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Abstract

Purpose: Endometrioid endometrial carcinoma (EEC) is the
major histologic type of endometrial cancer, the most prevalent
gynecologic malignancy in the United States. EEC recurrence or
metastasis is associated with a poor prognosis. Early-stage EEC is
generally curable, but a subset has high risk of recurrence or
metastasis. Prognosis estimation for early-stage EECmainly relies
on clinicopathologic characteristics, but is unreliable. We aimed
to identify patients with high-risk early-stage EEC who are most
likely tobenefit frommore extensive surgery and adjuvant therapy
by building a prognostic model that integrates clinical variables
and protein markers.

Experimental Design: We used two large, independent early-
stage EEC datasets as training (n ¼ 183) and validation cohorts
(n ¼ 333), and generated the levels of 186 proteins and phos-
phoproteins using reverse-phase protein arrays. By applying an
initial filtering and the elastic net to the training samples, we

developed a prognostic model for overall survival containing two
clinical variables and 18 protein markers and optimized the risk
group classification.

Results: The Kaplan–Meier survival analyses in the validation
cohort confirmed an improved discriminating power of our
prognostic model for patients with early-stage EEC over key
clinical variables (log-rank test, P ¼ 0.565 for disease stage,
0.567 for tumor grade, and 1.3� 10�4 for the integrative model).
Compared with clinical variables (stage, grade, and patient age),
only the risk groups defined by the integrative model were
consistently significant in both univariate and multivariate anal-
yses across both cohorts.

Conclusions: Our prognostic model is potentially of high
clinical value for stratifying patients with early-stage EEC and
improving their treatment strategies. Clin Cancer Res; 22(2); 513–23.
�2015 AACR.

Introduction
Endometrial cancer is the most prevalent gynecologic malig-

nancy in the United States, with an estimated 54,870 new cases
and 10,170 deaths occurring in 2015 (1). In contrast to progress
observed for most cancer types, the incidence and mortality from
endometrial cancer has increased over the past several decades
(2). The most common histologic type of endometrial cancer

(�80%), endometrioid endometrial carcinoma (EEC), is linked
to estrogen excess, obesity, and hormone-receptor positivity.
Nonendometrioid tumors include serous carcinoma (�10%) and
several other rare types (e.g., clear cell carcinomas and carcino-
sarcomas; ref. 3), which are typically associated with advanced
stage at diagnosis and poor prognosis. These tumors are usually
treated with more aggressive therapy, including total abdominal
hysterectomy, bilateral salpingo-oophorectomy, and postsurgical
radiation therapy and chemotherapy (4, 5).

The reported 5-year survival rate is relatively good in early-stage
EEC (stage I, II, 70%–90%) but it falls below 50% in late-stage
EEC (40%–50% for stage III, 15%–20% for stage IV; ref. 6).
Indeed, patients with late-stage EEC or recurrent disease have a
poor prognosis, with a median overall survival of less than 12
months. Their treatment options are similar to those offered to
patients with nonendometrioid carcinoma (7). Fortunately, most
women with EEC are diagnosed at an early stage of the disease,
when the cancer can generally be cured by surgery. However, not
all early-stage EEC is clinically indolent: a subset has poor prog-
nosis due to metastasis or disease recurrence following surgery
(8). This clinical heterogeneity for early-stage EECwarrants efforts
to identify high-quality prognostic markers that can be used to
stratify patients and to determine their prognoses, thereby imple-
menting evidence-based individualized therapeutic approaches.
Currently, the prediction of prognosis for patientswith early-stage
EEC is mainly based on disease stage and tumor grade. Other
prognostic factors include lymphovascular space invasion, obe-
sity, age, myometrial invasion depth, and lymph node status
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(9, 10), but none of these factors can reliably predict patient
survival. Therefore, it is critical to develop an effective strategy to
identify patients with high-risk, early-stage EEC because they are
likely to benefit from more extensive surgery and aggressive
adjuvant therapies. Furthermore, this may spare patients who
have low-risk EEC from potentially toxic interventions.

The detailed characterization of endometrial tumors at the
molecular level may provide information that can be used to
increase the power of prognostic models beyond that offered by
clinicopathologic characteristics alone, thereby improving sur-
veillance and treatment strategies. In this study, we aimed to
develop an effective prognosticmodel for patientswith early-stage
EEC by integrating clinical characteristics with proteomic data. As
proteins are major functional units in various biologic processes,
protein markers have the potential to reflect key processes under-
lying tumor development and progression that may not be
captured by other types ofmolecularmarkers (11, 12). To identify
and validate potential biomarkers, we used functional proteome-
based reverse-phase protein array (RPPA), which is an antibody-
based technology that allows for high-throughput measurements
of the expression levels of proteins andphosphoproteins in a large
number of samples in a cost-effective and sensitive manner (13,
14). The technical reliability and the utility of this platform have
been well documented in the literature, including in our previous
studies (15–17). A typical coefficient of variation for RPPA is 5%
to 7%, demonstrating high reproducibility (15, 18). In our recent
pan-cancer study, the correlation analysis among RPPA protein
markers successfully captured known signaling pathways in dif-
ferent tumor contexts (11). Importantly, through a systematic
assessment on prognostic utility, we found that RPPA-based
protein expression is the most informative data among various
types of molecular data surveyed (i.e., somatic copy-number
alterations, DNA methylation, mRNA, microRNA and protein
expression; ref. 19). Therefore, we focused on the RPPA-based
protein markers in this study.

Here, we used two large, independent patient sets as the
training and validation cohorts, respectively. On the basis of their
survival data availability/quality and also because we are more
interested in patients' long-term outcome, we considered overall
survival as the endpoint in our analysis. We first built a prognostic
model for patients with early-stage EEC from the training cohort,

anddetermined a risk group classification scheme.Ourprognostic
model that integrates both protein markers and clinical charac-
teristics showed better performance than conventional clinical
variables in both the training and validation cohorts. Thus, the
integrative prognostic model we have developed may represent a
valuable tool for improving the surveillance and treatment strat-
egies of patients with early-stage EEC.

Materials and Methods
Patient sample collection

In this study, fresh-frozen samples were collected from
patients newly diagnosed with EEC at Haukeland University
Hospital (Bergen, Norway), the University of Texas MD Ander-
son Cancer Center (MDACC; Houston, Texas), and The Cancer
Genome Atlas (TCGA). Bergen samples were approved by the
Norwegian Data Inspectorate (961478–2), the Norwegian
Social Science Data Services (15501), and the local Institutional
Review Board (REKIII nr. 052.01). The MDACC samples were
approved by the Institutional Review Board of MDACC
(Lab08–0580). Treatment plans followed the established stan-
dards at the respective institutions in accordance with NCCN
guidelines and as previously reported (20). In general, early-
stage EEC was treated with surgery alone with or without
adjuvant radiotherapy; late-stage EEC was treated with surgery
followed by chemotherapy with or without volume-directed
radiotherapy. Tumor content, histologic classification, grade,
and disease stage were reviewed by independent pathologists.
All the patients provided written informed consent for the
collection of samples and subsequent analyses.

For prognostic modeling, we used 209 EEC samples from the
Bergen set as the training cohort because of the large sample
size and long follow-up time associated with this dataset. We
combined the MDACC and TCGA samples as the validation
cohort (n ¼ 427) to increase the total sample size and statistical
power. The clinical information for TCGA samples was
obtained from the TCGA consortium paper for endometrial
cancer (21). We had limited clinical data, especially for
MDACC and Bergen samples. Among potential affecting fac-
tors, patient age, grade, disease stage, body mass index (BMI),
and ethnicity were available for MDACC samples, and patient
age, grade and disease stage for Bergen samples. Therefore, we
used three clinical factors (patient age, disease stage, and tumor
grade) that were available for all patients in the three sample
sets. We capped the overall survival time at 60 months, as
described previously (22). The individual clinical data of the
patients included in this study are reported in Supplementary
Tables S1 and S2.

Reverse-phase protein array profiling and data normalization
We performed RPPA profiling for all samples at the MD

Anderson RPPA core facility, as previously described (21). Briefly,
proteins were extracted from tumor tissues, denatured by SDS,
and printed on nitrocellulose-coated slides, which was followed
by antibody probing. Quantification of protein expressions was
performed through "supercurve fitting," as described previously
(23, 24), and which is a method that has been extensively
validated for both cell line and patient samples (15, 17). We
obtained quantitative protein expression profiles of 186 proteins
and phosphoproteins for both the training and validation sam-
ples (Supplementary Table S3 for the list of 186 antibodies). These

Translational Relevance

A subset of endometrioid endometrial carcinoma (EEC) is
associated with recurrence or metastasis, leading to a poor
prognosis. Currently, prognosis estimation for early-stage EEC
mainly relies on clinicopathologic characteristics, but is unre-
liable. Here, we have developed and validated an effective
postoperative prognostic model for the overall survival of
patients with early-stage EEC, which integrates clinical vari-
ables andproteinmarkers. To the best of our knowledge, this is
the first quantitative protein-based model that represents a
novel, improved prognostic approach for this patient popu-
lation. The risk score calculated from this model will help
identify patients with high-risk early-stage EEC who are most
likely to benefit from more extensive surgery and adjuvant
therapy.
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proteins were selected to broadly represent the important path-
ways in cancer, and their RPPA data have been widely used in
various TCGA-related analyses, providing deep insights into the
molecular mechanisms of various cancer types. All the antibodies
were validated by Western blot analysis. The validation process
and assessment results on the antibodies for RPPA were detailed
previously (15).

All the samples used in this study were run in three different
RPPAbatches. Because there is a potential problemofbatch effects
when combining the batches of protein expression data, we used
replicate-based normalization (RBN) method as described in our
recent study (11), which uses replicate samples run across mul-
tiple batches. In one "anchor" batch, we ran many replicate
samples that were common with the other two batches (200 and
30, respectively). Those samples were all TCGA validation sam-
ples and non-control samples. RBN was performed by adjusting
each data point in the non-anchor batches so that the mean and
variance of the common samples for each antibody are identical
to those in the anchor batch. The normalized RPPA data for the
209 training samples and 427 validation samples are provided in
Supplementary Tables S1 and S2.

Development of the prognostic model for early-stage EEC
We used data from 183 patients with stage I or II EEC from the

Bergen set as the training cohort. As a preprocessing step to reduce
feature dimensionality, we filtered out noisy features by applying
univariate Cox regressions to protein expression and clinical
features (186 protein markers and 3 clinical factors). To avoid
ruling out potentially relevant features,weused a cutoff of 0.15 for
the P values, and retained only featureswith a P value smaller than
0.15 for model development.

Then,we used the elastic net (25) to identifymarkers associated
with overall survival and to use in training the final model for
predictionwith the selected features. The elastic net simultaneous-
ly conducts automatic variable selection and group selection of
the correlated variables. The explicit objective function and the
algorithm for estimating the solution of the elastic net has been
described previously (25, 26).Weused the Rpackage "glmnet" for
the implementation (27).We used leave-one-out cross-validation
to select the tuning parameter, and determined the elastic net
mixing parameter in order to find a parsimonious model while
maintaining a modest discriminating accuracy based on the
concordance index (28).

The final model is a linear combination of features selected by
the elastic net, weighted by the corresponding elastic net coeffi-
cients. The weights are a rough estimate of the contribution of the
information content of each marker to the overall risk score.
Specifically.

Risk score ¼ 0:048� ageþ 0:118� grade� 1:032� EGFR

�0:659� phospho-MyosinIIa�0:496� AR � 0:462� cMyc

�0:273� phospho-STAT3 � 0:131� phospho-p38MAPK

�0:065� phospho-mTOR � 0:055� fibronectin � 0:018

�Hsp70þ 0:071�FASNþ 0:179� acetyl --a-Tubulin ðLys40Þ
þ 0:210�ACC1þ 0:249� Ku80þ 0:418� phosphoNF

-kBp65þ 0:420� Bimþ 0:504� Chk2þ 0:573� cKIT

þ 1:527� SMAD4 ð1Þ

Because the model includes both protein markers and clinical
variables from samples of early-stage EEC,we refer to themodel as

the integrative prognostic model for early-stage EEC. The expo-
nential of an elastic net coefficient gives the hazard ratio (HR) of
death associated with each marker. However, there is no consen-
sus on a statistically validmethod of estimating the standard error
of a coefficient estimate with shrinkage methods including the
elastic net, so the standard errors or confidence intervals for elastic
net estimates were not reported here.

To facilitate clinical application, we divided the training sam-
ples into two risk groups according to each patient's risk score
based onEquation (1).Wedetermined the cutoff value for the risk
scores to ensure that the two risk groups would have similar
numbers of events, as described previously (29). Statistically, it is
known that analysis of groupswithunbalancednumbers of events
may introduce a bias in the parameter estimation and the bias will
be substantial when the number of events is small, that is, in case
of rare events (30, 31). In EEC (especially in early-stage EEC),
mortality is not so high and thus the number of events is relatively
small. Therefore, we used a simple but widely used approach of
splitting samples into risk groups based on equal/similar number
of events, in order to reduce the estimation bias and to ensure the
similar standard errors of the parameter estimates across risk
groups.

Validation of the integrative prognostic model for early-stage
EEC

We used 333 samples of stage I and II EEC from the validation
cohort to validate the prognostic model [Equation (1)]. We
computed risk scores based on Equation (1) for the validation
samples, and then classified them into low- or high-risk groups,
with the cutoff determined in the training set as described above.
We used univariate and multivariate Cox regressions to evaluate
the patient risk classification.

Development and validation of the prognostic model for late-
stage EEC

In a similar way, we constructed and validated a prognostic
model for patients with late-stage EEC. We trained the model
using samples of stages III and IV EEC from the Bergen set (n ¼
26) by initially filtering the data through a univariate Cox
regression, with a P value of 0.15 as the cutoff, and selecting
the features through the elastic net, with the tuning parameter
selected by leave-one-out cross-validation. The final model is as
follows:

Risk score¼ 0:019� ageþ 0:203� grade � 1:511� SMAD4

� 0:479� phospho-Shc� 0:421� cKIT � 0:270� phospho

-ERK=MAPK � 0:207� PKCa� 0:180� Bim� 0:099� Bcl2

þ 0:113� TFRCþ 0:179� ASNSþ 0:336� VEGFR-2

þ 0:364� PAI1þ 0:392� phospho-HER2þ 0:446

�phospho-4E -- BP1þ 1:311� EGFR ð2Þ

This model also contains both protein markers and clinical
features, so we refer to it as the integrative prognostic model for
late-stage EEC. We determined the risk score cutoff for the clas-
sification of the training samples such that the two risk groups
would have similar numbers of events.

We computed risk scores for the samples of late-stage EEC
(stages III and IV, n¼ 94) in the validation cohort, and divided the
samples into the two risk groups according to the same cutoff used
for the training samples.
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Comparison with clinical-variable-only models
For the practical utility of the integrativemodels, we considered

the patient's classification as being in the low- or high-risk group
instead of risk scores. To evaluate the performance of our inte-
grative models relative to prognoses based on only clinical vari-
ables, we considered univariate andmultivariate Cox proportion-
al hazardsmodels, with the following characteristics as covariates:

1. Disease stage
2. Tumor grade
3. Patient age
4. Risk group index based on the integrative model
5. Stage þ grade þ age þ risk group index based on the

integrative model

For the disease stage, we compared two levels: stage I vs. stage II
in the early-stage EEC model and stage III vs. stage IV in the late-
stage EEC model. In the Cox regressions, we treated the tumor
grade as a continuous variable, with natural ordering so as to
compute only one regression coefficient for this variable and to
examine the overall difference across tumor grades. We dichot-
omized the patient's age as two categories, younger than 60 years
of age or 60 years of age and older, in order to evaluate the efficacy
of a clinical practice guideline: patients 60 years of age and older
are generally advised to receive adjuvant therapy (32). Further-
more, based on a previous study (10), we considered three
categories of patient age (<50, [50, 70), and �70), but found no
events in the group of <50 years. Instead, we considered an
alternative, similar three-age classification (<60, [60, 80) and
�80]. In addition, we computed concordance indexes (C-index-
es) to compare the discriminatory power of clinical factors and the
integrative models.

We evaluated the additional prognostic value of the integrative
models over the clinical factors using a multivariate regression
analysis with Model 5: Stage þ Grade þ Age þ Risk group index
based on the integrative model. Although our integrative models
include the two clinical factors of patient age and tumor grade,

multicollinearity is not an issue in Model 5 because we used the
risk group index rather than the risk score as a covariate. In
addition, we used log-rank tests to examine the differences in
survival between the risk groups as stratified by the integrative
models, between disease stages and among tumor grades. In order
to assess the robustness of our models to different cutoff values,
we tried different cutoffs that made the sample numbers in risk
groups equal to those numbers with different stages (or different
grades). We also considered another different cutoff value, the
25th percentile of risk scores (which approximately corresponded
to the value of 0.5 in early-stage samples and 2.5 in late-stage
samples).

Results
Patient characteristics and theprognostic powerof disease stage
and tumor grade

For robust prognostic modeling, we used two independent
datasets of EEC as training and validation cohorts. The patients'
characteristics are summarized in Table 1.Our training cohortwas
obtained from Haukeland University Hospital (Supplementary
Table S1), and contained 183 samples of early-stage EEC (FIGO
2009 stages I and II) and 26 samples of late-stage EEC (stages III
and IV). The validation samples were obtained fromMDACC and
TCGA (Supplementary Table S2). As there was no significant
difference in survival between the MDACC and TCGA datasets
for either early-stage or late-stage EEC (log-rank test, P ¼ 0.36 for
early-stage EEC and 0.85 for late-stage EEC), we combined them
as one validation cohort to increase the sample size and boost the
statistical power. In total, the validation cohort contained samples
from 333 patients with early-stage EEC and 94 patients with late-
stage EEC. We generated the expression profiles of 186 proteins
and phosphoproteins using RPPA. The RPPA data for the training
and validation samples are presented in Supplementary Tables S1
and S2, and information about the 186 antibodies is provided in
Supplementary Table S3. The proteomic profiling and quality

Table 1. Clinical characteristics of the training and validation cohorts

Training Validation
Early-stage
EEC (1)

Late-stage
EEC (2)

Early-stage
EEC (3)

Late-stage
EEC (4)

Pa (1)
vs. (3)

Pb (2)
vs. (4)

# of patients 183 26 333 94
Age: mean (range) 64.94 (35–93) 67.92 (43–89) 61.38 (24–90) 62.06 (32–89) 1.4�10�3 0.029
Disease stagec: N (%) 0.22 0.69
I 170 (92.9) 297 (89.2)
II 13 (7.1) 36 (10.8)
III 18 (69.2) 71 (75.5)
IV 8 (30.8) 23 (24.5)

Tumor grade: N (%) 5.3�10�4 0.80
Grade 1 74 (40.4) 3 (11.5) 84 (25.2) 7 (7.5)
Grade 2 82 (44.8) 11 (42.3) 167 (50.2) 41 (43.6)
Grade 3 27 (14.8) 12 (46.2) 82 (24.6) 46 (48.9)

Deathsd: N (%) 17 (9.3) 16 (61.5) 21 (6.3) 20 (21.3)
Recurrencese: N (%) 27 (14.8) 18 (69.2) 33 (10.8) 43 (49.4)
aP values comparing the patientswith early-stageEEC in the training cohortwith those in the validation cohort. For age, the two-sample t testwas used. For stage and
grade, the x2 test was used.
bP values comparing the patients with late-stage EEC in the training cohort with those in the validation cohort. For age, a two-sample t test was used. For stage and
grade, the x2 test was used.
cFIGO 2009 Criteria.
dSurvival times were capped at 60 months.
eData on recurrence were not available for 27 early-stage validation samples and 7 late-stage validation samples. Recurrence time was defined as the time from
initial surgery to the first documented progression or recurrence or the last follow-up in the absence of progressive disease. Recurrence times were capped at
60 months.
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control followed the well-established procedures in the TCGA
project (12, 21). To remove batch effects in RPPA data, we used
replicate-based normalization, as previously described (11).

Patients represented in the training cohort were slightly older
than those in the validation cohort (early-stage EEC: mean age in
training 64.9 years vs.mean age in validation 61.4 years, t test, P¼
1.4 � 10�3; late-stage EEC: mean age in training 67.9 years vs.
mean age in validation 62.1 years, P ¼ 0.029; Table 1). No
significant difference in the stage distributionswas foundbetween
the training and validation cohorts, using x2 tests (P ¼ 0.22 for
early-stage EEC and 0.69 for late-stage EEC). We found a signif-
icant difference in the grade distributions between the training
and validation cohorts for the patients with early-stage EEC (P ¼
5.3 � 10�4): samples of early-stage EEC in the validation cohort
contained a larger proportion of high-grade tumors, which may
reflect the strategy to enrich for large tumors in the TCGA com-
pared with the population-based approach for the Bergen cohort
(33). There was no statistically significant difference in the overall
survival time between the training and validation cohorts for the
patients with early-stage EEC (log-rank test, P ¼ 0.48); however,
the patients with late-stage EEC who were represented in the
training cohort showed a significantly worse survival time than
those in the validation cohort (log-rank test, P ¼ 0.014; Supple-
mentary Fig. S1).

We evaluated the discriminating power of disease stage and
tumor grade for the early-stage and late-stage EEC samples. For the

early-stage EEC samples, there was no difference in overall sur-
vival when the patients were stratified by disease stage or tumor
grade: log-rank test P values were 0.40 and 0.57 for the respective
training and validation cohorts when split by disease stage (Fig.
1A and B; the results also held true when substages were consid-
ered); and the log-rank test P values were 0.28 and 0.57 for the
respective training and validation cohorts when split by tumor
grade (Fig. 1C and D).

For the late-stage EEC samples, there was a significant survival
difference in the training cohort when split by disease stage (log-
rank test, P ¼ 0.02) and in the validation cohort when split by
tumor grade (log-rank test, P ¼ 0.02). Supplementary Fig. S2
shows the Kaplan–Meier curves for late-stage samples when
patients were stratified according to disease stage or tumor grade.
Thus, no significant discriminating power of stage or grade was
observed for early-stage EEC, which highlights a pressing need for
effective prognostic models for this patient population. On the
basis of the markedly different marker patterns and clinical out-
comes, we performed prognostic modeling on early-stage EEC
samples and late-stage EEC samples separately.

An effective prognostic model for patients with early-stage EEC
The flow chart in Fig. 2 shows the overall procedure of devel-

oping and validating an integrative prognostic model for patients
with early-stage EEC. We developed a prognostic model after
applying an initial filtering and the elastic net to the early-stage

Figure 1.
The Kaplan–Meier survival curves for
patients with early-stage EEC (stages I
and II) in the training and validation
cohorts. For A and B, patients are split
by disease stage; for C and D, patients
are split by tumor grade.

Prognostic Model for Early-Stage Endometrioid Carcinoma

www.aacrjournals.org Clin Cancer Res; 22(2) January 15, 2016 517

on January 14, 2016. © 2016 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst July 29, 2015; DOI: 10.1158/1078-0432.CCR-15-0104 

http://clincancerres.aacrjournals.org/


samples in the training cohort (see Materials and Methods). The
integrative model [Equation (1) in Materials and Methods] con-
tains two clinical factors (patient age and tumor grade) and 18
protein markers (listed in Supplementary Table S4). On the basis
of thismodel, we computed risk scores for the training samples as
a weighted sum of the selected features. As shown in Supplemen-
tary Fig. S3A, the distribution of risk scores was unimodal with
very similar peaks between early-stage training and validation
samples. To facilitate clinical application, we chose a risk score
cutoff to classify patients with early-stage EEC in the training
cohort into low- and high-risk groups. The cutoff was determined
to ensure that the two risk groups would have similar numbers of
events; and this scheme resulted in a cutoff point of approximately
the 90th percentile of risk scores in the training cohort, as
illustrated in the second column of Supplementary Fig. S3A. As
expected, survival was much worse among patients in the high-
risk group compared with those in the low-risk group (log-rank
test, P¼ 2.3� 10�14; Fig. 3A). From the clinical point of view, this
risk score cutoff point is of potential utility because it helps
identify a subset of patients with early-stage EEC (10%) who are
most likely to benefit from additional treatment despite added
toxicity.

To evaluate the discriminating power of our integrative model,
we locked themodel and applied it to samples of early-stage EEC in
the validation cohort. The training and validation samples
showed similar ranges and distributions of risk scores. Using the
same cutoff value, we split the validation samples into two risk
groups with similar numbers of events as described above. The

Kaplan–Meier survival analysis showed a significant survival
difference between the two risk groups (log-rank test, P ¼
1.3�10�4; Fig. 3B).

We used a data-driven cutoff (i.e., the 90th percentile of risk
scores of the training samples) as described previously (29, 34);
the determination of this cutoff point is a part of our modeling
process. To assess the robustness of our model to different cutoff
values, we considered cutoffs that gave equal sample sizes based
on the same disease stage (or tumor grade). In comparison with
the power of the disease stage (stage I vs. II), the 183 early-stage
EEC training sampleswere split into two risk groups, with n¼ 170
and n¼ 13, which were the numbers of training samples in stage I
and II, respectively. Similarly, the 297 validation samples with the
lowest risk scores were classified as low risk and the remaining 36
validation samples were classified as high risk. We observed a
significant survival difference between these two risk groups (log-
rank test, P¼ 1.0� 10�14 for the training samples; and P¼ 2.5�
10�3 for the validation samples; Fig. 3C and D). When using
cutoffs that gave the same sample sizes based on the tumor grades
(grades 1, 2, and 3), we also observed a statistically (or margin-
ally) significant difference in overall survival among the risk
groups (log-rank test, P ¼ 4.0 � 10�10 for the training samples;
and P ¼ 0.066 for the validation samples, Fig. 3E and F).
Furthermore, using the 25th percentile of risk scores, which was
approximately equal to 2.5, there was statistically significant (or
marginal significance) discrimination of patients with regard to
survival in early-stage training and validation samples, as shown
in Supplementary Fig S4A and S4B (log-rank test, P values are 0.01
and 0.076). These separations, however, were not as distinct as
those for which the cutoff was driven by the data or the cutoff
ensured equal sample sizes for the different stages. In addition, we
considered patient stratification according to the median split,
and observed significantly improved survival in the low-risk
group for both training and validation samples. Taken together,
these results indicate that patient stratification based on our
integrative model is effective and robust across multiple cutoff
points.

We further investigated the additional discriminating power of
this integrative model over the clinical factors using univariate
and multivariate Cox proportional hazards models. We consid-
ered three clinical factors (disease stage, tumor grade, and patient
age) that were available for both the training and validation
cohorts in the analysis. Age was dichotomized at a threshold of
60 years because adjuvant therapy is generally recommended for
patients who are 60 years of age or older (32). Age was significant
in the univariate model for the validation samples (Wald test, P¼
0.044), but was neither significant in the univariate model for the
training samples, nor in the multivariate models. In a line with a
previous study (10), we also examined the effect of a three-age-
group classification, and obtained very similar results if age was
categorized as <60, [60, 80), and �80 years. The risk group index
(based on our integrative model) was the only factor consistently
significant in the univariate and multivariate models across the
different datasets (Table 2). The integrative model showed the
highest value of C-index when compared with the other clinical
factors as presented in Table 2.

Prognostic modeling for patients with late-stage EEC
In parallel, we performed prognostic modeling for patients

with late-stage EEC; however, (i) a relatively small sample size
may limit our capacity to obtain a reliable model, and (ii) it may

Figure 2.
A flow chart for construction and validation of the prognostic model for
overall survival in early-stage endometrioid endometrial cancer.
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not be of great utility as most patients with this diagnosis are
treated aggressively. On the basis of 26 samples of late-stage EEC
(stages III and IV) in the training cohort, we developed an
integrative model through an initial filtering and the elastic net
[see Equation (2) in Materials and Methods], which includes two
clinical factors (tumor grade and patient age) and 14 protein

markers (Supplementary Table S5). Interestingly, a subset of
proteinmarkers had coefficients with signs that were the opposite
of those for the early-stage EEC model. This may be due to
differences in the context of the markers in tumors associated
with good outcomes versus those associated with poor outcomes.
The distribution of risk scores was quite similar between late-stage

Figure 3.
The Kaplan–Meier survival curves for
patients with early-stage EEC (stages I
and II) in the training and validation
cohorts. Risk scores for patients were
computed using the early-stage EEC
prognostic model. On the basis of the
risk scores, for A and B, patients were
classified into two risk groups using the
90th percentile of the risk scores of
training samples as a cutoff. To check
the robustness of our model, we used
different cutoffs when classifying the
patients into risk groups instead of the
90th percentile of risk scores. In C and
D, we used a cutoff value that makes
the numbers of patients in low- and
high-risk groups equal to the numbers
of caseswith stage I and II, respectively.
In E and F, we used a cutoff value that
makes the numbers of patients in three
risk groups equal to the numbers of
cases with grades I, II, and III,
respectively.
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training and validation samples, as shown in Supplementary Fig.
S3B. To classify low- and high-risk groups, we used the 75th
percentile of the risk scores in the training samples as a risk score
cutoff to ensure a similar number of events in each risk group, as
shown in the second column of Supplementary Fig. S3B.

We next applied the model to samples of late-stage EEC in the
validation cohort and classified them into two risk groups using
the 75th percentile as a cutoff value. The Kaplan–Meier curves for
the two risk groups showed a clearer separation in survival as in
Supplementary Fig. S5B than when the patients were stratified by
disease stage as in Supplementary Fig. S2B; however, the separa-
tion in survival was not as clear as when patients were stratified by
tumor grade as in Supplementary Fig. S2D regardless of the P
values. We observed similar patterns with varying cutoff points
while ensuring equal sample sizes between the risk groups split by
disease stage or tumor grade, as we did for the analysis of early-
stage EEC. The Kaplan–Meier curves for validation samples are
displayed in Supplementary Fig. S5D and S5F,whenpatientswere
grouped by the sample numbers of disease stage or tumor grade.
Furthermore, we observed similar results using the 25thpercentile
of risk scores, which was approximately equal to 0.5 (Supple-
mentary Fig. S4C and S4D). Overall, among patients with late-
stage EEC, the model based on only the tumor grade outper-
formed the integrative model in terms of prognostic accuracy. In
multivariate analysis for the validation samples, we found that
tumor grade, patient age, and the risk group index defined by the
integrative model were all significant (Supplementary Table S6).
Thus, the additional prognostic value obtained from the late-stage
EEC integrative model compared with using clinical factors alone

seemed modest, and was mainly due to the small number of
training samples and intrinsic differences in survival between the
patients represented by the training and validation samples, as
observed in Supplementary Fig. S1B.

Discussion
In this study,we aimed to improve prognosis estimation of EEC

patients by incorporating high-throughput protein expression
data. We did not intend to invent a new and alternative strategy
completely independent from the current staging system. Rather,
we used the clinical stage as an initial stratification parameter (by
classifying patients into early vs. advanced stages: I, II vs. III, IV)
and further incorporated protein-based markers designed to
provide informative content that the disease stage may not
capture. Therefore, we performed prognostic modeling for
patients with early- and late-stage EEC, respectively. Importantly,
we developed and validated an effective prognostic model for
patientswith early-stage EEC,which, to the best of our knowledge,
is the first quantitative protein-marker–driven model for this
patient population. Although the patients represented in the
training and validation cohorts may have some intrinsic differ-
ences (e.g., a high rate of obesity among the patients in theUnited
States and different age distributions between the cohorts), the
risk group index defined by our model consistently shows an
improved discriminating power across the two patient cohorts
using different cutoff values, which highlights the robustness
of our model. In contrast, major conventional prognostic factors
(e.g., disease stage and tumor grade) appear to have little power

Table 2. Univariate and multivariate Cox proportional hazards model analysis for the patients with early-stage EEC

Univariate analysis
HRa (90% CI) Wald Pb Log-rank Pc C-Index

Training set
Disease stage: II (vs. I) 1.88 (0.55, 6.47) 0.40 0.40 0.53
Tumor graded 1.71 (0.98, 2.98) 0.12 0.28 0.60
Patient agee: �60 y (vs.<60 y) 2.38 (0.84, 6.76) 0.17 0.16 0.57
Integrative model: high risk (vs. low risk) 16.72 (7.39, 37.80) 1.5�10�8 2.3�10�14 0.76

Validation set
Disease stage: II (vs. I) 1.43 (0.51, 3.98) 0.57 0.57 0.54
Tumor graded 1.38 (0.83, 2.30) 0.30 0.57 0.56
Patient agee: �60 y (vs. <60 y) 3.05 (1.23, 7.61) 0.044 0.034 0.60
Integrative model: high risk (vs. low risk) 5.26 (2.37, 11.65) 6.3�10�4 1.3�10�4 0.70

Multivariate analysisf

HRa (90% CI) Wald Pb

Training set
Disease stage: II (vs. I) 1.29 (0.37, 4.50) 0.74
Tumor graded 1.31 (0.71, 2.39) 0.47
Patient agee: �60 y (vs. <60 y) 0.83 (0.24, 2.94) 0.81
Integrative model: high risk (vs. low risk) 16.59 (6.08, 45.22) 4.4�10�6

Validation set
Disease stage: II (vs. I) 1.87 (0.66, 5.29) 0.33
Tumor graded 1.04 (0.60, 1.79) 0.91
Patient agee: �60 y (vs. <60 y) 2.50 (0.98, 6.39) 0.11
Integrative model: high risk (vs. low risk) 4.35 (1.82, 10.37) 5.6�10�3

NOTE: P values < 0.1 are shown in bold.
aHR: hazard ratio.
bWald test P values.
cLog-rank test P values.
dIn Cox regressions, gradewas treated as a continuous variable with natural ordering so as to compute only one regression coefficient for this variable. However, log-
rank test P values were computed by treating grade as a discrete variable.
eAgewas dichotomized to60years and older vs. younger than 60years because patients 60 years of age andolder are generally advised to receive adjuvant therapy.
fOn the basis of a multivariate Cox regression model that included all the variables in the table.
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for this patient population. Therefore, our integrative model for
early-stage EEC is of potential clinical utility for identifying/
prioritizing the patients with early-stage EEC who have a high
risk of disease recurrence and death.

Our integrative model for early-stage EEC contains two clinical
features and 18proteinmarkers. As expected, older age and higher
tumor grade are associated with a worse prognosis. As shown
in Fig. 4, there are two distinct groups of proteinmarkers in regard
to prognosis. The proteins for which the expression levels are
associatedwith a good prognosis include EGFR,myosin IIa, AR, c-
Myc, STAT3, p38MAPK,mTOR,fibronection, andHSP70. Among
these markers, STAT3, MAPK, and mTOR are downstream targets
of EGFR signaling. The prognostic effect of EGFR expression in
cancer has been controversial in the literature; and it often
depends on the specific tumor context, which may be due to the
complexities of the downstream effects of EGFR signaling. Our
model indicates that a high EGFR level in early-stage EEC is
associated with a good prognosis. Indeed, a dual role of EGFR
has been reported in endometrial cancer: high EGFR expression in
well-differentiated EEC is associatedwith a low tumor grade and a
favorable outcome; whereas high EGFR expression appears to
promote disease progression inmore aggressive, undifferentiated
nonendometrioid tumors (35). In bladder cancer, a high level of
EGFR expression has been reported to be a favorable prognostic
factor (36); while in ovarian cancer, a high level of EGFR expres-
sion has been reported to be associated with a poor disease-free
survival (37). A high level of expression of the androgen receptor
has been reported to be a goodprognosticmarker for breast cancer
and for all breast tumors and the triple-negative subtype (38, 39).
This observation is potentially related to the tumor differentiation
status. The protein markers for which high expression levels are
associated with poor prognoses include FASN, acetyl-a-tubulin,
ACC1, Ku80,NF-kB, Bim, Chk2, c-Kit, and SMAD4. Among them,
FASN and ACC1 are both related to fatty acid synthesis, and FASN

has been shown to be associated with poor patient survival in
urothelial and colorectal cancers (40, 41). Ku80 and Chk2 are
DNAdamage sensors thatmay reflect the underlyingmechanisms
that drive tumors associatedwithpoor outcomes; BIM is regulated
by EGFR that is amarker of goodprognosis in ourmodel, and this
observation may reflect decreased EGFR signaling in the patients
with poor prognoses.

In terms of clinical applications, this model can be rapidly
translated to the clinic using the RPPA platform, which has been
made CLIA compliant in several centers and others are moving to
make it CLIA compliant. With the relatively small number of 18
proteinmarkers, it is also possible to develop a Luminex assay that
would allow rapid transition to the clinic. Finally, a number of
multiplex IHCapproach are now inplace. Thus, the predictors can
be readily transitioned to the clinic. Further evaluationusing other
independent cohorts is essential to establish the ultimate utility of
our integrative model.

Patients diagnosed with late-stage EEC (stages III and IV) are
usually prescribed aggressive treatment options such as chemo-
therapy. A potential utility of prognostic modeling for these
patients is to identify the individuals with low-risk disease who
may not need additional treatment. However, our integrative
model did not provide additional prognostic power for this
determination, whichmay be primarily due to the limited sample
size. Another issue is the unbalanced event rates between training
and validation sets. Larger patient cohorts will be needed to assess
the clinical utility of the integrative model for late-stage EEC.

Our study has several limitations. First, we focused on overall
survival as the primary endpoint in our analysis. Although overall
survival is often used in the field (42), cancer-specific survival
would be a more appropriate endpoint for such a purpose.
Unfortunately, cancer-specific survival data are not available in
our validation cohort. To minimize the limitation of overall
survival (due to cancer-unrelated deaths), survival times were

Figure 4.
Expression patterns of the protein
markers and outcome prediction of the
early-stage EEC prognostic model. Risk
groups were defined by the 90th
percentile of the risk scores of the
training samples.
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capped at 5 years as in the previous study (22). It would be of high
clinical interest to further develop prognostic and predictive
models for cancer-specific, disease free and metastasis-free sur-
vival based on our patient cohorts when such survival data are
available. Second, our analysis only included a limited number of
clinical variables due to incomplete clinical information of our
patient samples. An important extension would be to integrate
other types of clinical variables such as myometrial invasion and
lymph node status. Third, we did not include treatment effects in
our analysis. Adjuvant therapy (e.g., chemotherapy and/or radi-
ation) may impact survival and thus confound the impact of
prognostic factors or markers on survival. Unfortunately, treat-
ment information in our patient cohorts is very incomplete,
which prevented us from including these data in the analysis.
However, in general, EEC patients with the same or similar stage/
grade received similar (adjuvant) therapies. Thus, because (i) our
modeling was carried out only for patients with similar disease
stages (i.e., early-stage or late-stage) and (ii) the grade effect has
been included in our model, this confounding effect would be
relatively limited. In future, it is critical to validate our model
based on the patient cohorts with high-quality and complete
clinical information (such as those from clinical trials). Last but
not the least, the current RPPA platform covers only about 200
proteins and therefore we may miss some important protein
markers. We are in the process of extending our platform tomany
more proteins, which may further improve the prognostic power
of the model. It remains unclear how several protein markers in
our early-stage model, such as myosin IIa, fibronection, and
HSP70, are related to tumor progression of EEC and affect the
clinical outcomes. Further efforts are required to elucidate the role
of these proteins in the context of early-stage EEC. However, this
mechanistic investigation can be pursued independent of the
prognostic values conferred by these markers. Currently, only
RPPA data are available for both training and validation cohorts,
andwewill includemolecular features such as somaticmutations
and copy number alterations, when the related data are available.
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