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Molecular profiling of tumors promises to advance the clinical 
management of cancer, but the benefits of integrating 
molecular data with traditional clinical variables have not been 
systematically studied. Here we retrospectively predict patient 
survival using diverse molecular data (somatic copy-number 
alteration, DNA methylation and mRNA, microRNA and protein 
expression) from 953 samples of four cancer types from The 
Cancer Genome Atlas project. We find that incorporating 
molecular data with clinical variables yields statistically 
significantly improved predictions (FDR < 0.05) for three 
cancers but those quantitative gains were limited (2.2–23.9%).  
Additional analyses revealed little predictive power across 
tumor types except for one case. In clinically relevant genes,  
we identified 10,281 somatic alterations across 12 cancer types 
in 2,928 of 3,277 patients (89.4%), many of which would 
not be revealed in single-tumor analyses. Our study provides 
a starting point and resources, including an open-access 
model evaluation platform, for building reliable prognostic and 
therapeutic strategies that incorporate molecular data.

The Cancer Genome Atlas (TCGA) project has yielded many biologi-
cal insights through generating genomic, transcriptomic, epigenomic 

and proteomic data from a large number of patient samples in many 
cancer types1–6. However, the potential clinical utility of these data 
in aggregate remains largely unknown.

Large-scale molecular profiling data may be informative for multi-
ple aspects of oncology practice. One key application for patients with 
primary disease is accurate prognosis, which helps stratify patients 
into different risk groups and choose both treatment and surveillance 
strategies. Traditionally, prognosis is based on clinical variables such 
as age and tumor stage. Recently, extensive efforts have been made to 
incorporate molecular information for better prognosis. For example, 
ER, PR, HER2 protein levels and HER2 genomic amplification are 
important biomarkers in breast cancer, which have demonstrated high 
value in clinical use7. However, owing to the high cost of molecular 
profiling on a large scale, previous studies have either focused on  
a small number of selected genes or have used only single-platform  
genomic data (e.g., microarrays). By convention, such studies  
have been limited to a single cancer lineage. Another important  
clinical application is to choose targeted therapies based on the altera-
tion spectrum in an individual patient’s tumor. Multiple efforts have 
been initiated to apply high-throughput sequencing data in clini-
cal strategies8,9, although alterations in clinically actionable genes  
have not been fully cataloged. Knowledge of this catalog may inform 
target selection for drug development as well as clinical trial design 
and identify patient populations that may benefit from emerging  
targeted therapeutics.

The overall goal of this study was to address how and to what extent 
TCGA molecular data could affect oncology practice. Thus, we evaluated 
two closely related but distinct aspects of clinical utility—prognostic  
utility (that is, predicting patient survival using various types of  
high-throughput molecular data across multiple tumor lineages) and 
therapeutic utility (that is, identifying the spectrum of somatic altera-
tions in clinically actionable genes, which in the future may inform 
treatment selection). First, we examined the performance of molecu-
lar data (somatic copy-number alteration (SCNA), DNA methylation 
and mRNA, microRNA and protein expression) alone or in combina-
tion with clinical variables in predicting censored or dichotomized 
patient survival data for four TCGA cancer types with high-quality 
overall survival data. Furthermore, to facilitate a broader community 
effort, we developed an open-access platform that allows researchers 
to build and evaluate survival prediction models on these data sets. 
We did not intend to generate prognostic models ready for clinical 
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use, but rather we sought to provide insights into how to improve 
such models by incorporating informative molecular data. Second, we 
investigated the current spectrum of potentially clinically actionable 
alterations (somatic point mutations and small insertions/deletions) 
across 12 TCGA tumor types. By analyzing molecular data from 
multiple cancer types, we were able to evaluate prognostic models  
and identify alterations that would not have been obtained with  
single-tumor data sets.

RESULTS
Assessment of the prognostic power of diverse molecular data
We focused on four TCGA cancer types: kidney renal clear cell carci-
noma (KIRC)6, glioblastoma multiforme (GBM)1, ovarian serous cys-
tadenocarcinoma (OV)2 and lung squamous cell carcinoma (LUSC)4. 
These cancer types were chosen because their TCGA data sets included 
survival data with adequate follow-up time and sufficient samples 
characterized by multiple types of molecular data. The TCGA cohorts 
have overall survival patterns similar to those reported in previous 
publications10–13. For each cancer type, we compiled a core sample 
set in which each sample has information available for the overall 
survival time, clinical variables (e.g., gender, age, tumor stage and 
grade) and at least four out of the five types of molecular data related 
to gene expression ((i) SCNA: Affymetrix Human SNP Array 6.0,  
~100 arm or focal alterations; (ii) DNA methylation: Illumina  
DNA Methylation microarray, ~20,000 genes; (iii) mRNA expression: 
Agilent 244 K microarray or Illumina mRNA-seq, ~20,000 genes; 
(iv) microRNA (miRNA) expression: Agilent Human miRNA-specific 
microarray or Illumina miRNA-seq, >500 microRNAs; (v) protein 
expression: reverse-phase protein array, ~170 proteins) (Table 1).

For each core sample set, we applied Monte Carlo cross-validation 
and assessed the predictive power of individual molecular data types 
or clinical variables using the concordance index (C-index)14. The 
C-index is a nonparametric measure to quantify the discriminatory 
power of a predictive model: a C-index of 1 indicates perfect pre-
diction accuracy and a C-index of 0.5 is as good as a random guess 
(Online Methods). We compiled candidate features from molecular 
data or clinical data for each cancer type and randomly split the core 
set into training and test sets 100 times (Fig. 1a). We built the predic-
tive models from the training set using two well-established but highly 
complementary methods: (i) Cox, the multivariate Cox proportional 
hazards model with L1 penalized log partial likelihood (LASSO)15 for 
feature selection; and (ii) random survival forest (RSF)16.

For each cancer type, the clinical-variable-only models showed sub-
stantial predictive power, with C-indexes significantly higher than 0.5 
(range: 0.624–0.754; P = 0) (Fig. 1b–e and Supplementary Fig. 1).  
In 9 out of 18 cases, the models built from individual molecular 
data sets alone showed statistically significant predictive power 
(Supplementary Fig. 1), but in only one case, the model built from 
LUSC protein expression data had predictive power similar to that 
of the corresponding clinical-variable-only model (Fig. 1e, C-index 
0.632 versus 0.626, P = 0.40, Wilcoxon signed rank test). The relative 
predictive power of individual molecular data sets strongly depended 
on the cancer type; for example, the prognostic power was much 
higher for KIRC than for the other three cancer types. In general, the 
trends observed with the Cox models were similar to those observed 
using the RSF models.

To examine whether genomic and proteomic data can provide 
additional prognostic power when used with clinical variables, we 
built predictive models by integrating clinical variables with each 
type of molecular data (both gene-level features and molecular sub-
type features) (Online Methods). Notably, the integrated models 

resulted in statistically significantly improved predictive power 
compared to those clinical-variable-only models in three cancer 
types, including mRNA, microRNA and protein expression in 
KIRC, miRNA expression in OV and protein expression in LUSC 
(one-sided Wilcoxon signed rank test, KIRC clinical + mRNA:  
P < 3.3 × 10−3, false-discovery rate (FDR) < 0.035; clinical + miRNA:  
P < 1.2 × 10−4, FDR < 2.1 × 10−3; clinical + protein: P < 8.4 × 10−5, 
FDR < 2.1 × 10−3; OV clinical + miRNA: P < 7.0 × 10−5, FDR < 
2.1 × 10−3; LUSC clinical + protein: P < 7.9 × 10−4, FDR < 0.011) 
(Fig. 1b–e). However, in terms of quantitative gain (i.e., the median 
value of Somers’ D14 across the 100 splits, a measurement for  
C-index change), the increase was limited (KIRC clinical + mRNA: 
4.0%, clinical + miRNA: 7.4%, clinical + protein: 2.2%; OV clini-
cal + miRNA: 13.7%; LUSC clinical + protein: 23.9%). In addition, 
we examined the effects of machine learning algorithms, feature 
selection and sample size of the training set on model performance 
(Supplementary Results and Supplementary Figs. 2–4).

To facilitate a broader community effort for such modeling, we 
developed an open-access platform that allows researchers to evaluate 
and submit survival prediction models in a “collaborative competition” 
research framework (Supplementary Fig. 5). The homepage of the 
TCGA Pan-Cancer Survival Prediction challenge can be accessed in 
Synapse (doi:10.7303/syn1710282). The site contains all models used 
in this study, including provenance records and transparent source 
code that allows each model to be inspected, rerun or improved upon. 
Each model is linked to a standard set of metadata annotations that 
provide online querying capability (e.g., corresponding to the cancer 
type or learning algorithm), allowing for the comparison of models 
based on user-defined criteria. The C-index scores for each model, as 
reported here, are displayed in the form of a real-time leaderboard.

Biological insights from top-performing prognostic models
For the top prognostic models highlighted in Figure 1, we further 
examined important molecular features included in each model to 
gain some mechanistic insights. The LUSC protein expression model 
is the only case where the molecular data alone showed a perform-
ance similar to that of the clinical-variable-only model. Features in 
the model with high predictive ability16 were dominated by proteins 
involved in DNA repair and microsatellite instability (e.g., MSH2) and 
metabolism (e.g., ACC1) (Supplementary Table 1).

Molecular data in five integrative models conferred additional 
prognostic power given clinical variables (Fig. 1). Notably, in four 

Table 1 Overview of TCGA samples and high-throughput 
characterization platform information by cancer type

Cancer
Overall  
survival SCNA Methy mRNA miRNA Protein

Core  
set

GBM SNP_6 27k AgilentG4502A H-miRNA_8x15K RPPAa

565 563 287 492 491 214 210
KIRC SNP_6 450k HiseqV2 GA+Hiseq RPPA

500 493 283 469 454 480 243
OV SNP_6 27k AgilentG4502A H-miRNA_8x15K RPPA

563 559 600 558 586 412 379
LUSC SNP_6 450ka HiseqV2 GA+Hiseq RPPA

305 343 225 220 351 195 121

For each cancer type, the first row shows the platforms and the second row shows the 
sample counts. SNP_6: Affymetrix Genome-Wide Human SNP Array 6.0; 27k: Illumina  
Infinium Human DNA Methylation 27K, 450k: Illumina Infinium Human DNA Methyla-
tion 450K; AgilentG4502A: Agilent 244K Custom Gene Expression G4502A; HiseqV2: 
Illumina HiSeq 2000 RNA Sequencing V2; H-miRNA_8x15K: Agilent 8 × 15K Human 
miRNA-specific microarray platform; GA+Hiseq: Illumina Genome Analyzer/HiSeq 
2000 miRNA sequencing platform; RPPA: MD Anderson reverse phase protein array.
aThe data type was not included in that cancer type.
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of these models, the only contributing 
molecular feature was the molecular subtype 
derived from the corresponding expression 
data (through consensus non-negative matrix 
factorization (NMF)17). Molecular subtypes 
can be regarded as higher-level assemblies of 
individual gene features and therefore may 
act as a more robust predictor than an indi-
vidual marker or small marker sets. Indeed, 
the NMF subtypes (derived from OV miRNA 
expression, LUSC protein expression and 
KIRC mRNA, and protein expression data, 
respectively) showed distinct survival pat-
terns in the respective cancer types (log-rank 
test, Fig. 2c, P < 0.043; Fig. 2e, P < 8.2 × 10−3; Supplementary Fig. 6a, 
P < 9.8 × 10−5; Supplementary Fig. 7a, P < 1.1 × 10−4).

Given the limited availability of suitable independent data in the 
public domain, we evaluated the performance of the OV clinical + 
miRNA model. Using the multiclass classifier built from TCGA OV 
miRNA expression data (Fig. 2a, Online Methods, the area under the 
receiver operating characteristic curve (AUC) = 0.98, Fig. 2b), we 
recovered the survival pattern of the NMF subtypes observed for the 
TCGA core set (Fig. 2c, log-rank test, P < 0.043) in an independent 
cohort18 (Fig. 2d, log-rank test, P < 6.3 × 10−3): the patients in cluster 3 
have better survival than those in clusters 1 and 2 (prognostic miRNAs  
in each cluster are shown in Supplementary Table 2). Further, 
applying this trained model to the independent cohort yielded the 
expected improvement for including the miRNA NMF subtypes.

For the molecular subtypes defined by LUSC protein expression, 
pMEK1 and pMAPK and the downstream target pS6 were among the 
top markers expressed at higher levels in patients with shorter survival 
times (clusters 2 and 3, Fig. 2e,f). Clinical and preclinical data suggest 
that MEK inhibitors are active in specific subsets of non–small cell lung 
cancer, such as KRAS-mutated lung adenocarcinomas19,20. Our results 
suggest that patients with high-risk forms of LUSC have relatively greater 

activation of the RAS/MEK/MAPK pathway and that MEK targeting 
warrants further exploration in this population as well. In addition,  
the mTOR and Src pathways may also be more active in cluster 3, 
whereas DNA-repair protein levels were low in both clusters 2 and 3  
(Fig. 2f). Gene signatures associated with KIRC mRNA expression 
subtypes were aligned with their reported biological roles and survival 
patterns. Many proteins involved in acute-phase response signaling and 
several pro-metastatic matrix metalloproteases were highly expressed 
in the groups with worse survival outcomes (clusters 2 and 3)21,22, 
whereas death receptor signaling proteins were downregulated in these 
groups23 (Supplementary Fig. 6a,b). The survival pattern of the NMF 
subtypes by KIRC protein expression also matches the survival correla-
tions of individual protein markers (Supplementary Fig. 7a,b).

Finally, the KIRC clinical + miRNA model was the only integrative 
model for which individual gene features, instead of a molecular sub-
type derived from the complete expression data set, provided additional 
prognostic power. Each of the six miRNAs comprising the signature was 
significantly correlated with survival, and their hazard ratio matched 
with previously reported roles in cancer progression. Although upregu-
lation of miR-21, which has growth-promoting activity, is associated 
with a worse prognosis24,25, the remaining miRNAs (miR-192, miR-101, 
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let-7a, let-7f and miR-143) suppress tumor growth, with higher expres-
sion being associated with a better prognosis26–31 (Fig. 2g).

Patient survival prediction using cross-tumor models
To test whether molecular data could identify commonalities across 
different tumor types, we assessed whether a model trained using 
molecular data in one cancer type could predict survival in other 

cancer types that share the same type of molecular data generated by 
the same platform (Online Methods). In the vast majority of cases, 
the C-index was around 0.5, suggesting little predictive power across 
tumor types (Supplementary Fig. 8).

However, a model trained from OV SCNA data was predic-
tive of survival for patients with KIRC, with a median C-index of 
0.67 (Fig. 3a and Supplementary Fig. 9). Furthermore, given the 
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same KIRC test sets, the OV model showed 
higher predictive power than a model 
trained from SCNA data of the KIRC training samples (Fig. 3a, 
median C-index, 0.67 versus 0.59, P = 4.7 × 10−9, Wilcoxon signed 
rank test). When we randomly sampled the same number of OV 
samples as the KIRC training sets to build the predictive model, 
the C-index dropped from 0.67 to 0.54, suggesting that the higher 
predictive power was largely due to the larger sample size of the OV 
core set. We further confirmed this pattern using an independent 
approach and an independent sample partition (Supplementary 
Fig. 10). Closer examination revealed one common feature (“12q”) 
among the features selected from SCNA of the whole OV core set 
and KIRC core set, which may be crucial for the cross-tumor pre-
dictive power. In addition to 12q, there were other four arm-level 
SNCA features included in the model trained from OV SCNA data, 
including 12p, 16q, 20p and 20q, all of which showed significant 
amplification of q values in KIRC according to GISTIC2 (ref. 32)  
(Fig. 3b). Indeed, the KIRC q values of the features selected 
from OV SCNA data were lower than those not selected (Fig. 3b,  
P = 1.6 × 10−3, Wilcoxon rank sum test). The shared biological 
features identified above provide key insights into mechanistic  
connections between the two cancer types.

Factors affecting prediction of dichotomized survival data
In addition to analysis on censored survival data, we examined the 
power of molecular data in predicting dichotomized overall survival 
data. Unlike censored survival data, there are many machine-learning  
algorithms for classifying binary clinical outcomes. Although the 
process of dichotomization will lose some information, this prac-
tice enables us to systematically survey many modeling scenarios 
and assess the effect of different factors on predicting survival data. 
For each cancer type, we dichotomized the censored continuous sur-
vival data through a designated cutoff time (survival milestone), and 
then constructed a series of models from individual molecular data 
alone or with clinical variables by (i) using eight common classifi-
cation algorithms, (ii) applying two feature pre-selection strategies 
and (iii) including different numbers of final features in the model.  

In total, we assessed the performance of >5,000 models through tenfold 
cross-validation based on the threshold-independent AUC score.

Figure 4a–d and Supplementary Table 3 show the AUC score for each 
algorithm, with the optimal setting for each data set and each cancer.  
Overall, as observed for continuous survival data, the predictive power 
of molecular data strongly depended on the cancer type. Clinical 
variables showed better performance than individual molecular data 
except for LUSC, where the protein expression data showed better 
performance than the clinical variables given the best-performing  
algorithms (Fig. 4d). Moreover, the integration of molecular data 
with clinical variables improved the predictive power, especially for 
the following data sets: DNA methylation and protein expression in 
KIRC using most algorithms (Fig. 4a); mRNA expression in GBM 
using K-nearest neighbor (KNN), nearest centroid (NC) and support 
vector machine (SVM) (Fig. 4b); and protein expression in OV and 
LUSC using most algorithms (Fig. 4c,d). To quantify the effects of 
specific factors on survival prediction, we performed an analysis of 
variance (ANOVA) on the AUC scores, and found that cancer type, 
data type and their interactions were the three dominant sources of 
variability, respectively explaining 35.7%, 17.4% and 11.8% of the var-
iability of the prediction performance (Fig. 4e). In contrast, the effect 
of machine-learning algorithms was moderate (5.2%). We obtained 
similar results when the sample size was kept consistent across all 
cancer types (Fig. 4e). These results were consistent with the recent 
microarray quality control (MAQC)-II study33.

Somatic alterations in clinically relevant genes
Finally, we assessed the therapeutic utility of TCGA data by analyz-
ing somatic mutations and small insertion/deletions (indels) in 3,277 
patients across 12 tumor types. We applied a heuristic algorithm34,35 
to score the clinical importance of each alteration in 121 clinically 
relevant genes. Clinically relevant genes were defined as those that, 
when somatically altered, may predict resistance or response to a ther-
apy and/or have diagnostic or prognostic relevance for a particular 
tumor type36. It is important to emphasize that not all aberrations in 
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clinically relevant genes will act as “drivers” and portend response to 
therapeutic targeting, and that a majority of the alterations in these 
clinically relevant genes remain variants of uncertain clinical signifi-
cance and require further experimental and clinical evaluation.

In 89.4% (2,928/3,277) of the TCGA patient samples, 10,281 somatic 
nonsynonymous alterations (1.62% of all alterations, synonymous or 
nonsynonymous, in this combined cohort) in 121 clinically relevant 
cancer genes were observed (Fig. 5a,b). Of these, 1,287 alterations in 
31.4% (1,028/3,277) of patients were observed in genomic hotspots 
that were tested for in representative prospective clinical settings using 
a panel that probes events in 41 genes9. As expected, by extending 
genomic profiling to cover all exons of the same gene set, we observed 
a large increase in the number of observed alterations in clinically 
relevant genes in all 12 tumor types (Fig. 5c,d). This result reflects 
the gap in the understanding of the clinical relevance of a majority of 
alterations in genes potentially linked to clinical actions. To exclude 
the effect of hypermutated tumors in this cohort (e.g., colorectal,  

endometrial)3,5, we repeated the analysis for tumors with mutation 
rates of ≤10 mutations/Mb (n = 2,892), as suggested in previous TCGA 
studies. We observed a 3.5% (6,153 /177,977) rate of somatic altera-
tions in the 121 clinically relevant genes (Supplementary Fig. 11).

These results highlight multiple themes pertaining to the use of 
genomics in clinical oncology. First, well-characterized clinically rel-
evant alterations can rarely be observed in unexpected tumor types. 
For instance, one patient with cervical cancer harbored a somatic 
BRAF K601E mutation (Fig. 5e). Although not previously reported in 
this tumor type, such a patient may warrant consideration for thera-
pies that target these alterations37. This descriptive example highlights 
the potential benefit for comprehensive profiling in clinical settings, 
although prospective implementation of this approach is needed to 
determine the general applicability to clinical oncology.

Next, by combining mutation data from 12 tumor types, we 
observed a “tail” of low-frequency alterations in clinically relevant 
cancer genes that warrant clinical investigation but would not be 
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Figure 4 Predictive performance of clinical variables, molecular data and their combination on dichotomized survival data. (a–e) The best AUC achieved 
by each classification algorithm for each clinical/molecular/combination data set in KIRC (Ntotal = 150) (a), GBM (Ntotal = 155) (b), OV (Ntotal = 252) (c) 
and LUSC (Ntotal = 77) (d). DDA, diagonal discriminant analysis; KNN, K-nearest neighbor; DA, discriminant analysis; LR, logistic regression;  
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cross-validation. (e) Variation explained by modeling factors and their interactions.
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apparent with smaller, single-tumor cohorts. 
This is demonstrated by a series of observa-
tions involving genes in the phosphatidyl-
inositide 3-kinase/mTOR signaling pathway. 
In PIK3CA, both hotspot alterations and 
those requiring preclinical and clinical evalu-
ation were observed in 604 patients (Fig. 5f). 
Somatic mutations in TSC1, which have been 
implicated in everolimus (Afinitor) sensitiv-
ity in urothelial carcinomas38,39, were noted 
in 41 patients with a diverse array of tumor 
types (Fig. 5g). Somatic alterations in MTOR 
itself, which may predict response and/or 
resistance to rapamycin analogs or mTOR 
catalytic domain inhibitors40, were observed 
in 124 patients (Fig. 5h).

Finally, comprehensive profiling may also 
be useful for identifying patients who may be 
intrinsically resistant to certain therapies. For 
instance, 21 therapy-naive patients harbored 
MEK1 somatic mutations (Fig. 5i); a subset 
of these mutations may predict resistance 
to RAF and/or MEK inhibitors in specific  
clinical contexts41,42. Critically, RAF and 
MEK inhibitors are currently being studied 
in numerous cancer types, so prospective 
knowledge of MEK1 status may affect treat-
ment selection for patients with MEK1 muta-
tions. Broadly, these results demonstrate how 
global surveys of mutational patterns in clini-
cally relevant genes may have an impact on 
clinical trial design and treatment selection.

DISCUSSION
In contrast to previous studies driven by a single cancer type or data 
type, we systematically evaluated patient survival prediction from 
different molecular data types and described the potential prognostic 
and/or therapeutic relevance revealed across multiple cancer types, 
raising several important issues related to the potential clinical utility 
of large-scale molecular data.

Currently, only a few gene expression–based molecular prognostic 
markers have been established in clinical practice. For the cancers sur-
veyed here, none of the previously reported gene expression signatures 

are routinely used in current clinical practice in lung and kidney can-
cer. For GBM, although the status of a few molecular markers (e.g., 
MGMT promoter methylation) is frequently ordered for patients, 
that finding exerts limited influence on clinical decision making43. 
For OV, CA125 is the only marker accepted for clinical use44. Our  
systematic assessment helped address one key issue related to the 
lack of prognostic markers with clinical utility: statistical significance 
versus magnitude difference. Across the four TCGA patient cohorts, 
clinical variables appeared to be the most informative resources  
(C-index: 0.624–0.754); and molecular data alone often (9 out of 18 
cases) had statistically significant predictive power above a random guess  
(C-index: 0.544–0.718). Given the clinical-variable-only models, 
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incorporating molecular data statistically boosts the model per-
formance (5 out of 18 cases) in three cancer types, including mRNA, 
miRNA and protein expression, especially their molecular subtype 
information. However, the absolute magnitude gains were very lim-
ited (Somers’ D, 2.2~22.9%; a 2.2% gain in Somers’ D corresponds 
to a 2.2% increase of rank correlation coefficient between the pre-
dicted risk score and the actual survival of the patients), suggest-
ing that the information content of clinical variables and molecular 
data are largely redundant in terms of patient survival stratification. 
This echoes the observation that the number of cancer prognostic 
molecular markers in clinical use is pitifully small, despite decades 
of protracted and tremendous efforts45,46. Currently, many investiga-
tors make conclusions about the utility of their markers of interest 
by heavily relying on P value rather than the size of the difference in 
patient outcomes47. Our study calls attention to the criteria of mag-
nitude difference that should be emphasized in future publications 
of tumor prognostic markers.

Another important related issue is reliability and reproducibility. 
The literature of tumor biomarkers is plagued by publication bias 
and selective and/or incomplete reporting46, which poses an acute 
challenge in the post-genomic era. In this regard, we have developed 
an open-access model-assessment platform for TCGA pan-cancer 
survival prediction, which will (i) reduce the barrier to analyzing 
TCGA data by providing access to well-curated, computable data sets 
used as inputs to all models in our study; (ii) increase the transparency 
and reproducibility of prognostic models by providing our models 
as re-runnable source code and providing this capability to other 
researchers; and (iii) improve the objectivity and rigor of future model 
assessments by providing a baseline set of model scores based on 
predefined criteria and evaluation scores posted on a real-time, publi-
cally available “leaderboard.” Such an effort not only helps improve 
prognostic models though a community-based challenge48,49 but also 
ensures transparency and reproducibility for tumor biomarker iden-
tification. We expect to seed such a community effort to release the 
whole data set, prognostic models and evaluation criteria for future 
studies of clinically usable prognostic models.

By exploring the spectrum of clinically actionable somatic altera-
tions among 12 tumor types, we identified multiple instances where 
alterations in clinically relevant genes were observed in enough patients 
to rationalize clinical trial development across tumor types. This 
was true even if these alterations were rarely observed in any single  
tumor type, leading to so-called “bucket” trials. We also revealed how 
the potential applications of precision oncology can be expanded to 
numerous additional patients with more extensive forms of profiling.  
As the number of identified clinically actionable cancer genes and 
alterations continues to rise8, prospective genomic profiling may 
inform individualized treatment plans for patients with metastatic 
or localized disease, as these patients are guided toward genomically 
driven clinical trials. Notably, many of the alterations observed in 
clinically actionable cancer genes have either no known functional 
effect that may be consistent with a clinical action or even have the 
converse effect. Through our cross-tumor analysis, we expect that 
many of these alterations will emerge in preclinical and clinical stud-
ies, thereby informing their relative impact in specific clinical set-
tings from a predictive/prognostic standpoint when linked to relevant  
clinical outcomes.

Although our study provides important insights into the translation 
of biological data into clinical utility, it has some limitations. First, 
we employed purely data-mining approaches to prognostic modeling. 
Such a practice comes with a cost: we may miss some informative indi-
vidual features that could be identified by a candidate gene approach 

driven by prior knowledge. Second, we did not analyze somatic muta-
tions for prognostic utility because the mutation data are binary and 
sparse across the patient cohorts. New methods should be developed 
for assessing the prognostic power of large-scale mutation data. Third, 
effectively combining multiple types of molecular data remains a 
technical challenge owing to the overfitting issue and widespread  
co-linearity of large-scale biological data. Therefore, one important 
future direction is to build prognostic models that incorporate clinical 
variables and multiple types of molecular data, which may provide 
crucial complementary information. In that regard, more effective fea-
ture selection strategies should be developed. Finally, because TCGA 
patient samples were collected from multiple source sites for the pur-
pose of comprehensive molecular profiling and were characterized at 
different centers, this practice may introduce both heterogeneity and 
bias. In addition, the resulting clinical annotation of patient samples 
may not be as rigorous and complete as those obtained from clinical 
trials. Therefore, further efforts, especially independent validations 
with clinical trial-grade follow-up, are crucial for assessing our find-
ings from TCGA data.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. All core clinical and genomic/proteomic data used 
to construct survival models, as well as the training and test data set 
splits, are available at the Synapse homepage of our project (accession 
number syn1710282, doi:10.7303/syn1710282). The full Pan-Cancer 
data set is available at the Synapse Pan-Cancer home page (accession 
number syn300013, doi:10.7303/syn300013). Dichotomized survival 
data were deposited in Synapse (syn1748545).

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Core data set compilation. We downloaded overall survival data and SCNA 
data from Firehose (https://confluence.broadinstitute.org/display/GDAC/
Home). We obtained the clinical variables from TCGA Data Portal (https://
tcga-data.nci.nih.gov/tcga/) and the molecular data (including DNA methyla-
tion, mRNA, miRNA and protein expression) from the Pan-cancer project 
(syn300013) on Synapse (http://www.synapse.org). Specifically, molecular 
data from the following platforms were used in our study. For SCNA, the 
platform is Affymetrix Genome-Wide Human SNP Array 6.0 (arm-level and 
focal-level copy number calls were derived from Firehose: https://confluence.
broadinstitute.org/display/GDAC/Home). For DNA methylation, the platform 
is Illumina Infinium Human DNA Methylation 27K (for GBM and OV) or 
450K (for KIRC and LUSC, we retained only the probes that most negatively 
correlated with gene expression according to Firehose). For mRNA expres-
sion, the platform was either Agilent 244K Custom Gene Expression G4502A 
(for GBM and OV) or Illumina HiSeq 2000 RNA Sequencing V2 (for KIRC 
and LUSC). For miRNA expression, the platform was either Agilent 8 × 15K 
Human miRNA-specific microarray platform (for GBM and OV) or Illumina 
Genome Analyzer/HiSeq 2000 miRNA sequencing platform (for KIRC and 
LUSC). For protein expression, the platform was the MD Anderson Reverse 
Phase Protein Array (RPPA) Core platform and both total protein and phos-
phorylated protein were included in this study as distinct molecular features. 
For each cancer type, we defined the sample intersection across all the plat-
forms as the core sample set. We included neither DNA methylation data in the 
LUSC core nor protein expression data in the GBM core in order to preserve a 
statistically sufficient sample size. For each molecular data type, in additional 
to gene-level features, we included the NMF subtypes from Firehose analyses 
reported on January 16, 2013. All core clinical and genomic/proteomic data 
used to construct survival models, as well as the training and test data set 
splits, are available at the Synapse homepage of our project (accession number 
syn1710282, doi:10.7303/syn1710282). The full Pan-Cancer data set is avail-
able at the Synapse Pan-Cancer home page (accession number syn300013, 
doi:10.7303/syn300013).

Model training and performance comparison. For each core set, we ran-
domly split the samples into two groups: 80% as the training set and 20% as 
the test set. On the training set, we first performed a pre-selection step to keep 
the top significant features correlated with overall survival (univariate Cox 
model, likelihood ratio test, P < 0.05). To obtain better convergence of the 
training model, we required that the retained feature number did not exceed 
the number of events (deaths) in the training set. We used two computational 
methods to train the models: (i) Cox: the Cox proportional hazards model with 
LASSO for feature selection, and (ii) RSF: random survival forest. The univari-
ate and multivariate Cox models were built with the R package “survival”; the  
LASSO was performed using the R package “glmnet” and the penalty parameter λ  
was chosen based on the fivefold cross-validation within the training set; and 
the RSF models were built using the R package “RandomSurvivalForest” with 
the recommended default parameters. We then applied the models thereby 
obtained to the test set for prediction, and calculated the C-index using the  
R package “survcomp.” For each core set, the above procedure was repeated 100 
times to generate 100 C-indexes. To compare the performance across different  
data types, we first chose the better performing method (Cox or RSF) and then 
used its results based on the Wilcoxon signed rank test to calculate the P value 
(using 0.05 as the significance cutoff).

To assess the predictive power of integrating molecular data with clini-
cal variables, we slightly modified the Cox method to include both clinical 
and molecular features. We used the clinical features (such as patient age and 
gender, tumor stage and grade, and Karnofsky performance score, upon avail-
ability) that were significantly correlated with survival (likelihood ratio test 
P < 0.05 in both the univariate Cox model and the full model with all clinical 
variables) as the baseline to build the clinical Cox model. We then combined 
the gene-level features that better fit the existing model (through performing 
a feature-selection step against the residuals) or the subtype features with the 
clinical variables to build a new multivariate Cox model. We performed the 
RSF method as before.

To evaluate the effect of feature selection, for the data exhibiting striking 
discrepancies (i.e., clinical + molecular data for GBM and LUSC), we applied 

different feature-selection methods before RSF: (i) the same LASSO approach 
as for Cox; (ii) minimal depth variable selection; and (iii) variable hunting. 
We calculated the C-indexes when applying these new models to the same 
test sets. To evaluate the effect of sample size, for the molecular models with 
substantial predictive power (median C-index > 0.6), we conducted a serial 
sampling of various portions (ranging from 0.2–1, with a increment of 0.1) of 
the original training samples as the new training set, from which we built the 
models using the same approach and calculated the C-index when applying 
these models to the same test set.

Building multiclass classifier from known NMF subtypes. Using the TCGA 
OV miRNA expression data as the explanatory variables and the three-class 
NMF subtypes derived from these expression data by Firehose as the response 
variable, we built the multiclass classifier (multinomial logistic regression 
model) using a scheme adapted from Yuan et al.50. We first cleaned out the 
expression data by retaining the common features between TCGA data and 
the independent data set and performed sample-wise centering. We then built 
the multiclass classifier from the TCGA data and evaluated its performance 
through fivefold cross-validation. During each of the five iterations, feature 
selection by LASSO (class = “multinomial”) and tuning of the penalty param-
eter λ were based on 80% of the data, and the prediction (using the R package 
“glmnet”) was made to the remaining 20% of the data, where class labels were 
assigned according to the class with the largest probability. The predictions 
from the five iterations were combined and the AUCs were calculated by the  
R package “ROCR.” Finally, we trained the classifier using the whole TCGA 
data and applied it to the independent OV data set for the final prediction.

Analysis of important biological features in the top prognostic models. The 
Kaplan-Meier survival curves were drawn according to the samples’ original 
NMF subtypes or predicted classes, and the log-rank test P values were cal-
culated using the R package “survival.” The association of individual features 
with survival (better or worse) was decided based on the hazard ratio (HR) 
from the univariate Cox model, where an HR greater than 1 represented a 
worse prognosis. Wald’s test P values were used to assess the significance. For 
expression values obtained through sequencing (i.e., KIRC miRNA expres-
sion), the raw values were log2 transformed before the univariate Cox analysis. 
The enriched gene pathways were identified through IPA (Ingenuity Systems, 
http://www.ingenuity.com).

Cross–tumor-type survival prediction. For the cancers that shared the same 
platforms for the same type of genomic data (e.g., microarray for GBM and OV 
mRNA expression, RNA-seq for KIRC and LUSC mRNA expression), we first 
obtained the common features shared by any two cancers in a pairwise man-
ner. Then we trained the Cox model from the shared molecular features of one 
cancer and applied the model trained to the same 100 test sample sets used in 
the global analysis of the other cancer. C-indexes were calculated accordingly. 
To test the effect of sample size, for the OV-KIRC case, we randomly sampled 
the same number of OV samples as the KIRC training size and repeated the 
whole analysis. We used the Wilcoxon signed rank test to compare the per-
formance of the model trained with data from different cancers. We further 
confirmed this result using an independent approach and an independent 
sample partition (Supplementary Fig. 11). The sample partition was done 
using standard fivefold cross-validation on the KIRC data. For each fold, we 
trained nonparametric, unregularized Cox proportional hazards models using 
the glmnet package in R. We repeated the cross-validation process 30 times, 
randomly choosing a fivefold split each time. Finally, the KIRC patients were 
stratified using the SCNA signatures derived from OV, and the Kaplan-Meier 
curves were drawn based on the median risk score.

Dichotomization of survival data. For each cancer type, we dichotomized the 
censored continuous survival data by assigning a cutoff time (survival mile-
stone) of 1 year for individuals with GBM, 2 years for LUSC, 3 years for OV 
and 4 years for KIRC. The individuals who lived beyond the cutoff time were 
labeled as 1; the deceased were labeled as 0. The individuals with survival times 
that were censored before the cutoff were excluded. The different cutoffs were 
chosen in order to reach a balance between the event ratio and the sample size. 
The dichotomized survival data were deposited in Synapse (syn1748545).
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Classification algorithms for dichotomized survival data. For each dichot-
omized survival data set, we used two pre-selection strategies (ANOVA and 
shrinking centroids) and eight classification algorithms: diagonal discriminant 
analysis (DDA), K-nearest neighbor (KNN), discriminant analysis (DA), logis-
tic regression (LR), nearest centroid (NC), partial least square (PLS), random 
forest (RF) and support vector machine (SVM). The performance was assessed 
in tenfold cross-validation, and AUCs were calculated as the measurement. For 
KNN, we varied the number of candidate neighbors from 1 to 9 (odd numbers 
only) and used the Euclidean distance as the measure of distance. For NC, we 
assigned equal prior probabilities. For DDA, DA and PLS, we chose the linear 
discriminant function with equal prior probabilities. For SVM, we chose the 
radial basis kernel. The parameter C (the cost) ranged from 1 to 1,001, in 
increments of 100, and gamma ranged from 10−10 to 10−2, moving one deci-
mal place per time. For RF, 1,000 trees were used. The other parameters were 
chosen by default. The number of features after pre-selection ranged from 10 
to 50, in increments of 10.

Variability analysis for modeling factors. There are five factors that can 
potentially affect the performance of binary classification: cancer type, data 
type (clinical or individual molecular features), pre-selection strategies, the 
number of features after pre-selection and classification algorithms. We used 
ANOVA to assess the variability contributed by these factors and their inter-
actions, and the Akaike information criterion in stepwise model selection for 
significant factors and interactions. The estimated variance components were 
then divided by their total in order to compare the proportion of variability 
explained by each modeling factor. To remove the effect of sample size, we 
performed a size-adjusted analysis, in which we kept the sample size consistent  

across all cancer types by randomly sampling 77 samples according to the 
smallest sample (which was LUSC) from KIRC, GBM and OV, and repeated 
the same procedure for the original dichotomized sets.

Identification of somatic alterations in clinically relevant genes. Somatic 
mutations and indels called from exome sequencing of matched tumor and 
normal genome pairs from 12 TCGA projects were aggregated using mutation 
annotation format (MAF) files from Synapse (syn1710680). Each alteration 
was ranked for clinical relevance using a heuristic algorithm34,35. Clinical 
actionability was defined at the gene level: any gene that, when somatically 
altered in cancer, predicted response or resistance to a specific therapy, had 
diagnostic potential or had prognostic significance, was considered a clini-
cally actionable gene. These genes were derived by a review of the primary 
literature, consultation with experts and manual curation. A complete list 
is available at http://www.broadinstitute.org/cancer/cga/target. For the pur-
pose of understanding the distribution of hotspot alterations in BRAF and 
PIK3CA, the following definitions were assigned: hotspot alterations in BRAF 
were defined as those leading to V600E, V600K and V600R protein changes. 
Similarly, hotspot alterations in PIK3CA were restricted to those that resulted 
in E545K and H1047R protein changes. All code for this effort was generated 
using the R statistical package.

50. Yuan, Y., Xu, Y., Xu, J., Ball, R. & Liang, H. Predicting the lethal phenotype of the 
knockout mouse by integrating comprehensive genomic data. Bioinformatics 28, 
1246–1252 (2012).
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