic Mutations
To facilitate the broad use of our resource, we developed a

user-friendly, interactive, and open-access web portal, FASMIC

(functional annotation of somatic mutations in cancer), for

querying and visualizing mutation-associated data in a compre-

hensive manner (http://bioinformatics.mdanderson.org/main/

FASMIC). All our assayed mutations have been curated in

FASMIC, which currently includes six modules: summary, 3D

structure, literature, mutation frequency, function prediction,

and protein expression (Figure 6A). To find a mutation, users

can first query its gene symbol in the input box and select the

matched gene to show all related mutations (Figure 6B). All the

queried mutations are displayed in a table view along with basic

information for each mutation, such as gene name, genomic

location, amino acid change, and functional annotation. There

are six modules under the table. (1) ‘‘Summary’’ shows detailed

information for the selected mutation, including genome build

version, genomic coordinate, nucleotide change, variant

classification, variant type, and functional annotations. (2) ‘‘3D

structure’’ uses dynamic 3D animation to show the location of
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Figure 5. Analysis of EGFR and BRAF Mutation Allelic Series

(A) Functional annotations of EGFR (top) and BRAF (bottom) allelic series. Only recurrent mutations of the series are shown. The frequency (based on TCGA and

GENIE databases) and location ofmutations tested are shown in lollipop plots. In the heatmap (from top to bottom), the consensus functional annotation, OncoKB

annotation, computational prediction by 3D structural cluster (HotSpot3D, HotMAPs), population-based (VEST) cancer-focus (CanDrA), and Mutation Assessor

and hotspot predictions (based on Chang et al., 2016) of mutations tested in this study are shown.

(B) Structural clusters of activating mutations in EGFR (left) and BRAF (right). Filled color and border color of the mutation label indicate the OncoKB annotation

and our consensus functional annotation, respectively. See also Figure S5.
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Figure 6. Overview of FASMIC Portal

(A) Data portal summary.

(B) Mutation table of EGFR.

(C) The 3D protein structure of p110a (encoded by PIK3CA) with residue K111 highlighted in red.

(D) Bar plot of mutational frequency in different cancer types.

(E) Functional predictions of various computational algorithms shown in a table with damaging mutations highlighted in dark red.

(F) Differential protein expression profile of an EGFR mutant related to the wild-type gene is displayed in a sorted scatterplot.
the queried mutation in a 3D protein structure (Figure 6C). (3)

‘‘Mutation frequency’’ displays the mutation frequency obtained

from TCGA mutation data in a bar plot (Figure 6D). (4) ‘‘Function

prediction’’ provides function predictions made by popular

computational algorithms (Figure 6E). (5) ‘‘Protein expression’’

provides rich protein expression data of the MCF10A lines

altered bymutations comparedwith thewild-type genes, helping

to interpret the specific functional consequences of the mutant

(Figure 6F). (6) ‘‘PubMed’’ provides all related PubMed refer-

ences in a list view. The portal also provides cell-viability data

supporting the functional annotation.
DISCUSSION

High-throughput functional screenings of mutations using in vivo

screening in a pooled format have identified a number of rare

oncogenic mutations. However, it remains unclear whether the

results are affected by competition between mutations with

different driver activities. In vivo screening of individual muta-

tions has been shown to identify weak mutations (Kim et al.,

2016), but it is too time-consuming and labor-intensive to use

in screening large numbers of mutations. To address these

problems and obtain reasonable throughput, we tested
Cancer Cell 33, 450–462, March 12, 2018 459



mutations individually in a moderate-throughput platform.

Compared with OncoKB, our platform captured more known

oncogenic mutations (80.9%) than the two in-vivo-pooled

screens (30.3% and 40.9%) (Berger et al., 2016; Kim et al.,

2016) (Figures 3A and S3C). Furthermore, mutations in tumor-

suppressor genes such as PTEN and CDKN2A can be screened

in our platform, but not in the in-vivo-screening setting. In our

platform, PTEN and CDKN2A wild-type genes demonstrated

cell growth inhibition. Out of 24PTENmutations tested, 9 trunca-

tion mutations, and 12 missense mutations caused loss of the

inhibiting property of the wild-type gene. Similarly, in CDKN2A,

the only frameshift mutation (L78Hfs*41) out of four mutations

assessed caused loss of the inhibiting property of the wild-

type gene. Our data clearly demonstrate that our platform

can screen functional mutations in selected tumor suppres-

sor genes.

Sensitivity and specificity in functional annotation are trade-

offs. Along with increased sensitivity to capture activating

mutations, one concern for our platform is potential false posi-

tives. In the present study, we assessed the functional effects

of 27 silent mutations, none of which were different from the cor-

responding wild-type, suggesting a high specificity. Further, only

six activating mutations we captured are annotated as likely

neutral in OncoKB. However, OncoKB is a purely literature-

based database, which is heavily biased toward oncogenic

mutations, and the number of likely neutral mutations present

is limited. Assessment of the false-positive rate of our platform

cannot be done with the OncoKB database alone and should

be addressed with other experimental-based functional annota-

tion databases when they are available in the future. Overall,

75.7% of functional annotations of mutations are consistent

between the Ba/F3 andMCF10Amodels, which limits the poten-

tial for false positives. Only 22 weak activating mutations identi-

fied in the Ba/F3 model were not confirmed as activating in the

MCF10A model, which indicates that they are potential false

positives. To evaluate our functional annotations for these 22mu-

tations, we looked for evidence supporting their activating

property from knowledge-based databases (OncoKB and

PCT), computational predictions (CanDrA and CHASM, which

are the best preforming algorithms based on our data), and 3D

predictions (HotMAPS and HotSpot3D). Among the 22 weak

activating mutations, 18 mutations were supported as activating

mutations from at least one of the above evidence-based sour-

ces (STAR Methods; Table S3). Thus, the number of potential

false-positive annotations obtained from our platform could be

as low as 4 out of 301 (1.3%) activating mutations. Moreover,

a recent study (Watanabe-Smith et al., 2017) suggested that

Ba/F3 cells transfected with weak activating mutations can ac-

quire extra mutations on the transgene during prolonged

culturing under IL-3-replete conditions. Importantly, each of

our constructs was from an individual clone and was sequenced

prior to use, which limited the potential for pre-existingmutations

in the construct. In addition, IL-3 was not added after transduc-

tion and our assays were limited to 3 weeks, which further

reduced the potential for acquired mutations.

We recognize additional limitations of our platform. First, the

size of the genes tested in the platform is restricted by the

lentivirus packaging limit of 4.5 kb. Second, the effects of

some mutations may strongly depend on tumor context. To limit
460 Cancer Cell 33, 450–462, March 12, 2018
this concern we employed two cell models with totally different

genetic backgrounds and, further, our previous studies have

shown that Ba/F3 and MCF10A results can be largely recapitu-

lated in relevant human cell lines and xenograft models (Cheung

et al., 2014; Dogruluk et al., 2015; Liang et al., 2012). Our data

showed that 24 non-informative genes in the Ba/F3 model

were informative in the MCF10A model, while 6 non-informative

genes in the MCF10A model were informative in the Ba/F3

model. The well-known tumor suppressor gene IDH1was tested

in our platform and had no activity of the wild-type gene as well

as all mutations tested. This suggested that some genes need to

be assessed in other tumor tissue-specific contexts to elucidate

their function. The functional effects of those genes or mutations

would have beenmissed in our platform. Third, we only assessed

the effects on cellular viability and proliferation. However, these

are hallmarks of cancer and represent the key targets of most

therapeutic approaches. Finally, we note that pooled screening

and in particular in-vivo-pooled screening have benefits in terms

of scale and cost and capturing the effects of tumor microenvi-

ronment. Thus, our approach and the pooled screening ap-

proaches are complementary, collectively providing the most

valuable information to the research community.
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anti-Bcl2A1 Abnova Cat# PAB8528; RRID: AB_1672563

anti-Beclin Santa Cruz Cat# sc-10086; RRID: AB_2259076

anti-Bid Cell Signaling Technology Cat# 2002; RRID: AB_10692485

anti-Bim Abcam Cat# ab32158; RRID: AB_725697
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anti-BiP-GRP78 BD Biosciences Cat# 610978; RRID: AB_398291

anti-BRD4 Cell Signaling Technology Cat# 13440; RRID: AB_2687578

anti-c-Abl Cell Signaling Technology Cat# 2862; RRID: AB_10695392

anti-c-IAP2 Cell Signaling Technology Cat# 3130; RRID: AB_10693298

anti-c-Jun_pS73 Cell Signaling Technology Cat# 9164; RRID: AB_330892

anti-c-Kit Abcam Cat# ab32363; RRID: AB_731513

anti-c-Met Cell Signaling Technology Cat# 3127; RRID: AB_331361

anti-c-Met_pY1234_Y1235 Cell Signaling Technology Cat# 3129; RRID: AB_561173

anti-c-Myc Santa Cruz Cat# sc-764; RRID: AB_631276

anti-C-Raf Millipore Cat# 04-739; RRID: AB_1977452

anti-C-Raf_pS338 Cell Signaling Technology Cat# 9427; RRID: AB_2067317

anti-Caspase-3 Abcam Cat# ab32042; RRID: AB_725947

anti-Caspase-7-cleaved Cell Signaling Technology Cat# 9491; RRID: AB_2068144

anti-Caspase-8 Cell Signaling Technology Cat# 9746; RRID: AB_10694352

anti-Caveolin-1 Cell Signaling Technology Cat# 3238; RRID: AB_2072166

anti-CD171 BioLegend Cat# 826701; RRID: AB_2564904

anti-CD26 Abcam Cat# ab28340; RRID: AB_726291

anti-CD29 BD Biosciences Cat# 610467; RRID: AB_2128060

anti-CD31 Dako Cat# M0823; RRID: AB_2114471

anti-CD44 Cell Signaling Technology Cat# 3570; RRID: AB_2076465

anti-CD49b BD Biosciences Cat# 611016; RRID: AB_398329

anti-cdc25C Cell Signaling Technology Cat# 4688; RRID: AB_560956

anti-Cdc2_pY15 Cell Signaling Technology Cat# 4539; RRID: AB_560953

anti-CDK1 Abcam Cat# ab32384; RRID: AB_726756

anti-Chk1 Cell Signaling Technology Cat# 2360; RRID: AB_2080320

anti-Chk1_pS296 Abcam Cat# ab79758; RRID: AB_2244917

anti-Chk2 Cell Signaling Technology Cat# 3440; RRID: AB_2229490

anti-Chk2_pT68 Cell Signaling Technology Cat# 2197; RRID: AB_2080501

anti-Claudin-7 Novus Biologicals Cat# NB100-91714; RRID: AB_1216502

anti-COG3 ProteinTech Cat# 11130-1-AP; RRID: AB_2081402

anti-Collagen-VI Santa Cruz Cat# sc-20649; RRID: AB_2083098

anti-Connexin-43 Cell Signaling Technology Cat# 3512; RRID: AB_2294590

anti-Cox-IV Cell Signaling Technology Cat# 4850; RRID: AB_2085424

anti-Cox2 Cell Signaling Technology Cat# 4842; RRID: AB_2084968

anti-Creb Cell Signaling Technology Cat# 9197; RRID: AB_331277

anti-Cyclin-B1 Epitomics Cat# ab32053; RRID: AB_731779

anti-Cyclin-D1 Santa Cruz Cat# sc-718; RRID: AB_2070436

anti-Cyclin-D3 Cell Signaling Technology Cat# 2936; RRID: AB_2070801

anti-Cyclin-E1 Santa Cruz Cat# sc-247; RRID: AB_627357

anti-Cyclophilin-F Abcam Cat# ab110324; RRID: AB_10864110

anti-D-a-Tubulin Abcam Cat# ab48389; RRID: AB_869990

anti-DJ1 Abcam Cat# ab76008; RRID: AB_1310549

anti-DM-Histone-H3 Millipore Cat# 07-030; RRID: AB_11213050

anti-DM-K9-Histone-H3 Abcam Cat# ab32521; RRID: AB_732927

anti-DUSP4 Cell Signaling Technology Cat# 5149;

anti-E-Cadherin Cell Signaling Technology Cat# 3195; RRID: AB_2291471

anti-E2F1 Santa Cruz Cat# sc-251; RRID: AB_627476

anti-eEF2 Cell Signaling Technology Cat# 2332; RRID: AB_2097292

anti-eEF2K Cell Signaling Technology Cat# 3692; RRID: AB_2231040
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anti-EGFR Cell Signaling Technology Cat# 2232; RRID: AB_331707

anti-EGFR_pY1173 Abcam Cat# ab32578; RRID: AB_873776

anti-eIF4E Cell Signaling Technology Cat# 9742; RRID: AB_823488

anti-eIF4E_pS209 Abcam Cat# ab76256; RRID: AB_1523534

anti-eIF4G Cell Signaling Technology Cat# 2498; RRID: AB_2096025

anti-Elk1_pS383 Cell Signaling Technology Cat# 9181; RRID: AB_2099016

anti-EMA Dako Cat# M0613; RRID: AB_2148557

anti-ENY2 GeneTex Cat# GTX629542; RRID:AB_2721898

anti-ER Lab Vision Cat# RM-9101-S; RRID: AB_149901

anti-ER-a_pS118 Abcam Cat# ab32396; RRID: AB_732252

anti-ERCC1 Santa Cruz Cat# sc-17809; RRID: AB_2278023

anti-ERCC5 ProteinTech Cat# 11331-1-AP; RRID: AB_2098155

anti-Ets-1 Bethyl Cat# A303-501A; RRID: AB_10951836

anti-FAK Abcam Cat# ab40794; RRID: AB_732300

anti-FAK_pY397 Cell Signaling Technology Cat# 3283; RRID: AB_2173659

anti-FASN Cell Signaling Technology Cat# 3180; RRID: AB_2100796

anti-Fibronectin Epitomics Cat# ab45688; RRID: AB_732380

anti-FoxM1 Cell Signaling Technology Cat# 5436; RRID: AB_10692483

anti-FoxO3a Cell Signaling Technology Cat# 2497; RRID: AB_836876

anti-FoxO3a_pS318_S321 Cell Signaling Technology Cat# 9465; RRID: AB_2106498

anti-FRA-1 Santa Cruz Cat# sc-605; RRID: AB_2106927

anti-G6PD Cell Signaling Technology Cat# 8866; RRID: AB_10827744

anti-Gab2 Cell Signaling Technology Cat# 3239; RRID: AB_10698601

anti-GAPDH Thermo Fisher Scientific Cat# AM4300; RRID: AB_2536381

anti-GATA3 BD Biosciences Cat# 558686; RRID: AB_2108590

anti-GCLM Abcam Cat# ab124827; RRID: AB_10975474

anti-GCN5L2 Cell Signaling Technology Cat# 3305; RRID: AB_2128281

anti-Glutamate-D1-2 Cell Signaling Technology Cat# 12793;

anti-Glutaminase Abcam Cat# ab156876; RRID: AB_2721038

anti-Granzyme-B Cell Signaling Technology Cat# 4275; RRID: AB_2114432

anti-GSK-3a-b Santa Cruz Cat# sc-7291; RRID: AB_2279451

anti-GSK-3a-b_pS21_S9 Cell Signaling Technology Cat# 9331; RRID: AB_329830

anti-Gys Cell Signaling Technology Cat# 3886; RRID: AB_2116392

anti-Gys_pS641 Cell Signaling Technology Cat# 3891; RRID: AB_2116390

anti-H2AX_pS140 Thermo Fisher Scientific Cat# MA1-2022; RRID: AB_559491

anti-HER2 Lab Vision Cat# MS-325-P1; RRID: AB_61444

anti-HER2_pY1248 R&D Systems Cat# AF1768; RRID: AB_416537

anti-HER3 Santa Cruz Cat# sc-285; RRID: AB_2099723

anti-HER3_pY1289 Cell Signaling Technology Cat# 4791; RRID: AB_2099709

anti-Heregulin Cell Signaling Technology Cat# 2573; RRID: AB_1031011

anti-HES1 Cell Signaling Technology Cat# 11988;

anti-Hexokinase-II Cell Signaling Technology Cat# 2106; RRID: AB_823520

anti-Hif-1-alpha BD Biosciences Cat# 610958; RRID: AB_398271

anti-Histone-H3 Abcam Cat# ab1791; RRID: AB_302613

anti-HSP27 Cell Signaling Technology Cat# 2402; RRID: AB_331761

anti-HSP27_pS82 Cell Signaling Technology Cat# 2401; RRID: AB_331644

anti-HSP70 Cell Signaling Technology Cat# 4872; RRID: AB_2279841

anti-IGF1R_pY1135_Y1136 Cell Signaling Technology Cat# 3024; RRID: AB_331253

anti-IGFBP2 Cell Signaling Technology Cat# 3922; RRID: AB_2123207
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anti-IGFRb Cell Signaling Technology Cat# 3027; RRID: AB_2122378

anti-INPP4b Cell Signaling Technology Cat# 4039; RRID: AB_2126015

anti-IR-b Cell Signaling Technology Cat# 3025; RRID: AB_2280448

anti-IRF-1 Santa Cruz Cat# sc-497; RRID: AB_631838

anti-IRS1 Millipore Cat# 06-248; RRID: AB_2127890

anti-Jagged1 Abcam Cat# ab109536; RRID: AB_10862281

anti-Jak2 Cell Signaling Technology Cat# 3230; RRID: AB_2128522

anti-JNK2 Cell Signaling Technology Cat# 4672; RRID: AB_330915

anti-JNK_pT183_Y185 Cell Signaling Technology Cat# 4668; RRID: AB_2307320

anti-LC3A-B Cell Signaling Technology Cat# 4108; RRID: AB_2137703

anti-Lck Cell Signaling Technology Cat# 2752; RRID: AB_2234649

anti-LDHA Cell Signaling Technology Cat# 3582; RRID: AB_2066887

anti-LRP6_pS1490 Cell Signaling Technology Cat# 2568; RRID: AB_2139327

anti-MAPK_pT202_Y204 Cell Signaling Technology Cat# 4377; RRID: AB_331775

anti-Mcl-1 Cell Signaling Technology Cat# 5453; RRID: AB_10694494

anti-MCT4 Millipore Cat# AB3314P; RRID: AB_2286063

anti-MDM2_pS166 Cell Signaling Technology Cat# 3521; RRID: AB_2143550

anti-MEK1 Abcam Cat# ab32576; RRID: AB_776274

anti-MEK1_pS217_S221 Cell Signaling Technology Cat# 9154; RRID: AB_2138017

anti-MERIT40_pS29 Cell Signaling Technology Cat# 12110;

anti-Merlin Novus Biologicals Cat# 22710002; RRID: AB_10004662

anti-MIF Santa Cruz Cat# sc-20121; RRID: AB_648587

anti-MIG6 Sigma-Aldrich Cat# WH0054206M1; RRID: AB_1841511

anti-MMP2 Cell Signaling Technology Cat# 4022; RRID: AB_2266622

anti-Mnk1 Cell Signaling Technology Cat# 2195; RRID: AB_2235175

anti-MSH6 Novus Biologicals Cat# 22030002; RRID: AB_2266534

anti-MSI2 Abcam Cat# ab76148; RRID: AB_1523981

anti-mTOR Cell Signaling Technology Cat# 2983; RRID: AB_2105622

anti-mTOR_pS2448 Cell Signaling Technology Cat# 2971; RRID: AB_330970

anti-Myosin-11 Novus Biologicals Cat# 21370002; RRID: AB_2147162

anti-Myosin-IIa_pS1943 Cell Signaling Technology Cat# 5026;

anti-Myt1 Cell Signaling Technology Cat# 4282;

anti-N-Cadherin Cell Signaling Technology Cat# 4061;

anti-N-Ras Santa Cruz Cat# sc-31; RRID: AB_628041

anti-NAPSIN-A Abcam Cat# ab129189; RRID: AB_11143020

anti-NDRG1_pT346 Cell Signaling Technology Cat# 3217; RRID: AB_2150174

anti-NDUFB4 Abcam Cat# ab110243; RRID: AB_10890994

anti-NF-kB-p65_pS536 Cell Signaling Technology Cat# 3033; RRID: AB_331284

anti-Notch1 Cell Signaling Technology Cat# 3268; RRID: AB_1264224

anti-Notch3 Santa Cruz Cat# sc-5593; RRID: AB_2151246

anti-Oct-4 Cell Signaling Technology Cat# 2750; RRID: AB_823583

anti-P-Cadherin Cell Signaling Technology Cat# 2130; RRID: AB_2077669

anti-p16INK4a Abcam Cat# ab81278; RRID: AB_1640753

anti-p21 Santa Cruz Cat# sc-397; RRID: AB_632126

anti-p27-Kip-1 Abcam Cat# ab32034; RRID: AB_2244732

anti-p27_pT198 Abcam Cat# ab64949 ; RRID: AB_1142099

anti-p38 MAPK Cell Signaling Technology Cat# 9212; RRID: AB_330713

anti-p38_pT180_Y182 Cell Signaling Technology Cat# 9211; RRID: AB_331641

anti-p44-42-MAPK Cell Signaling Technology Cat# 4695; RRID: AB_390779
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anti-p53 Cell Signaling Technology Cat# 9282; RRID: AB_331476

anti-p70-S6K1 Abcam Cat# ab32529; RRID:AB_777800

anti-p70-S6K_pT389 Cell Signaling Technology Cat# 9205; RRID: AB_330944

anti-p90RSK_pT573 Cell Signaling Technology Cat# 9346; RRID: AB_330795

anti-PAI-1 BD Biosciences Cat# 612024; RRID: AB_399419

anti-PAICS Sigma-Aldrich Cat# HPA035895; RRID: AB_10669660

anti-PAK1 Cell Signaling Technology Cat# 2602; RRID: AB_330222

anti-PAK4 Cell Signaling Technology Cat# 3242; RRID: AB_2158622

anti-PAR Trevigen Cat# 4336-BPC-100; RRID: AB_2721257

anti-PARP1 Santa Cruz Cat# sc-7150; RRID: AB_2160738

anti-PAX8 Cell Signaling Technology Cat# 9857;

anti-Paxillin Epitomics Cat# ab32084; RRID: AB_779033

anti-PCNA Cell Signaling Technology Cat# 2586; RRID: AB_2160343

anti-PD-L1 Cell Signaling Technology Cat# 13684; RRID: AB_2687655

anti-Pdcd-1L1 Santa Cruz Cat# sc-19090; RRID: AB_2073553

anti-Pdcd4 Rockland Cat# 600-401-965; RRID: AB_828370

anti-PDGFR-b Cell Signaling Technology Cat# 3169; RRID: AB_2162497

anti-PDHK1 Cell Signaling Technology Cat# 3820; RRID: AB_1904078

anti-PDK1 Cell Signaling Technology Cat# 3062; RRID: AB_2236832

anti-PDK1_pS241 Cell Signaling Technology Cat# 3061; RRID: AB_2161919

anti-PEA-15 Cell Signaling Technology Cat# 2780; RRID: AB_2268149

anti-PEA-15_pS116 Thermo Fisher Scientific Cat# 44-836G; RRID: AB_2533775

anti-PI3K-p110-a Cell Signaling Technology Cat# 4255; RRID: AB_659888

anti-PI3K-p110-b Santa Cruz Cat# sc-376412; RRID: AB_11150465

anti-PI3K-p85 Millipore Cat# 06-195; RRID: AB_310069

anti-PKA-a Cell Signaling Technology Cat# 5675; RRID: AB_10695452

anti-PKC-b-II_pS660 Cell Signaling Technology Cat# 9371; RRID: AB_2168219

anti-PKC-delta_pS664 Millipore Cat# 07-875; RRID: AB_568868

anti-PKCa Cell Signaling Technology Cat# 2056; RRID: AB_2284227

anti-PKM2 Cell Signaling Technology Cat# 4053; RRID: AB_1904096

anti-PLC-gamma2_pY759 Cell Signaling Technology Cat# 3874; RRID: AB_2163714

anti-PLK1 Cell Signaling Technology Cat# 4513; RRID: AB_2167409

anti-PMS2 Novus Biologicals Cat# 22510002; RRID: AB_2167143

anti-Porin Abcam Cat# ab14734; RRID: AB_443084

anti-PR Abcam Cat# ab32085; RRID: AB_777452

anti-PRAS40 Thermo Fisher Scientific Cat# AHO1031; RRID: AB_2536321

anti-PRAS40_pT246 Thermo Fisher Scientific Cat# 441100G; RRID: AB_2533573

anti-PREX1 Abcam Cat# ab102739; RRID: AB_10711640

anti-PTEN Cell Signaling Technology Cat# 9552; RRID: AB_329836

anti-Rab11 Cell Signaling Technology Cat# 3539; RRID: AB_2253210

anti-Rab25 Cell Signaling Technology Cat# 4314; RRID: AB_10545758

anti-Rad50 Millipore Cat# 05-525; RRID: AB_309782

anti-Rad51 Cell Signaling Technology Cat# 8875; RRID: AB_2721109

anti-Raptor Cell Signaling Technology Cat# 2280; RRID: AB_561245

anti-Rb Cell Signaling Technology Cat# 9309; RRID: AB_331745

anti-RBM15 Novus Biologicals Cat# 21390002; RRID: AB_2175759

anti-Rb_pS807_S811 Cell Signaling Technology Cat# 9308; RRID: AB_331472

anti-Rheb R&D Systems Cat# MAB3426; RRID: AB_2178785

anti-Rictor Cell Signaling Technology Cat# 2114; RRID: AB_2179963
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anti-Rictor_pT1135 Cell Signaling Technology Cat# 3806; RRID: AB_10557237

anti-RIP Cell Signaling Technology Cat# 4926; RRID: AB_2224503

anti-Rock-1 Santa Cruz Cat# sc-5560; RRID: AB_2182157

anti-RPA32 Cell Signaling Technology Cat# 2208; RRID: AB_2238543

anti-RPA32_pS4_S8 Bethyl Cat# A300-245A; RRID: AB_210547

anti-RSK Cell Signaling Technology Cat# 9347; RRID: AB_330803

anti-S6 Cell Signaling Technology Cat# 2317; RRID: AB_2238583

anti-S6_pS235_S236 Cell Signaling Technology Cat# 2211; RRID: AB_331679

anti-S6_pS240_S244 Cell Signaling Technology Cat# 2215; RRID: AB_2630325

anti-SCD Santa Cruz Cat# sc-58420; RRID: AB_785599

anti-SDHA Cell Signaling Technology Cat# 11998;

anti-SF2 Thermo Fisher Scientific Cat# 32-4500; RRID: AB_2533079

anti-Shc_pY317 Cell Signaling Technology Cat# 2431; RRID: AB_2188169

anti-SHP-2_pY542 Cell Signaling Technology Cat# 3751; RRID: AB_330825

anti-SLC1A5 Sigma-Aldrich Cat# HPA035240; RRID: AB_10604092

anti-Smac Cell Signaling Technology Cat# 2954; RRID: AB_2131196

anti-Smad1 Abcam Cat# ab33902; RRID: AB_777975

anti-Smad3 Abcam Cat# ab40854; RRID: AB_777979

anti-Smad4 Santa Cruz Cat# sc-7966; RRID: AB_627905

anti-Snail Cell Signaling Technology Cat# 3895; RRID: AB_2191759

anti-SOD1 Cell Signaling Technology Cat# 4266; RRID: AB_2193898

anti-SOD2 Cell Signaling Technology Cat# 13141; RRID: AB_2636921

anti-Sox2 Cell Signaling Technology Cat# 2748; RRID: AB_823640

anti-Src Millipore Cat# 05-184; RRID: AB_2302631

anti-Src_pY416 Cell Signaling Technology Cat# 2101; RRID: AB_331697

anti-Src_pY527 Cell Signaling Technology Cat# 2105; RRID: AB_331034

anti-Stat3 Cell Signaling Technology Cat# 4904; RRID: AB_331269

anti-Stat3_pY705 Cell Signaling Technology Cat# 9145; RRID: AB_2491009

anti-Stat5a Abcam Cat# ab32043; RRID: AB_778107

anti-Stathmin-1 Abcam Cat# ab52630; RRID: AB_2197257

anti-Syk Santa Cruz Cat# sc-1240; RRID: AB_628308

anti-Tau Millipore Cat# 05-348; RRID: AB_309687

anti-TAZ Cell Signaling Technology Cat# 4883; RRID: AB_1904158

anti-TFAM Cell Signaling Technology Cat# 7495; RRID: AB_10841294

anti-TFRC Novus Biologicals Cat# 22500002; RRID: AB_10004660

anti-TIGAR Abcam Cat# ab137573; RRID:AB_2721901

anti-Transglutaminase Lab Vision Cat# MS-224-P1; RRID: AB_62205

anti-TRIM25 Abcam Cat# ab167154; RRID:AB_2721902

anti-TSC1 Cell Signaling Technology Cat# 4906; RRID: AB_2209790

anti-TTF1 Abcam Cat# ab76013; RRID: AB_1310784

anti-Tuberin Abcam Cat# ab32554; RRID: AB_778686

anti-Tuberin_pT1462 Cell Signaling Technology Cat# 3617; RRID: AB_490956

anti-TWIST Santa Cruz Cat# sc-81417; RRID: AB_1130910

anti-Tyro3 Cell Signaling Technology Cat# 5585; RRID: AB_10706782

anti-UBAC1 Sigma-Aldrich Cat# HPA005651; RRID: AB_1858489

anti-Ubq-Histone-H2B Millipore Cat# 05-1312; RRID: AB_1587119

anti-UGT1A Santa Cruz Cat# sc-271268; RRID: AB_10610640

anti-ULK1_pS757 Cell Signaling Technology Cat# 6888; RRID: AB_10829226

anti-VASP Cell Signaling Technology Cat# 3112; RRID: AB_2213542
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anti-VEGFR-2 Cell Signaling Technology Cat# 2479; RRID: AB_2212507

anti-VHL-EPPK1 BD Biosciences Cat# 556347; RRID: AB_396376

anti-Vimentin Dako Cat# M0725; RRID: AB_10015203

anti-Wee1 Cell Signaling Technology Cat# 4936; RRID: AB_2288509

anti-Wee1_pS642 Cell Signaling Technology Cat# 4910; RRID: AB_2215870

anti-WIPI1 Cell Signaling Technology Cat# 12124;

anti-WIPI2 Cell Signaling Technology Cat# 8567; RRID: AB_11178945

anti-XBP-1 Santa Cruz Cat# sc-32136; RRID: AB_2304558

anti-XPA Santa Cruz Cat# sc-56813; RRID: AB_794177

anti-XPF Abcam Cat# ab3299; RRID: AB_303684

anti-XRCC1 Cell Signaling Technology Cat# 2735; RRID: AB_2218471

anti-YAP Santa Cruz Cat# sc-15407; RRID: AB_2273277

anti-YAP_pS127 Cell Signaling Technology Cat# 4911; RRID: AB_2218913

anti-YB1_pS102 Cell Signaling Technology Cat# 2900; RRID: AB_2219273

anti-ZAP-70 Cell Signaling Technology Cat# 2705; RRID: AB_2273231

Chemicals, Peptides, and Recombinant Proteins

Recombinant mouse IL-3 R&D Systems Cat#: 403-ML-050/CF

Recombinant human EGF R&D Systems Cat#: 236-EG-200

Hydrocortisone Sigma-Aldrich Cat#: H-0888

Cholera toxin Sigma-Aldrich Cat#: C-8052

Insulin Sigma-Aldrich Cat#: I-1882

MEGM Bullet Kit Lonza Cat#: CC-3150

polybrene Sigma-Aldrich Cat#: TR-1003-G

Critical Commercial Assays

CellTiter-Glo 2.0 Assay Promega Cat#: G9243

Deposited Data

Functional annotation of mutations

and cell viability data

FASMIC Data Portal http://bioinformatics.mdanderson.org/main/FASMIC;

Accession# FASMIC:FASMIC-000001

RPPA protein expression profiles

of stable lines

FASMIC Data Portal http://bioinformatics.mdanderson.org/main/FASMIC;

Accession# FASMIC:FASMIC-000001

Experimental Models: Cell Lines

LentiX-293T cells Clontech Cat#: 632180

MCF10A cells ATCC ATCC� CRL-10317�; Authenticated by Short

Tandem Repeat (STR) analysis at M.D. Anderson

Characterized Cell Line Core facility (Houston, TX)

Ba/F3 cells M.D. Anderson Characterized

Cell Line Core facility (Houston, TX)

Parental cells validated based on continued

dependence on IL-3 for propagation; mouse

originated cell line.

Software and Algorithms

dbNSFP Liu et al., 2016 https://sites.google.com/site/jpopgen/dbNSFP

RISmed https://cran.r-project.org/web/packages/RISmed/

index.html

biomaRt https://cran.r-project.org/web/packages/biomartr/

HMMER Finn et al., 2011 http://hmmer.org/

NetSurfP Petersen et al., 2009 http://www.cbs.dtu.dk/services/NetSurfP/

MutationMapper Vohra and Biggin, 2013 http://www.cbioportal.org/mutation_mapper.jsp

pheatmap https://cran.r-project.org/web/packages/pheatmap/

index.html

DataTables https://datatables.net

HighCharts https://www.highcharts.com

3Dmol.js Rego and Koes, 2015 http://3dmol.csb.pitt.edu/doc/index.html
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Han Liang

(HLiang1@mdanderson.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue Culture Cells
LentiX-293T cells (Clontech) were cultured in DMEM (with high glucose, glutamine and sodium pyruvate) with 5% FBS and 13 non-

essential amino acid. LentiX-293T cells were used to make lentivirus. Ba/F3 cells are murine pro-B suspension cells that depend on

exogenous IL-3 for cell survival. Growthmedium for Ba/F3 cells was advanced RPMI with 13GlutaMAX, 5%FBS and 1 ng/ml mouse

IL-3. Assay medium for Ba/F3 was growth medium without IL-3. MCF10A cells are human non-tumorigenic mammary epithelial cells

that depend on exogenous EGF and insulin for proliferation. Growth medium for MCF10A cells was DMEM/F12mediumwith 5%HS,

20 ng/ml EGF, 0.5 mg/ml hydrocortisone, 100 ng/ml cholera toxin, 10 mg/ml insulin, 13 Pen/strep. Assay medium for MCF10A cells

was MEBM basal medium (Lonza #CC-3151) with 100 ng/ml cholera toxin and 52 ng/ml bovine pituitary extract (BPE)

(Lonza #CC-4009).

METHOD DETAILS

Construction of Lentivirus Vector by HiTMMoB
The lentivirus vector of barcoded wild-types, mutations, fusion genes and controls were constructed with pHAGE-EF1a-GFP or

pHAGE-EF1a-PURObackbone byHigh-Throughput Mutagenesis andMolecular Barcoding (HiTMMoB) technique as described pre-

viously (Dogruluk et al., 2015; Tsang et al., 2016; Lu et al., 2017). The ORF entry clones used were from Life Technologies or the

ORFeome 8.1 (http://horfdb.dfci.harvard.edu/). All ORF sequences were shown in Table S1. All mutant clones were full-length

sequenced before assays to ensure that no unwanted mutation was introduced comparing to template ORFs. Mutant and wild-

type constructs are made available through Addgene for sharing with the cancer research community.

Ba/F3 and MCF10A Growth-Factor Independence Assay
To assess the function of the candidates, two growth-factor–dependent cell models, Ba/F3 and MCF10A cell models, were used.

Both cell types stop proliferating and die in the absence of the required factor(s). The rationale is that a ‘‘driver’’ mutation will confer

survival and proliferation advantages to the cells in the absence of required growth factor(s), but ‘‘passenger’’ mutations will not. The

mutation candidates were put into both cell models with various types of controls. First, two experimental negative controls (GFP,

mCherry or Luciferase) and three experimental positive controls (PIK3CA wild-type, M1043I and H1047R) with different activities

(i.e., wild-type < M1043I < H1047R) served as technical controls to check if the experiments performed well. Second, mutations

and their corresponding wild-type counterparts were assessed in parallel in the same experiment, the latter of which determined

the basal activity of the genes in the cell models. Third, for selected genes, silent and literature-reported driver mutations were

used as additional controls to determine the basal and activated activities of the genes, respectively. In total, 1049 mutations

were tested in batches, with up to 33mutations per batch. In each experiment (i.e., batch), the set of 5 experimental controls (2 nega-

tive and 3 positive) and corresponding wild-type clones were included. Additional silent and gene-specific positive mutations were

also included if available.

For each experiment, pHAGE constructs of mutants and wild-type genes were freshly prepared from a single colony and used for

generating lentivirus for Ba/F3 and MCF10A transduction. Lentivirus was generated in the LentiX-293T cells by transfecting the

pHAGE and two packaging plasmids (psPAX2 and pMD2.G). The medium of the transfected cells was refreshed at 16 hours

post-transfection. The virus was harvested at 3 days post-transfection by filtering with 0.45 mM filter. Ba/F3 cells (0.6 million cells)

were transduced by spinoculation at 10003 g for 3 hours in the presence of polybrene (final concentration: 8 mg/ml). After spinning,

cells were resuspended in the Ba/F3 assaymedium in a 24-well plate format. For MCF10A cells, 5,000 cells were seeded into 96-well

plates 1 day before transduction and transduced by spinoculation at 9063 g for 2 hours in the presence of polybrene (final concen-

tration: 2.7 mg/ml). Themediumwas refreshed after spinoculation with theMCF10A assaymedium. Transduced cells were incubated

at 37�C for 3 weeks. Cell viability of Ba/F3 and MCF10A cells was measured at 4 time points (at intervals of 3 or 4 days) during the

3-week assay period. The functional annotations of mutations were based on a comparison to the corresponding wild-type clones

(Figure S2A).

In Vivo Pooled Screening
Barcoded mutations and wild-type counterparts were transduced into Ba/F3 cells by lentivirus individually, and transduced cells

were expanded in puromycin-selective conditions for a week until reaching enough cells for injection to mice. Cells were injected

(s.c.) into themice. Tumorswere harvestedwithin 50 days depending on the size of tumors. Barcodeswere sequenced. Oncogenicity

of mutations were presented by enrichment of corresponding barcodes in the harvested tumors compared to input at the

injection day.
e8 Cancer Cell 33, 450–462.e1–e10, March 12, 2018

mailto:HLiang1@mdanderson.org
http://horfdb.dfci.harvard.edu/


Comparison to OncoKB Annotation, Literature Mining and Computational Predictions
To compare our functional annotation to the previous in vivo studies (Berger et al., 2016; Kim et al., 2016), we first identified the mu-

tations commonly assayed between our platform and the previous studies, in which 21 and 14 shared mutations, respectively. To

compare our annotation with OncoKB, we downloaded the mutation annotation from http://oncokb.org, and identified 193 common

mutations, among which 95 are oncogenic, 83 are likely oncogenic and 15 are likely neutral. To compare our functional annotation

with predicted mutational impacts from commonly used algorithms, we tested 21 algorithms for 913 point mutations. Except for

CanDrA plus and CHASM (Douville et al., 2013), we obtained the other 19 algorithms from dbNSFP (Liu et al., 2016). The ROC curves

were generated based on the ranking scores defined in dbNSFP.

To evaluate whether any given mutations had been reported in the literature, we used gene symbols and amino acid changes as

keywords to query PubMed. We calculated the proportion of our tested mutations that were reported in specific genes. In addition,

mutations curated by the OncoKB and PCT databases were included for comparison.

Reverse-Phase Protein Arrays
Cell pellets were washed twice with PBS and lysed (1% Triton X-100, 50 mM HEPES, pH 7.4, 150 mM NaCl, 1.5 mM MgCl2, 1 mM

EGTA, 100 mM NaF, 10 mM Na pyrophosphate, 1 mM Na3VO4, 10% glycerol, protease and phosphatase inhibitors). Protein

concentration was adjusted to 1-1.5 mg/ml and denatured by 1% SDS. Cell lysates were two-fold serial diluted for 5 dilutions

(from undiluted to 1:16 dilution) and arrayed on nitrocellulose-coated slides in 11311 format. Samples were probed with antibodies

by the CSA amplification approach and visualized by DAB colorimetric reaction.

Slides were scanned on a flatbed scanner to produce 16-bit tiff images. Spots from tiff images were identified and density quan-

tified by Array-Pro Analyzer. Relative protein levels for each sample were determined by interpolation of each dilution curve from the

‘‘standard curve’’ (Supercurve) of the slide (antibody). Supercurve was constructed using a script written in R (‘‘Supercurve Fitting’’,

http://bioinformatics.mdanderson.org/Software/supercurve). Each dilution curvewas fittedwith a logistic regressionmodel. This fit a

single curve using all the samples (i.e., dilution series) on a slide with the signal intensity as the response variable and the dilution

steps as the independent variable. The fitted curve (‘‘Supercurve’’) was plotted with the signal intensities on the y-axis and the relative

log2 concentration of each protein on the x-axis using the non-parametric, monotone increasing B-spline model. During the process,

the raw spot intensity data were adjusted to correct for spatial bias beforemodel fitting. A quality control metric was returned for each

slide to help determine the quality of the slide: if the score was less than 0.8 on a 0–1 scale, the slide was dropped. In most cases, the

staining was repeated to obtain a high-quality score.

The protein concentrations of each set of slides were then normalized by median polish, which was corrected across samples by

the linear expression values using themedian expression levels of all antibody experiments to calculate a loading correction factor for

each sample. These values (given as log2 values) are defined as Supercurve log2 (raw) values. All the data points were normalized for

protein loading.

Pathway Score Analysis
For each sample j in a pathway k, pathway scores (Skj) were calculated based on the z-scores (zi) of each protein member i using the

formula (Akbani et al., 2014), described below, where wki is the weight for each protein i in the pathway k, and Pk represents the

number of proteins in pathway k. The pathway protein members and their corresponding weights were obtained from the previous

studies.

Skj =

XkPkk
i = 1

ðzkij$wkiÞ
XkPkk

i = 1
jwkij

Text Mining of Cancer Mutations
To evaluate whether a specificmutation had been reported in literature, we used gene symbols and amino acid changes as keywords

to query the PubMed. We calculated the proportion of mutations that were reported by the end of 2016. This process was performed

by the R package ‘RISmed’. Mutations curated by the OncoKB database and PCT (www.personalizedcancertherapy.org) were also

included for comparative purposes.

Pfam Domain and Hotspot Analysis
Protein sequences of these genes were obtained by using R package ‘biomaRt’. We mapped Pfam domains to the genes using

HMMER (Finn et al., 2011) and obtained the presence of a Pfam domain and the corresponding range (start and end residues).

Mutations were mapped relative to the range of the Pfam domains to determine whether a mutation was inside a Pfam domain or

not. Fisher’s exact test was used to assess the difference of the proportion of functional mutations in versus outside the Pfam do-

mains. In addition, we calculated the proportion of functional mutations mapped to hotspots and non-hotspots, and used Fisher’s

exact test to assess the difference.
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Structural Analysis and Lollipop Plots
To evaluate whether the mutations were located on the surface or core of a protein, protein sequences were subjected to the

NetSurfP program (Petersen et al., 2009), and the relative surface accessibility (RSA) and absolute surface accessibility (ASA) scores

were retrieved for each protein residue. We then mapped mutations to the protein sequence to obtain the related scores for each

mutation, and assessed the score differences for functional and non-functional mutations by the Wilcoxon rank-sum test.

We downloaded all mutation data of EGFR and BRAF from cBioPortal in all TCGA and GENIE cancer samples and identified

252 mutations for functional annotation. We next calculated the number of mutated samples for each mutation. The lollipop plots

were generated using MutationMapper (Vohra and Biggin, 2013). The heatmaps for mutations in hotspots or reported in the literature

were plotted using the R package ‘pheatmap’.

3D Structural Predictions for Mutation Impact
HotSpot3Dwas run onmutations from theMC3MAF aswell as themutations that were validated to seewhichmutation clusters were

on the protein structure (Niu et al., 2016). The default HotSpot3D parameters were used, and only missense mutations and in-frame

insertions/deletions were clustered. Mutations that were labeled as both a deletion and insertion were removed and were not

clustered. For the resulting clusters, the cluster closeness was calculated, which was simply the sum of the closeness centralities

of the mutations in the cluster. Closeness centrality is a measure of how close a mutation is to other mutations as well as how close

a mutation is to a highly recurrent mutation. We identified clusters that were from known cancer genes as previously defined

(Tamborero et al., 2013). The top 20% of cluster closeness values of the cancer gene distribution was used as a threshold to deter-

mine the significance (Cc >8.2). Using the same MC3 MAF file, HotMAPS v1.1.0 was used in each cancer type and all cancer types

grouped together (‘‘PANCAN’’), as described previously (Tokheim et al., 2016), to generate hotspot regions, and estimate the back-

ground distribution of mutational density in protein structures. Only missense mutations were mapped to available protein structures

and homology models using the MuPIT database (Niknafs et al., 2013). We then mapped missense mutations to the same set of

protein structures, and mutational densities were calculated based on the TCGA data. HotMAPS detects whether mutated amino

acid residues have higher three dimensional mutation density then expected by chance. Since the assay was not cancer-type spe-

cific, we took the minimum p value across cancer types and PANCAN as representative of each residue. We assigned all mutations

occurring at the same amino acid residue the same p value. Statistical significancewas established at a threshold false discovery rate

of 0.01 (Benjamini-hochberg method). Only mutations in clusters with the significance above the thresholds were highlighted in the

heatmaps in Figures 5 and S5. For visualization of clusters, we utilized Protein Data Bank (PDB) structures 3NJP for EGFR and 4MBJ

for BRAF in Figure 5B. Mutations assayed by 3D Hotspots were annotated with http://www.3dhotspots.org.

FASMIC Data Portal Construction
The FASMIC web interface was implemented in JavaScript. All data used in FASMIC were curated in a CouchDB database; tabular

results were displayed by DataTables; box and scatter plots were generated by HighCharts; protein 3D structure information was

obtained from PDB and visualized by 3Dmol.js (Rego and Koes, 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

Definition of significance of various statistical tests were described and referenced in their respective Method Details sections.

DATA AND SOFTWARE AVAILABILITY

Functional annotation and cell viability data for each mutation and RPPA protein profiles of selected mutations are available in the

FASMIC Data portal (http://bioinformatics.mdanderson.org/main/FASMIC). The accession number for the cell viability and RPPA

data reported in this paper is FASMIC:FASMIC-000001.
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