
ARTICLE

Received 28 Jun 2013 | Accepted 10 Jan 2014 | Published 3 Feb 2014

Gene co-expression network analysis reveals
common system-level properties of prognostic
genes across cancer types
Yang Yang1,2, Leng Han2, Yuan Yuan2,3, Jun Li2, Nainan Hei1 & Han Liang2,3

Prognostic genes are key molecules informative for cancer prognosis and treatment. Previous

studies have focused on the properties of individual prognostic genes, but have lacked a

global view of their system-level properties. Here we examined their properties in gene

co-expression networks for four cancer types using data from ‘The Cancer Genome Atlas’.

We found that prognostic mRNA genes tend not to be hub genes (genes with an extremely

high connectivity), and this pattern is unique to the corresponding cancer-type-specific

network. In contrast, the prognostic genes are enriched in modules (a group of highly

interconnected genes), especially in module genes conserved across different cancer

co-expression networks. The target genes of prognostic miRNA genes show similar patterns.

We identified the modules enriched in various prognostic genes, some of which show

cross-tumour conservation. Given the cancer types surveyed, our study presents a view of

emergent properties of prognostic genes.
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P
rognostic genes have properties (such as expression level or
mutation status) that are informative regarding clinical
outcomes. These genes are of particular biomedical interest

in cancer research because of their potential as biomarkers, to
help predict patients’ survival, and to provide insights into the
molecular mechanisms of tumour progression1–5. Over the
past decades, tremendous efforts have been made to identify
prognostic genes and build more effective models for stratifying
individuals with cancer6–11. However, such studies have focused
on individual prognostic genes and their clinical utilities, without
investigating the emergent properties and behaviours of
prognostic genes at the system level.

Biological networks represent valuable platforms for under-
standing system-level properties12–14. The commonly used bio-
logical networks include protein–protein interaction networks,
signalling networks, metabolic networks, gene regulatory
networks and gene co-expression networks. Compared with
other types of biological networks, using gene co-expression
networks has several advantages15: nearly complete coverage of
human genes, little bias due to the knowledge obtained from
the published literature, and the ability to construct cancer-type-
specific networks.

Using recently available cancer genomic data from ‘The
Cancer Genome Atlas’ (TCGA), we investigated the properties
of prognostic genes in the gene co-expression networks of four
representative cancer types (glioblastoma multiforme (GBM),
ovarian serous cystadenocarcinoma (OV), breast invasive
carcinoma (BRCA) and kidney renal clear cell carcinoma
(KIRC))16–19. Here we focused on three primary questions
about expression-based prognostic genes. First, are there network
properties that distinguish prognostic genes from other genes in
the co-expression networks? Second, do different types of
prognostic genes show similar network properties? Third, do
those patterns hold true across different cancer types? We
performed a comparative analysis of prognostic genes in terms of
key network properties (for example, whether they tend to be hub
genes and enriched in modules) across the four cancer types. Our
results reveal some common and distinct patterns of prognostic
genes and identify modules associated with prognostic signatures.
This study contributes to a comprehensive understanding of the
informative behaviours of prognostic genes from the point of
view of systems biology.

Results
Prognostic mRNA genes tend not to be hub genes. In this
study, we focused on the four TCGA cancer types with adequate
follow-up/survival data and sufficient sample size. The power of
detecting prognostic genes varies from one cancer to another,
which mainly depends on the sample size and the number of
survival events (that is, death). Here we defined prognostic genes
as those whose mRNA expression levels are significantly corre-
lated with overall patient survival in two alternative ways: first,
different numbers of prognostic mRNAs were identified based on
the signal-to-noise ratio within each sample cohort; and second,
the top 1,000 mRNA genes most correlated with patient survival
were identified per cancer type. We obtained very similar results
using these two strategies, and throughout the text, we will mainly
present the results based on the first method. With the first
method, we identified 1,706, 728, 974 and 2,050 prognostic
mRNA genes in GBM, OV, BRCA and KIRC, respectively
(Fig. 1a, Methods). These prognostic genes showed great
robustness through the assessment of subset samplings (Methods,
Supplementary Fig. 1a), and the four cancer types shared
only a small portion (3–12%) of these prognostic genes
(Supplementary Fig. 1b). For each cancer type, we constructed a

gene co-expression network from Agilent microarray data using
weighted gene correlation network analysis (WGCNA)20,21.
WGCNA is a well-established method designed for constructing
co-expression networks from microarray-based expression data,
and considers not only the co-expression patterns between two
genes but also the overlap of neighbouring genes. As a result, we
obtained four cancer-type-specific co-expression networks, each
containing the same set of 17,813 genes (nodes). These co-
expression networks are weighted networks in which any two
nodes are connected with an edge weight (from 0 to 1, where 0
indicates no interaction and 1 a strong interaction). Previous
studies have indicated that a weighted network retains more
information and is more robust and accurate than an unweighted
one in network analysis15,21.

One key property for a gene in a biological network is
connectivity, which reflects how frequently a node interacts with
other nodes (for a weighted network, connectivity is defined as
the sum of the weights across all edges of a node). According to
the node connectivity, genes can be further classified into hub
genes (with an extremely high level of connectivity) and non-hub
genes. Hub genes are very important nodes, and in the protein
interaction networks of various organisms, hub proteins tend to
encode essential genes22–24. In the gene co-expression network,
hub genes represent a small proportion of nodes with maximal
information exchange with other nodes. For example, one
prognostic hub gene in GBM is KLKL1, which is a serine
protease with diverse physiological functions. We first examined
the properties of connectivity and enrichment for the prognostic
genes. We found that, on average, prognostic genes have higher
connectivity, but this association does not follow a simple
monotonic increasing trend. The prognostic genes appeared to be
depleted in nodes with either extremely low or high connectivity
(Supplementary Fig. 2). To formally test whether prognostic
genes are less likely to be hub nodes in the co-expression
networks, we examined the connectivity distributions and defined
the 1% (or 5%) of nodes with the highest connectivity as hub
genes, according to the literature25–27. We found that prognostic
genes are significantly depleted in the hubs across all four cancer
types (Fig. 1b; Supplementary Fig. 3 includes the bar plots of a
random same-size set of non-prognostic genes for comparison;
Supplementary Fig. 4). In addition, we observed the same
patterns when the top 1,000 prognostic gene sets were used
(Supplementary Fig. 5).

In general, the hub genes defined in the different cancer
networks are highly specific and show only a little overlap, except
that OV and BRAC share some hub genes due to their
pathophysiological similarity (Fig. 1c). To further examine
whether the observed depletion of prognostic genes in hubs is
unique to the cancer-specific network, we performed similar
analyses using prognostic genes and hub genes defined in
different co-expression networks. Figure 1d shows the results in
a heatmap format: significant depletions were primarily observed
along the diagonal line, demonstrating that prognostic genes in
one cancer type show a significant depletion in only the hubs of
the corresponding co-expression network.

Prognostic mRNA genes are enriched in modules. Another
important aspect of a gene co-expression network is modularity:
genes that are highly interconnected within the network are
usually involved in the same biological modules or pathways28,29.
Using WGCNA, we defined the modules in each cancer co-
expression network (Fig. 2a, Methods), and detected 85, 98, 55
and 81 modules in GBM, OV, BRCA and KIRC, respectively. For
example, one common module across tumour types is enriched
with genes related to the regulation of cell death and apoptosis.
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The corresponding proportions of module genes are 36.9, 34.7,
26.5 and 29.6% in these cancer types. Strikingly, except for BRCA,
prognostic mRNA genes show a significant enrichment in
modules (Fig. 2b; Supplementary Fig. 6 includes the bar plots
of a random same-size of non-prognostic genes for comparison).
Moreover, we obtained the same patterns using the top 1,000
prognostic gene sets (Supplementary Fig. 5d). In contrast to hub
genes, there is substantial overlap of module genes across tumour
types (Fig. 2c). This is reasonable since modules largely reflect the
underlying biological processes.

To further examine the relationships between prognostic genes
and modules in the co-expression networks, for each gene, we
calculated a module-gene conservation score (range 0–4), which
indicates how frequently a gene is classified in a module among
the four cancer types. We found that the conservation scores of
prognostic genes are significantly higher than those of other genes

in GBM, BRCA and KIRC; the same trend holds true in OV, but
with a marginal significance (Fig. 2d). These results indicate that
prognostic mRNA genes are enriched in module genes, especially
in conserved module genes.

Target genes of prognostic microRNAs show similar patterns.
In addition to prognostic mRNA genes, we examined the network
properties of prognostic miRNA genes, an important class of
non-coding regulatory genes30,31. Similar to prognostic mRNAs,
we defined prognostic miRNA genes based on the correlations of
their expression levels with overall patient survival in two ways:
first, different numbers of prognostic miRNAs were identified
based on the signal-to-noise ratio within each sample cohort; and
second, the top 50 miRNA genes most correlated with patient
survival were identified per cancer type. We obtained very similar
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Figure 1 | The depletion of prognostic mRNA genes in hubs. (a) The P-value distributions of the correlations of mRNA expression with overall survival

based on the univariate Cox model in the four cancer types. Based on the signal-to-noise ratio, prognostic mRNA genes were identified. (b) Prognostic

mRNA genes are depleted in the hubs. Solid bars represent the proportions of hub genes among prognostic mRNA genes; striped bars represent the

proportions of hub genes among non-prognostic mRNA genes. Error bars indicate±1 s.e.m., and P-values were calculated based on Fisher’s exact tests.

(c) The Venn diagram of hub genes across the four cancer types. (d) The heatmap showing the cancer-type-specific pattern of hub depletion. The colour

of each cell represents the depletion score of prognostic mRNA genes of a cancer type (column) in hub genes of another cancer type (row); row-wise scaled

� log10(P-value) is plotted with red indicating significant, white indicating not significant. P-values were calculated based on Fisher’s exact tests.
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results using these two methods, and will mainly focus on the
results from the first method. We identified 15, 106, 54 and 203
prognostic miRNAs in GBM, OV, BRCA and KIRC, respectively
(Fig. 3a, Methods). Since the gene co-expression networks consist
of mRNA genes only, we investigated the properties of the
target genes of the prognostic miRNAs identified by a leading
miRNA target prediction programme, TargetScan32. Strikingly,
we observed the same patterns: the target genes of prognostic
miRNAs are depleted in hub genes (Fig. 3b; Supplementary Fig. 7
shows the results when the 5% of nodes with the highest
connectivity were defined as hub genes). Considering the noise in
miRNA target prediction, we further examined the predicted
targets of prognostic miRNAs with different stringent criteria and
obtained concordant results (Supplementary Fig. 8, Methods).

We also obtained the same results using the top 50 prognostic
miRNA sets (Supplementary Fig. 9). Moreover, the target genes of
prognostic miRNAs are more likely to be enriched in modules
than those of non-prognostic miRNAs (Fig. 3c; Supplementary
Fig. 9d shows the results for the top 50 prognostic miRNA sets).
These results suggest that prognostic mRNA and miRNA genes
share similar network properties in the cancer gene co-expression
networks.

Some prognostic modules are conserved across tumour types.
Since both prognostic mRNA genes and the targets of prognostic
miRNAs are enriched in the modules of co-expression networks,
we were also interested in identifying individual prognostic
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Figure 2 | The enrichment of prognostic mRNA genes in modules. (a) Modules defined from the weighted gene co-expression networks. Colourful
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(b) Prognostic genes are enriched in the modules. Solid bars represent the proportions of module genes among prognostic mRNA genes; striped bars

represent the proportions of module genes among non-prognostic mRNA genes. Error bars indicate±1 s.e.m., and P-values were calculated based on

Fisher’s exact tests. (c) The Venn diagram of module genes across the four cancer types. (d) Boxplots (median±1 quartile, with whiskers extending to the

most extreme data point within one interquartile range from the box boundaries) showing that prognostic genes tend to be more conserved module genes.

y axis represents the module-gene conservation score, which ranges from 0 to 4, with 0 indicating not a module gene in any of the four cancer types and 4

indicating a module gene in all four cancer types. Each boxplot represents the mean-conservation-score distribution of 20,000 randomly sampled same-

size gene sets; the diamond dot represents the mean conservation score of prognostic genes. P-values were calculated based on Wilcoxon rank sum tests.
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modules and determining their relationships across cancer types.
For this purpose, we first identified modules enriched with
prognostic mRNA genes (false discovery rate (FDR) o0.1), and
found 47 prognostic modules across the four cancers (GBM: 13,
OV: 8, BRCA: 8 and KIRC: 18), with module sizes (number
of genes within a module) ranging from 21 to 793 (Fig. 4a,
Supplementary Data 1). For each cancer type, tumour subtypes
classified by the gene expression of these prognostic modules
showed distinct survival curves, highlighting their potential
clinical relevance (Methods, Supplementary Fig. 10). We further
annotated their biological themes through gene ontology (GO)
terms33. The common themes across the four cancers included
‘response to wounding and inflammation,’ ‘regulation of cell
death/apoptosis,’ ‘RNA biosynthetic processing,’ ‘translational
elongation and termination,’ ‘signalling pathway regulation,’
‘regulation of kinase cascade,’ ‘cellular response to hormone/
chemical stimulus’ and ‘multiple lipids metabolic and
biosynthesis process.’ Besides the common themes, there were
specific module themes for each cancer type, such as ‘nervous
system development,’ ‘negative regulation of gliogenesis,’ ‘type I
interferon-mediated signalling pathway’ and ‘response to metal
ion’ in GBM; ‘negative regulation of histone modification’ and
‘tRNA aminoacylation for protein translation’ in OV; ‘chromatin
remodelling’ and ‘smooth muscle tissue development’ in BRCA,
and ‘positive regulate CREB transcription factor activity,’
‘interleukin-1-mediated signalling pathway,’ ‘negative regulation
of WNT receptor signalling pathway’ and ‘stress-activated MAPK
cascade’ in KIRC.

Interestingly, among the 47 prognostic modules, 9 prognostic
modules were also enriched with the targets of 23 prognostic

miRNAs (FDRo0.1, Fig. 4a). Among them, three miRNAs
(miR-32, miR-301a and miR-340) show target enrichment in at
least two modules, and two miRNAs (miR-148a and miR-148b)
are associated with prognostic modules in two cancer types. In
addition, three prognostic modules are enriched with significantly
mutated genes identified in the TCGA Pan-Cancer project
(FDRo0.1, Fig. 4a).

To investigate the prognostic modules conserved across
tumour types, we determined the module correspondence by
considering the members that overlap between the two prognostic
modules. This analysis revealed 22 pairwise correspondences
among the 47 prognostic modules across the 4 cancers (Fig. 4b).
Remarkably, one OV module annotated with ‘multicellular
organismal development’ acted like a module ‘hub,’ directly
linking seven other modules of different cancer types with a wide
range of biological themes.

Discussion
In this study, we performed a systematic analysis of the properties
of prognostic genes in the context of biological networks across
multiple cancer types. Importantly, we used the gene co-
expression networks constructed from a single type of microarray
as the investigation platform. This practice reduces various
confounding factors in the data analysis, such as prior knowledge
bias, which occurs from using other types of biological networks
or batch effects when constructing the networks from expression
data from multiple profiling techniques. Strikingly, although both
prognostic genes and hub/module membership in the networks
varied greatly from one cancer type to another, our study revealed
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some distinct properties of prognostic genes. The consistent
nature of the patterns we found across multiple cancer types and
both prognostic mRNA and miRNA genes (through their target
genes) highlights the robustness of the observed pattern. This
study provides the first system-level understanding of the
‘informer’ behaviours of cancer prognostic genes, thereby laying
a foundation for how to incorporate the co-expression network
information into prognostic modelling. For example, since
both prognostic mRNAs and miRNAs appear to be preferably
associated with some biological modules, on a practical level,
further efforts are warranted for building module-based prog-
nostic models, and the models thereby obtained will be more
biologically interpretable. Furthermore, the analysis on prognostic
modules across tumour types provides a unique perspective to
elucidate the common/distinct biological processes involved
in different cancer types, which may facilitate novel subtype
classifications.

Hubs are topologically central in the co-expression network,
having maximal informational connections with other genes.
Despite prognostic genes having higher connectivity overall, we
found them to be depleted in the hub nodes of the cancer-specific
co-expression networks. One possible explanation for this finding
is that the hubs act more like modulators, coordinating gene
expression over many functional components (pathways). As
hubs are associated with a very high level of activity of receiving
and sending signals, their expression levels are often complicated
by too many factors to correlate with the phenotype directly. This
observation is compatible with the results from a genomic
analysis of the hierarchical structure of gene regulatory net-
works34. Another explanation is that hubs may have more backup
and feedback mechanisms to ensure their robust behaviour, so
their status may not sensitively reflect the properties of the whole
system. In contrast, prognostic genes are enriched in modules,
especially in module genes that are conserved across tumour
types. Modules in the co-expression network represent groups
of functionally related genes dedicated to specific biological
processes, which perform essential functions from baseline
housekeeping to activities related to tumour growth and
invasion. Compared with genes that mainly work alone, the
status of a module gene more frequently reflects the ‘group’
behaviour, and is therefore more informative regarding tumour
progression.

MicroRNAs are an important class of regulatory genes that
largely lead to gene silencing through either mRNA degradation
or translational inhibition30,31. Recently, miRNAs have been
widely implicated in tumour biology35,36. The target genes of
prognostic miRNAs show patterns similar to those of prognostic
mRNA genes in terms of hub and module properties. In
particular, we found that some prognostic miRNAs have their
target genes enriched in prognostic modules. It is likely that these
miRNAs act as a master regulator, coordinating the behaviour of
the whole module through their targeting. For example, in GBM,
such modules involve functions related to ‘negative regulation of

gliogenesis’, ‘negative regulation of kinase activity’ and ‘nervous
system development and functions’, all of which are connected
with the normal function and development of the brain.

Compared with single prognostic genes, biological modules
enriched with prognostic genes may represent more robust
prognostic signatures, and deserve further investigation. Our
integrative analysis reveals several such modules of particular
interest. In GBM, the module of ‘negative regulation of
gliogenesis’ (Fig. 4a) shows an enrichment of target genes of
three prognostic miRNAs (miR-148a, miR-204 and miR-34a). In
terms of the Ingenuity Pathway Analysis (IPA) disease annota-
tion, ‘tumorigenesis of neuroendocrine carcinoma’, ‘recurrence of
carcinoma’ and ‘squamous-cell carcinoma’ are the top three
terms. Interestingly, the upstream transcription regulators of this
module (ZNF217, ASCL1, DNAJB6, DEK and E2F5) are also the
predicted targets of the three prognostic miRNAs. In BRCA, there
are two prognostic modules regulated by prognostic miRNAs.
One is annotated as ‘nucleic acid metabolic process’ (Fig. 4a).
This module is enriched with the target genes of several
prognostic miRNAs (miR-30a, miR-324, miR-454, miR-340,
miR-301a, miR-148b, miR-153, miR-181b, miR-9, miR-98 and
let-7b) associated with IPA terms ‘cell death and survival, cell
cycle, cancer’ and the oestrogen receptor signalling pathway. It
also shows an enrichment of significantly mutated pan-cancer
genes (KIAA1109, NCOA3, TAF1, EP300, SETD2, STAG2 and
TAF1L). Thus, this module appears to integrate multiple types of
aberration signatures and likely plays an important role in the
progression of breast cancer. Another BRCA module associated
with prognostic miRNAs is annotated as ‘chromatin remodelling’
and ‘protein catabolic process’ (Fig. 4a), suggesting a key role
of epigenetic modification in breast cancer. This module is
associated with the AMPK signalling pathway, a known
oncogenic signalling pathway in breast cancer37,38. In KIRC,
one module annotated as ‘nucleic acid metabolic process’ (Fig. 4a)
has connections with five prognostic miRNAs. In OV, the module
of particular interest is annotated as ‘multicellular organismal
development.’ The top IPA disease terms include ‘endometrial
cancer’, ‘uterine serous papillary cancer’, ‘epithelia neoplasia’,
’metastatic colorectal cancer’ and ‘solid tumour’, and the
enrichment of ‘ovarian adenocarcinoma’ is also significant
(Po1� 10� 5, Fisher’s exact test). This module is also enriched
with significantly mutated pan-cancer genes (APC, NAV3,
COL11A1, TSHZ3, CDH1, RUNX1, AR, SYNE1, MN1, DCHS1,
PDGFRA, TGFBR2, CDKN1A, ABCA9 and TNFAIP6).
Interestingly, this module shows correspondence to quite a few
prognostic modules in other cancer types (Fig. 4b). Thus, we
speculate that this module may reflect a theme that is common
across many cancer types. Further investigation is required to
evaluate the clinical utility of these modules, such as in patient
prognosis stratification and tumour subtype classification.

While our study provides some insight into the emergent
properties of prognostic genes, more efforts are required to
validate and extend our findings. We examined the properties of

Table 1 | Summary of TCGA genomic datasets used in this study.

Cancer
type

Co-expression network construction Identification of prognostic mRNAs* Identification of prognostic miRNAs*

GBM Agilent 244 K microarray 4500 samples Agilent 244 K microarray 4500 samples Agilent 8� 15 K miRNA microarray 4480 samples
OV Agilent 244 K microarray 4560 samples Agilent 244 K microarray 4560 samples Agilent 8� 15 K miRNA microarray 4560 samples
BRCA Agilent 244 K microarray 4520 samples Illumina HiSeq RNA-Seq 4830 samples Illumina RNA-Seq 4830 samples
KIRC Agilent 244 K microarray 470 samples Illumina HiSeq RNA-Seq 4460 samples Illumina RNA-Seq 4480 samples

*When mRNA gene or miRNA expression data were available from more than one platform, we chose the one with a better signal-to-noise ratio (Methods).
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prognostic genes in the context of gene co-expression networks.
A logical extension of this work would be to determine whether
the observed patterns hold true in other biological networks, such
as protein interaction networks or gene regulatory networks.
A major challenge for that direction is that those networks are
usually highly biased toward well-studied genes. A second logical
extension would be to determine whether the same patterns hold
true in the co-expression networks of other tumour types or
diseases. Our findings are based on TCGA data, so a third and
critical extension of this work would be to learn whether the
patterns can be recapitulated by other independent sample
cohorts with adequate survival data. Finally, future efforts should
be made to incorporate this system-level understanding of
prognostic genes into the practice of building effective prognostic
models.

Methods
Identification of prognostic mRNA and miRNA genes. We obtained TCGA gene
expression and overall survival data from Firehose (https://con-
fluence.broadinstitute.org/display/GDAC/Home) and TCGA Pan-Cancer website
(http://pancancer.soe.ucsc.edu/). All data are from pan-cancer 4.0 Freeze version.
We detected prognostic mRNA or miRNA genes based on the raw Wald P-values
generated from the univariate Cox model. We used two methods to define
prognostic genes. First, depending on the signal-to-noise ratio, different FDRs were
applied: for mRNA genes, 1,706 genes in GBM (Po0.028, FDRo0.2), 728 genes in
OV (Po0.019, FDRo0.5), 974 genes in BRCA (Po0.0053, FDRo0.1) and 2,050
genes in KIRC (Po2.24� 10� 6, FDRo2� 10� 5); for miRNA genes, 15 miRNAs
in GBM (Po0.0053, FDRo0.2), 106 miRNAs in OV (Po0.026, FDRo0.2),
54 miRNAs in BRCA (Po0.01, FDRo0.1) and 203 miRNAs in KIRC (Po0.043,
FDRo0.1). We assessed the robustness of these prognostic genes through
randomly sampled subsets: based on 100 subsets (75% of the original sample size),
on average, 75.3, 75.0, 92.0 and 99.9% of the prognostic mRNA genes showed
significant survival correlations in GBM, OV, BRCA and KIRC, respectively
(Supplementary Fig. 1). Second, the top 1,000 mRNAs or top 50 miRNAs most
correlated with overall survival were identified as prognostic genes. When gene or
miRNA expression data were available from more than one platform (Agilent
244 K microarray and Illumina HiSeq RNA-seq), we compared the Wald P-value
distributions between the platforms and chose the one with a better signal-to-noise
ratio (Table 1 and Supplementary Fig. 11). We did not include other TCGA cancer
types in this study because they did not have either the microarray data for
co-expression network construction or sufficient prognostic genes identified
(due to a limited sample size or inadequate follow-up time).

Co-expression network construction. Given Agilent 244 K microarray data for
each cancer type, we used the WGCNA package20,21 to build a weighted gene
co-expression network that contains 17,813 nodes (genes). The key parameter,
b, for weighted network construction was optimized to maintain both the scale-free
topology and sufficient node connectivity as recommended in the manual. In such
a network, any two genes were connected and the edge weight was determined by
the topology overlap measure provided in WGCNA. This measure considered not
only the expression correlation between two partner genes but also how many
‘friends’ the two genes shared. The weights ranged from 0 to 1, and reflect the
strength of the communication between the two genes. Given a network, we then
obtained several key network properties such as the edge weight, node connectivity
and modularity. Connectivity was defined as the sum of the weights across all the
edges of a node, and the top 1% (or 5%) of the genes with the highest connectivity
in the network were defined as hub genes. According to the connectivity
distributions, this definition well covered the highly connected nodes in the
power-law tails (Supplementary Fig. 12). We obtained the same results when the
hub genes were defined based on the adjacency matrix20,21, in which the edge
weight between two gene nodes depended on only their co-expression correlation
(Supplementary Fig. 13). We identified the modules using the advanced dynamic
tree cut technique, built with the default value of SplitDepth for robust module
detection in WGCNA39. We obtained the same results when the modules were
defined with the SplitDepth value for more sensitive module detection
(Supplementary Fig. 14). The co-expression network has been deposited in Synapse
(syn1445557).

Hub and module analysis of prognostic mRNA genes. For each cancer type, we
used a Fisher’s exact test to examine the enrichment or depletion of prognostic
mRNA or miRNA genes in hub nodes. To examine the cancer-type specificity of
the results, we performed the same analysis using hub and prognostic genes from
any two cancer types. We used a Fisher’s exact test to evaluate the enrichment of
mRNA prognostic genes in modules. To study the conservation of module genes,
we defined a score (from 0 to 4) for each gene, with 0 indicating the gene was not a
module gene in any of the four cancers, and 4 indicating the gene was a conserved

module gene in all four cancer types. We used a Wilcoxon rank sum test with
continuity correction to test whether the conservation score was different between
prognostic genes and other genes. We considered Po0.05 to be statistically
significant.

Analysis of prognostic miRNAs and their target genes. We first annotated the
miRNAs to the corresponding miRNA families and then obtained the predicted
conserved targets from TargetScan (Release 6.2)32,40. For hub analysis, the target
genes of all prognostic miRNAs in a cancer type were combined to test the relations
with hub genes, as described above. To examine the robustness of the results, target
genes with different stringency criteria were used: high-confidence targets were
identified as being predicted targets of more than one prognostic miRNA (2–4).
For module analysis, we first identified target-module-enriched miRNAs based on
whether the target genes of a given miRNA were significantly enriched in at least
one module in the co-expression network (FDRo0.1). We then used a Fisher’s
exact test to examine whether prognostic miRNAs tended to be target-module-
enriched in a given cancer type.

Integrative module analysis. We used a hypergeometric test to identify
prognostic modules as those that are significantly enriched with prognostic mRNAs
(FDRo0.1). To assess the clinical relevance of these prognostic mRNA modules,
for each cancer type, we classified tumour samples into subtypes (or clusters) based
on the expression of module genes (including both prognostic and non-prognostic
genes) using non-negative matrix factorization41, and then tested the correlations
of sample clusters with patient survival using log-rank tests. Similarly, we identified
prognostic modules enriched with the target genes of a specific prognostic miRNA
(FDRo0.1). We obtained 224 high-confidence significantly mutated genes from
TCGA Pan-Cancer Project (syn1750331) and tested their module enrichment in
the same way. We used R package ‘topGO’42 to annotate modules with GO terms
and used IPA (Ingenuity Systems; www.ingenuity.com) to annotate modules with
IPA knowledge-based terms. To identify module correspondence across tumour
types, we used a hypergeometric test to examine the pairwise correspondence
between any two cross-tumour prognostic modules (FDRo0.1). The results
showed great agreement with the cross-tumour module conservation score
provided in WGCNA.
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