
Articles
https://doi.org/10.1038/s42255-019-0045-8

1Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston-McGovern Medical School, Houston, 
TX, USA. 2Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. 3Department of 
Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. 4Graduate Program in Quantitative 
and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA. 5Department of Oncology, The First Affiliated Hospital of Nanjing 
Medical University, Nanjing, China. 6Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA. 7State Key Laboratory of Cardiovascular 
Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 
China. 8Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key 
Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.  
9Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. 10Department of Radiation 
Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. 11MD Anderson Cancer Center 
UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA. 12Department of Systems Biology, The University of Texas MD Anderson  
Cancer Center, Houston, TX, USA. 13Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. 14Center for Precision Health,  
The University of Texas Health Science Center at Houston, Houston, TX, USA. 15These authors contributed equally: Youqiong Ye, Qingsong Hu.  
*e-mail: lyang7@mdanderson.org; millsg@ohsu.edu; hliang1@mdanderson.org; leng.han@uth.tmc.edu

Hypoxia is a condition characterized by a limited oxygen sup-
ply; it is a feature of most tumours and has been correlated 
with advanced tumour progression, treatment resistance and 

poor clinical outcome1,2. Tumour hypoxia is linked to many cancer 
‘hallmarks’, including impaired immune responses, metabolic repro-
gramming, increased cancer stem cells, stimulation of tumour vascu-
larization, promotion of tumour invasion and metastasis, increased 
genomic instability, facilitation of apoptosis, and reduced cell pro-
liferation3. Nevertheless, it is still difficult to define hypoxia status 
in tumours because of variations in oxygen levels among different 
tissues. Researchers have employed different methods to diagnose 
tumour hypoxia, including direct methods (for example, oxygen elec-
trode and phosphorescence quenching), physiological methods (for 
example, photoacoustic tomography and near-infrared spectroscopy/
tomography) and/or endogenous markers of hypoxia (for example, 
hypoxia-inducible factor 1-alpha (HIF-1α) and glucose transporter 1)2,  
but none of these methods can be easily applied to large numbers  
of patient samples. Therefore, several recent studies have identified 
gene expression signatures that reflect hypoxia status4–6. Among 
them, a 15-gene signature appears to perform the best5,7.

The tumour hypoxia microenvironment is associated with  
multiple layers of molecular alterations, from genomics and  
epigenomics to transcriptomics and proteomics. Hypoxia drives 
transient site-specific copy alterations8 and increases the muta-
tion frequency of key cancer genes9. Hypoxia induces the hyper-
methylation of promoter regions for several tumour suppressor 
genes, such as phosphatase and tensin homologue (PTEN) and  
APC regulator of WNT signalling pathway (APC), and thus leads  
to low expression of these tumour suppressors7. Furthermore, 
hypoxia dysregulates genes in cancer-related pathways, such as 
the glycolytic pathway and phosphoinositide 3-kinase (PI3K)/ 
protein kinase B (PKB/Akt)/mammalian target of rapamycin 
(mTOR) pathway10, as well as pro-angiogenic factors11 and onco-
genic growth factors12. In addition, in response to hypoxia, micro 
RNAs (miRNAs) linked to multiple key signalling pathways, 
such as miR-210, are altered13. Hypoxia also profoundly impacts  
protein synthesis and phosphorylation, such as the activation of 
PKR-like endoplasmic reticulum kinase (PERK) and phosphory-
lation of eukaryotic initiation factor 2-alpha (eIF2α)14. Taken 
together, previous studies have established that hypoxia can lead to 
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multiple layers of molecular changes and thus plays a pivotal role in 
cancer development.

Hypoxia is a major contributor to resistance to anticancer thera-
pies, including chemotherapy, radiation therapy, targeted therapy 
and immunotherapy, thereby making hypoxia-targeted therapies 
attractive15. Severe hypoxia can induce resistance to chemotherapy 
in cervical tumours16, and blocking HIF activity in breast cancer can 
increase the effect of chemotherapy treatment17. Hypoxic tumours 
have not responded well to radiation therapy in head and neck 
cancer18. Hypoxia can also cause resistance to gefitinib in both epi-
dermal growth factor receptor (EGFR) mutant and wild-type non-
small-cell lung cancer (NSCLC)19. Metformin-induced reduction 
of tumour hypoxia can potentiate the efficacy of immunotherapy 
with the PD-1 checkpoint inhibitor20. Thus, combining hypoxia-
targeted therapy with other anticancer therapies would improve 
treatment efficacy. Indeed, combining the HIF-1α inhibitor with 
a molecular-targeted agent (for example, T40214, a phosphory-
lated signal transducer and activator of transcription 3 inhibitor)21 
or with a chemotherapeutic agent (for example, cisplatin)22 has 
demonstrated greater clinical efficacy than either therapy alone. 
Strikingly, changes in hypoxic cells can also result in sensitivity to 
specific therapies15. For example, some tumours appear to be more 
sensitive to the poly(ADP-ribose) polymerase (PARP) inhibitors, 
veliparib and olaparib, under hypoxic conditions23,24. Patients with 
kidney cancers who had high levels of HIF-1α or HIF-2α responded 
better to sunitinib25. These studies suggest that the contribution of 
hypoxia status in cancer treatment is complex. Unfortunately, the 
results of hypoxia-targeted therapy trials, which have included evo-
fosfamide and tarloxotinib bromide in lung cancer26, 1-methylpro-
pyl 2-imidazolyl disulfide in pancreatic cancer27 and tirapazamine 
and nitroglycerin in lung cancer28,29, have been disappointing. There 
is still a lack of predictive therapeutic biomarkers to make hypoxia-
targeted therapy part of standard treatments26. The availability of 
genomic, epigenomic, transcriptomic and proteomic profiles across 
a broad range of cancer types from the TCGA project30,31 provides 
an unprecedented opportunity to explore hypoxia-associated 
molecular signatures in great depth.

Results
Rigorous classification of hypoxia status by an established gene 
expression signature. To classify the hypoxia status of tumour 
samples, we focused on a 15-gene expression signature6,7,32 that was 
shown to be the best performer in a recent comprehensive study 
assessing the robustness of different hypoxia signatures5. We per-
formed multiple analyses to validate its performance and assess the 
robustness of this hypoxia signature. First, we collected ten inde-
pendent gene expression datasets of cancer cell lines and tumour 
fragments of multiple cancer types under hypoxic and normoxic 
conditions (Supplementary Table 1). We calculated a hypoxia 
score for each sample based on this 15-gene signature. Indeed, in 
all cases, cells under the hypoxic conditions showed significantly 
higher hypoxia scores than those under the normoxic conditions 
(Fig. 1a–k). Second, the score for this signature highly correlated 
with the hypoxia scores based on the other two hypoxia signatures 
(the Winter33 and Hu34 signatures; Fig. 1l). The observed consis-
tency suggests that the 15-gene signature is robust and that different 
classifiers would lead to similar groups. These results demonstrate 
the robustness of the 15-gene signature to define hypoxia status in 
different cancer types.

To classify the hypoxia status of tumour samples, we analysed 
24 TCGA cancer types with a sample size ≥ 100 (ref. 30). We fur-
ther excluded kidney renal clear cell carcinoma (KIRC) and colon 
adenocarcinoma (COAD) samples with relatively high mutation 
frequency in von Hippel–Lindau tumour suppressor (VHL; ≥5%), 
which directly regulates HIF-1α to induce pseudohypoxia35. In 
each cancer type, we classified samples into hypoxia score-high, 

hypoxia score-low and hypoxia score-intermediate groups based 
on the unsupervised clustering pattern of the 15 genes (Fig. 2a 
and Supplementary Fig. 1; see Methods). In the 21 cancer types 
surveyed, both hypoxia score-high and hypoxia score-low groups 
contained ≥ 30 samples; we focused on these cancer types for the 
subsequent analysis. Indeed, the two sample groups showed distinct 
hypoxia score distributions (Supplementary Fig. 2a). To validate 
our messenger RNA (mRNA)-based sample classification, we fur-
ther performed the analysis using independent proteomic data over 
the same TCGA sample sets. Using mass spectrum data from the 
Clinical Proteomic Tumor Analysis Consortium36,37, we assessed the 
same hypoxia signature at the protein level and found that the signa-
ture was indeed enriched in the hypoxia score-high groups for both 
breast cancer (BRCA; normalized enrichment score (NES) = 1.92, 
false discovery rate (FDR) < 0.001) and ovarian serous cystadenocar-
cinoma (OV; NES = 2.15, FDR < 0.001; see Supplementary Fig. 2b).  
This is probably due to high correlations between mRNA and  
protein expression levels. Taken together, our analyses based on 
mRNA and protein expression data support the validation of our 
classification of hypoxia status across different cancer types.

The proportions of different hypoxia groups greatly varied 
among different cancer types (Fig. 2a). For example, in kidney 
renal papillary cell carcinoma (KIRP), 10.3% (30 out of 290) are 
hypoxia score-high samples versus 50.7% (147 out of 290) hypoxia 
score-low samples, while in thymoma (THYM), 48.3% (58 out of 
120) are hypoxia score-high samples versus 27.5% (33 out of 120) 
hypoxia score-low samples (Fig. 2a and Supplementary Table 2). 
These results suggest that patients with different cancer types may 
have distinct response rates to hypoxia-targeted therapy. For exam-
ple, for certain cancer types such as THYM, head and neck squa-
mous cell carcinoma (HNSC), and lung squamous cell carcinoma 
(LUSC), larger proportions of patients are more likely to benefit 
from hypoxia-targeted therapy. In contrast, only a small proportion 
of patients with KIRP and prostate adenocarcinoma (PRAD) may 
benefit from hypoxia-targeted therapy since most of those tumours 
are classified as hypoxia score-low.

To assess the relevance of our sample classification in a clinical 
context, we examined the correlations of our hypoxia status classi-
fication with the overall survival time of patients. We observed that 
hypoxia score-high tumours were consistently associated with worse 
prognosis across cancer types in univariate or multivariate survival 
analysis using the Cox proportional hazards model (Fig. 2b), such 
as HNSC (log-rank test, P = 2.9 × 10−4), and lung adenocarcinoma 
(LUAD; log-rank test, P = 5.1 × 10−4; Fig. 2c). These results suggest 
the potential prognostic power of our hypoxia status classification.

Global patterns of multidimensional hypoxia-associated molec-
ular signatures across cancer types. To identify the molecular 
signatures associated with hypoxia status in cancer, we employed 
a propensity score algorithm38 to reduce any potential confound-
ing effects (Supplementary Fig. 3 and Supplementary Table 3), for 
example, sex, age at diagnosis, tumour purity, race and tumour 
stage39,40 (see Methods). As outlined in Fig. 3a, we compared 
molecular features between the hypoxia score-high and score-low 
groups with balanced confounding factors. Molecular features of 
consideration included: mRNA expression (approximately 20,000 
genes); protein expression (approximately 200 proteins); miRNA 
expression (approximately 2,000 miRNAs); DNA methylation 
(approximately 16,000 protein-coding genes); highly mutated genes 
(genes with >5% mutation frequency in each cancer type); and sig-
nificant somatic copy number alterations (SCNAs) identified by 
GISTIC2.0 (ref. 41). We identified significantly differential features 
of these six types between the two hypoxia status groups (Fig. 3b 
and Supplementary Data 1; FDR < 0.05; see Methods).

The effects of hypoxia status on the molecular data for different  
cancer types varied significantly. For example, alterations of mRNA 
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expression ranged from 399 genes in OV to 4,795 genes in testicular 
germ cell tumours (TGCTs; Fig. 3b). Alterations of miRNA expression 
ranged from 2 in skin cutaneous melanoma (SKCM) to 213 in THYM. 
Stomach adenocarcinoma (STAD) showed the largest number of altera-
tions at the protein level, while THYM showed the largest number of 
alterations in DNA methylation and BRCA showed the largest num-
ber of SCNAs. The total number of hypoxia-associated features across 
multiple layers also varied. For example, STAD had many hypoxia-
associated features in six molecular layers, including 4,169 mRNAs, 186 
miRNAs, 91 proteins, 294 methylation probes, 1 gene mutation and 10 
SCNAs, while glioblastoma multiforme (GBM) had hypoxia-associated 
features in 629 mRNAs and 5 proteins. Furthermore, previous studies 
demonstrated the effects of hypoxia status on metabolomics42. Based on 
399 metabolites from 23 TCGA BRCA samples43, we observed that 86 
metabolites positively correlated with hypoxia score (rs > 0.3, P < 0.05; 
Supplementary Fig. 4a). We further identified 45 metabolites that were 
upregulated in 7 hypoxia score-high samples compared to 6 hypoxia 
score-low samples (two-sided Student’s t-test, P < 0.05; Supplementary 
Fig. 4b). These results provide an overview of the molecular differences 
associated with hypoxia status across tumour lineages.

To assess the potential effects of hypoxia-associated features on 
drug response, we focused on 1,060 genes with at least 1 type of 
hypoxia-associated molecular signature in at least 9 cancer types. 
We calculated Spearman’s rank correlations between the expres-
sion of these genes and drug sensitivity for 252 anticancer drugs 
from the Genomics of Drug Sensitivity in Cancer (GDSC)44 across 
1,074 cancer cell lines. These anticancer drugs target multiple bio-
logical processes, including the chromatin signature, cell cycle, 
metabolism, EGFR signalling and receptor tyrosine kinase (RTK) 
signalling pathways. We identified 143 hypoxia-associated genes 
that significantly correlated with the sensitivity of at least three anti-
cancer drugs (|rs| > 0.3, FDR < 0.05; Fig. 3c, Supplementary Fig. 5 
and Supplementary Data 2). For example, the protein level of tran-
scriptional coactivator YAP1 is upregulated in hypoxia score-high 
samples in nine cancer types; its mRNA expression is linked to drug 
resistance to 49 anticancer drugs (for example, navitoclax, rs = 0.52, 
FDR < 1.0 × 10−55) and linked to drug sensitivity to five anticancer 
drugs in (for example, docetaxel, rs = −0.42, FDR = 1.7 × 10−35). 
Dysregulation of the RTK signalling pathway is an established fea-
ture in multiple cancer types and RTK signalling can be stimulated  
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Fig. 3 | overview of the propensity score algorithm and the hypoxia-associated molecular patterns across cancer types. a, Overview of the propensity 
score algorithm used to balance clinical features. b, Relative abundance and numbers of multidimensional hypoxia-associated molecular signatures 
identified by the propensity score algorithm. The percentage of significant features over the total features for each molecular signature in each cancer 
type is displayed as a solid circle; the number of significant features for the corresponding molecular signature is displayed as a bar plot. c, Association 
between mRNA expression levels of hypoxia-associated genes and drug sensitivity across 1,074 cancer cell lines by Spearman’s rank correlation. The dark 
green dots along the x axis indicate hypoxia-related genes; the orange dots denote drugs that are clustered by different signalling pathways. The size of the 
orange dot indicates the number of genes correlated with drug sensitivity (|rs| > 0.3, FDR < 0.05); the bar plot shows the number of drugs correlated with 
the genes. The pink and cyan lines indicate positive and negative correlation, respectively. JNK, Jun N-terminal kinase.
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by hypoxia45. In our analysis, 19 drugs that targeted the genes 
involved in the RTK signalling pathway highly correlated with 
hypoxia-associated genes (Supplementary Fig. 5a). Taken together, 
our results across cancer cell lines show extensive interactions 
between hypoxia-associated molecular features and drug response, 
highlighting the potential of combining anti-hypoxia drugs with 
other cancer therapies.

Hypoxia effects on mRNA, miRNA, protein expression and 
DNA methylation. We observed significant alterations of mRNA 
expression across different cancer types. For example, several genes 
involved in invasion and metastasis were significantly biased in 
hypoxia score-high samples in TGCT, including neural cell adhesion 
molecule L1 (L1CAM; fold change = 4.5, FDR = 8.4 × 10−28), lysyl 
oxidase homologue 4 (LOX4; fold change = 2.2, FDR = 1.6 × 10−5), 
lysyl oxidase (LOX, fold change = 2.3, FDR = 1.5 × 10−7) and tyro-
sine-protein kinase MET (fold change = 2.6, FDR = 1.6 × 10−9). 
Genes involved in glycolysis, the p53 pathway, apoptosis, epithe-
lial mesenchymal transition and angiogenesis were more likely to 
be upregulated in hypoxia score-high samples across cancer types 
(Supplementary Fig. 6a). These hypoxia-associated mRNA expres-
sion patterns are partially due to alterations of DNA methylation 
(Supplementary Fig. 6b). Indeed, the hypoxia-biased mRNA expres-
sion level of a gene tended to be the opposite of its DNA methylation 
level (Supplementary Fig. 6c), which is consistent with the view that 
hypermethylation generally leads to gene silencing, while hypo-
methylation results in gene overexpression46.

To further investigate the effects of hypoxia on miRNA expres-
sion, we identified miRNAs that were differentially expressed 
between hypoxia score-high and hypoxia score-low samples. The 
hypoxia-induced miRNA, miR-210-3p13, was upregulated in hypoxia 
score-high tumours in 16 cancer types (Fig. 4a and Supplementary 
Fig. 6d). In contrast, hypoxia-inhibited miR-139-3p47 was downreg-
ulated in hypoxia score-high samples in four cancer types. Several 
target genes of miR-139-3p were upregulated, including: angiopoi-
etin 1 (ANGPT1), which is associated with the promotion of vas-
cularization; cathepsin C (CTSC), MET proto-oncogene, receptor 
tyrosine kinase (MET) and plasminogen activator, urokinase recep-
tor (PLAUR), which are associated with invasion and metastasis; 
pyruvate kinase M1/2 (PKM2), which is related to metabolic repro-
gramming; and SRY-box 2 (SOX2) and WW domain containing 
transcription regulator 1 (WWTR1), which maintain cancer cell 
stemness. We further examined the targeted genes of 87 miRNAs 
that were also altered in at least three cancer types. We identified 
3,793 miRNA-targeted genes with significantly opposing altera-
tions. Genes targeted by these miRNAs are significantly enriched in 
cancer-related pathways, including the PI3K/Akt, Hippo, Ras, p53, 
EGFR, and HIF-1 signalling pathways (Fig. 4a). For example, miR-
455-3p, miR-205-5p and 11 other miRNAs were significantly upreg-
ulated. Their target tumour suppressor gene, tumour protein p53 
inducible nuclear protein 1 (TP53INP1), was significantly down-
regulated in hypoxia score-high samples in oesophageal carcinoma 
(ESCA), pancreatic adenocarcinoma (PAAD), STAD and TGCT.  
In contrast, miRNA-30a-5p/miRNA-30a-3p was significantly 
down regulated, and the target gene MET, a marker for invasion and 
metastasis and the therapeutic target of crizotinib in lung cancer48, 
was upregulated in hypoxia score-high samples in GBM, low-grade 
glioma (LGG) and TGCT. Furthermore, hypoxia-associated miR-
NAs were highly associated with drug response in patients repre-
sented in the TCGA data (Supplementary Fig. 6d, upper panel). For 
example, the expression of hypoxia score-high-biased miR-210-3p 
highly correlated with the response to at least 1 drug in 13 cancer 
types (Supplementary Fig. 6e). In liver hepatocellular carcinoma 
(LIHC), this miR-210-3p negatively correlated (drug-sensitive) with 
the response to the serine-protein kinase ATM inhibitor KU-55933 
(rs = −0.44, FDR = 4.2 × 10−5; Supplementary Fig. 6f), an inhibitor 

of ATM in the genome integrity pathway, while the expression of 
miR-210-3p positively correlated (drug-resistant) with vinorelbine 
(rs = 0.48, FDR = 1.9 × 10−6; Supplementary Fig. 6f), a microtubule 
destabilizer.

Using functional proteomic data of reverse-phase protein arrays 
that cover key cancer-related total and phosphorylated proteins, we 
identified hypoxia-associated protein alterations in cancer signalling 
pathways (Fig. 4b). For example, fibronectin, which positively regu-
lates epithelial mesenchymal transition49, was significantly upregu-
lated in hypoxia score-high samples in seven cancer types. PTEN, 
which negatively regulates the PI3K/Akt signalling pathway50, was 
significantly downregulated in hypoxia score-high samples in five 
cancer types. We observed that the anti-apoptosis protein, apop-
tosis regulator BCL2, was significantly downregulated in hypoxia 
score-high samples in seven cancer types, while the pro-apoptosis 
protein, caspase-7, was significantly upregulated in four cancer 
types. Furthermore, hypoxia-associated proteins correlated with the 
response to anticancer drugs (Fig. 4b). PTEN negatively correlated 
(drug-sensitive) with the response to dasatinib (LGG, rs = −0.47, 
FDR = 5.8 × 10−5), which targets SRC and many other kinases, but 
positively correlated (drug-resistant) with pictilisib (LGG, rs = 0.42, 
FDR = 1.6 × 10−3), a PI3K inhibitor (Supplementary Fig. 6g).

Integrative analysis of hypoxia-associated molecular features on 
drug response. To further understand the effects of the hypoxia 
microenvironment on drug response, we performed an integra-
tive analysis to assess the associations between multidimensional 
hypoxia-associated molecular features and the response to anti-
cancer drugs in TCGA patients (see Methods). Taking ESCA as an 
example, we identified 61 genes that were overexpressed in hypoxia 
score-high samples. These genes are hypomethylated and regulated 
by nine miRNAs. The expression levels of these genes negatively 
correlated (drug-sensitive) with the response to anticancer drugs, 
while their DNA methylation level and targeting miRNAs positively 
correlated (drug-resistant) with the same anticancer drugs. These 
drugs target important pathways, including the PI3K and ERK/mito-
gen-activated protein kinase (MAPK) signalling pathways (Fig. 5a). 
For example, EGFR was upregulated in hypoxia score-high tumours 
(fold change = 2.65, FDR = 3.2 × 10−5; Fig. 5b) in ESCA, and EGFR 
expression negatively correlated (drug-sensitive) with the response 
to the RTK signalling pathway inhibitor crizotinib (rs = −0.28, 
FDR = 0.02), the farnesyltransferase alpha subunit inhibitor FTI-277 
(rs = −0.29, FDR = 0.025), the Akt inhibitor A-443654 (rs = −0.26, 
FDR = 0.015), serine/threonine-protein kinase B-raf (BRAF) inhib-
itor PLX4720 (rs = −0.31, FDR = 2.0 × 10−3) and the microtubule 
destabilizers vinorelbine (rs = −0.30, FDR = 7.2 × 10−3) and vinblas-
tine (rs = −0.32, FDR = 1.4 × 10−3). EGFR showed hypomethylation 
in the promoter region (difference = −0.24, FDR = 4.5 × 10−8); the 
methylation level of EGFR positively correlated (drug-resistant) 
with the response to A-443654 (rs = 0.34, FDR = 5.5 × 10−4), PLX4720 
(rs = 0.47, FDR = 5.3 × 10−7), vinblastine (rs = 0.38, FDR = 5.2 × 10−5) 
and vinorelbine (rs = 0.32, FDR = 2.3 × 10−3). Meanwhile, four 
miRNAs that target EGFR showed significant downregulation 
in hypoxia score-high tumours (miR-375: fold change = −13.5, 
FDR = 4.4 × 10−9; miR-153-5p: fold change = −2.03, FDR = 5.2 × 10−4; 
miR-200a-3p: fold change = −2.4, FDR = 4.6 × 10−3; miR-146a-5p: 
fold change = −2.5, FDR = 9.8 × 10−7). These miRNAs positively 
correlated (drug-resistant) with the corresponding drugs that have 
negative correlations with EGFR expression. For example, miR-375  
positively correlated (drug-resistant) with A-443654 (rs = 0.37, 
FDR = 9.0 × 10−4), PLX4720 (rs = 0.39, FDR = 9.4 × 10−5) and vin-
blastine (rs = 0.35, FDR = 8.5 × 10−4); miR-200a-3p positively cor-
related (drug-resistant) with A-443654 (rs = 0.35, FDR = 1.3 × 10−4), 
PLX4720 (rs = 0.29, FDR = 6.1 × 10−3) and vinblastine (rs = 0.44, 
FDR = 1.2 × 10−5). For 29 genes overexpressed in hypoxia score-low 
samples, we also observed a similar regulatory network in that the 
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Fig. 4 | Hypoxia-associated miRNA and protein signatures. a, Hypoxia-associated, miRNA-regulated mRNA expression in multiple key signalling pathways. 
Number of cancer types with miRNA alterations in hypoxia score-high tumours (outer loop). ‘miR’ is omitted from the name of the miRNA. Genes are marked 
as magenta dots and organized in pathways (middle loop). The gold bar denotes enrichment of miRNA-targeted genes in the signalling pathways (inner 
loop); Fisher’s exact test, with P < 0.05 as statistically significant. The grey lines link the miRNAs and their targeted genes. b, Alterations of protein or protein 
phosphorylation in hypoxia score-high samples in at least three cancer types. The upper panel bars display the accumulated number of drugs positively (dark 
magenta) or negatively (dark green) correlated with hypoxia-associated proteins in different cancer types. The correlation was performed by Spearman’s rank 
correlation. Statistical analysis was performed using a propensity score algorithm to identify hypoxia-associated miRNAs and proteins; details are given in the 
Methods. AMPK, 5′-AMP-activated protein kinase; FoxO, forkhead box, class O; Rap1, Ras-related protein 1; TGF-β, transforming growth factor-beta.
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downregulation of gene expression was consistent with the hyper-
methylation of promoter regions and the upregulation of miR-
NAs, and highly correlated with the response to anticancer drugs 
(Supplementary Fig. 7a). Furthermore, we observed significant 

correlations between protein expression and drug response, which 
is consistent with the correlations between mRNA expression and 
drug response (Supplementary Fig. 7b). Taken together, our results 
suggest that regulatory networks are affected in complicated ways 
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by the hypoxia microenvironment at multiple layers; these regula-
tory networks may largely affect drug response.

Hypoxia-associated somatic mutations and copy number altera-
tions. To reveal the global pattern of hypoxia-associated mutations, 
we examined mutation frequency across multiple cancer types 
and identified hypoxia-associated mutated genes ranging from 
1 in THYM to 14 in LUAD (Fig. 6a and Supplementary Fig. 8a).  
For example, tumour protein p53 (TP53) had significantly  
higher mutation frequency in hypoxia score-high tumours across 
multiple cancer types; 62.3% (137 out of 220) and 73.5% (83 out of 
113) of samples had TP53 mutations in hypoxia score-high BRCA 

and LUAD, while only 8.0% (19 out of 236) and 34.6% (44 out of 
127) of samples had TP53 mutations in hypoxia score-low BRCA 
and LUAD, respectively (Fig. 6b). This is consistent with previous 
reports that mutations of p53 contribute to diminished oxygen con-
sumption51. We further observed that TP53 mutations were asso-
ciated with reduced drug response to the BRAF inhibitor, AZ-628 
(FDR = 5.0 × 10−4; Fig. 6c), and increased response to the hypoxia-
inducible factor prolyl hydroxylase inhibitor dimethyloxalylglycine 
(FDR = 8.9 × 10−3; Fig. 6c). In contrast, isocitrate dehydrogenase 
(NADP+) 1, cytosolic (IDH1) has 95.5% (63 out of 66) mutation  
frequency in hypoxia score-low samples, whereas it only has 38.1% 
(32 out of 84) in hypoxia score-high samples in LGG. Mutation of  
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IDH1 promotes the degradation of HIF-1α52, thus reducing the 
hypoxic effects in tumours and leading to better patient survival 
times (log-rank test, P = 2.6 × 10−13; Supplementary Fig. 8b).

Hypoxia can induce transient site-specific copy number gains 
in tumour cells8. We comprehensively analysed hypoxia-associated 
SCNAs across different cancer types and identified significantly 
hypoxia-associated SCNAs in 13 cancer types, ranging from 2 in 
THYM to 29 in BRCA (Figs. 3 and 6d; Supplementary Data 1). 
Notably, these hypoxia-associated SCNAs harbour several clinically 
actionable genes (Fig. 6d). In LGG, the 7q32.3 amplicon, which har-
bours BRAF and MET and leads to gefitinib resistance53, occurred 
more frequently in hypoxia score-high samples (FDR = 0.045;  
Fig. 6d). The 7p11.2 amplicon, which harbours EGFR, occurred more 
frequently in hypoxia score-high LGG samples (FDR = 6.5 × 10−5; 
Fig. 6e). In particular, we observed that 7p11.2-amplified LGG 
tumours were more sensitive to erlotinib (two-sided Student’s t-test, 
FDR = 3.1 × 10−4), an anti-EGFR drug (Fig. 6e), which is consis-
tent with a previous study54. Deletion of 2q37.3 (FDR = 4.2 × 10−3) 
occurred more frequently in hypoxia score-high samples. This 
region harbours programmed cell death protein 1 (PDCD1), which 
is the target of pembrolizumab and nivolumab for cancer immuno-
therapy55. In addition, several other SCNAs occur more frequently 
in hypoxia score-low samples. For example, 7q31.2 amplification, 
which harbours MET, occurred more frequently in hypoxia score-
low KIRP (FDR = 5.3 × 10−3). Deletion of 9p23, which harbours 
cyclin-dependent kinase inhibitor 2A and cyclin-dependent kinase 
4 inhibitor B, occurred more frequently in hypoxia score-low BRCA 
(FDR = 0.014). These results suggest that the hypoxia microenvi-
ronment could affect tumour response to drugs, including immu-
notherapy drugs, by altering the somatic copy numbers.

Hypoxia-associated molecular signatures in clinically action-
able genes and their therapeutic liability. To characterize the 
clinically applicable therapeutic implications of hypoxia-associ-
ated molecular signatures, we examined the molecular alterations 
between hypoxia score-high and score-low samples across five 
molecular dimensions of 121 clinically actionable genes targeted 
by 89 Food and Drug Administration (FDA)-approved drugs56 
(Fig. 7a and Supplementary Fig. 9a). We identified hypoxia-asso-
ciated features, ranging from 6 features in sarcoma (SARC) to 93 
in TGCT (Supplementary Fig. 9b). For example, EGFR was biased 
in hypoxia score-high samples with overexpression of total proteins 
or phosphorylated proteins in 8 cancer types (for example, ESCA, 
difference = 0.54, FDR = 5.5 × 10−5; bladder carcinoma (BLCA), dif-
ference = 0.42, FDR = 7.1 × 10−3), amplification in two cancer types 
(STAD, FDR = 0.022; LGG, FDR = 6.5 × 10−5) and hypomethylation 
in two cancer types (cervical squamous cell carcinoma and endocer-
vical adenocarcinoma (CESC), difference = −0.29, FDR = 1.8 × 10−8; 
ESCA, difference = −0.24, FDR = 4.5 × 10−8). Strikingly, 90.9% (110 
out of 121) of clinically actionable genes were associated with at least 
1 type of hypoxia-associated molecular signature in at least 1 can-
cer type (Fig. 7a). Interestingly, several immunotherapeutic targets 
were also affected by hypoxia. PDCD1 (PD-1) was highly expressed 
in hypoxia score-low samples in LUSC, suggesting that PDCD1 
inhibitors, such as nivolumab and pembrolizumab57,58, could have 
better efficacy in hypoxia score-low tumours. We observed many 
more such incidences in hypoxia score-low samples (453) than in 
hypoxia score-high samples (237), which may partially explain why 
drugs are generally more effective in hypoxia score-low tumours. 
Patients with tumours having greater incidence of hypoxia score-
high groups may benefit from combination treatment with hypoxia-
targeted therapy.

We further evaluated the hypoxia effects on drug response in 
patient samples from imputed drug data59 (Supplementary Data 3).  
Our comprehensive analysis of the hypoxia effects on clinically 
actionable genes could be linked to hypoxia effects on drug response 

directly60 (Fig. 7a). For 21 FDA-approved anticancer drugs available 
in the GDSC database, we showed alterations of drug responses 
across multiple cancer types. Furthermore, we observed that the 
response to paclitaxel positively correlated (drug-resistant) with 
hypoxia status in CESC (rs = 0.40, FDR = 6.2 × 10−4; Supplementary 
Fig. 10a,b), which is consistent with the resistance reported in a  
cervical cancer cell line61. We also observed that the response to Akt 
inhibitor VIII negatively correlated (drug-sensitive) with hypoxia 
status in LUAD (rs = −0.25, FDR = 0.02; Supplementary Fig. 10a,b), 
which is consistent with the sensitivity reported for Akt inhibitor  
VIII in lung cancer cell lines62. These observations suggest that our 
analysis is reliable and provides meaningful clinical insights. Tumours 
under hypoxic conditions are resistant to many drugs, including 
erlotinib in LIHC (rs = 0.42, FDR = 1.5 × 10−4) and lapatinib in KIRP 
(rs = 0.49, FDR = 7.1 × 10−6), suggesting a potential clinical benefit of 
combining the cancer treatment with hypoxia-targeted therapy for 
patients with LIHC or KIRP. Strikingly, some tumours may become 
sensitive to several drugs under hypoxic conditions, such as thap-
sigargin in PAAD (rs = −0.66, FDR < 1.0 × 10−55) and imatinib in 
HNSC (rs = −0.31, FDR = 4.3 × 10−4), which suggests that patients 
with these cancers may not benefit from hypoxia-targeted therapy.

To directly validate our findings on drug response, we performed 
drug sensitivity experiments on selected drugs under a hypoxic con-
dition (1% O2) and a normoxic condition (21% O2) in two lung can-
cer cell lines (A549 and H1299). Consistent with our computational 
prediction, our experimental results using the drugs camptothecin 
and bexarotene showed greater drug resistance under the hypoxic 
condition, whereas using the drugs Akt inhibitor VIII and PHA-
665752 showed greater sensitivity under the hypoxic condition  
for both A549 and H1299 cell lines (Fig. 7b and Supplementary  
Fig. 10c). Furthermore, we observed that patients with advanced 
NSCLC with high hypoxia scores were associated with worse prog-
nosis after sorafenib treatment (log-rank test, P = 8.6 × 10−3; Supple-
mentary Fig. 10d) in a clinical trial63,64 (trial no. NCT00411671, 
BATTLE Program: Sorafenib in Patients with NSCLC). Taken 
together, these results show that the hypoxia microenviron-
ment largely affects tumour response to anticancer drugs; thus, 
the tumour hypoxia microenvironment should be considered to 
improve the efficacy of cancer therapy.

Discussion
Hypoxia induces a series of biological changes that contribute to 
tumourigenesis and are associated with resistance to chemotherapy, 
radiation therapy, drug therapy and immunotherapy. Therefore, 
understanding the effect of hypoxia on molecular signatures is 
crucial to improving the outcomes of cancer therapy. The degree 
of tumour hypoxia varies across cancer types. In this study, we 
first demonstrated the robustness of a 15-gene signature to define 
hypoxia status across multiple cancer types. Considering that  
the hypoxia gene signature is a relative signature, we then classi-
fied tumour samples into hypoxia score-high, score-low and score-
intermediate groups based on this signature in each cancer type. 
Focusing on the comparison between hypoxia score-high and 
score-low groups in each cancer type, we adopted a well-controlled 
statistical approach—the propensity score algorithm—to control 
potential confounders, including sex, ethnicity, age at diagno-
sis, smoking status, tumour stage, histological type and tumour 
purity. In this way, we identified hypoxia-biased molecular signa-
tures that are largely independent from the potential confounders 
across 21 cancer types. Our study provides a comprehensive view 
of hypoxia-associated molecular signatures, including mRNA, 
miRNA and protein expression, DNA methylation, somatic muta-
tions and SCNAs. These molecular alterations that are driven by the 
hypoxia microenvironment will probably impact a broad range of 
biological processes, including metabolic reprogramming, angio-
genesis, apoptosis and multiple signalling pathways. Our integrative  
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Fig. 7 | Hypoxia-associated molecular signatures in clinically actionable genes and effects on the response to individual drugs. a, Association between 
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analysis further suggests that the hypoxia microenvironment can 
impact tumour molecular signatures at multi-omic levels through 
gene regulatory networks.

One striking observation is that 110 out of 121 (90.9%) clini-
cally actionable genes are biased in at least one layer of molecular 
signatures across multiple cancer types. These clinically actionable 
genes are targets of FDA-approved cancer drugs, including drugs for 
immunotherapy, chemotherapy, hormone therapy and targeted ther-
apy. Our comprehensive analysis demonstrates that many clinically 
actionable genes are biased towards hypoxia score-high samples and 
confirms that hypoxia-targeted therapy is an attractive cancer ther-
apy, probably as a component of combination therapy targeting clin-
ically actionable genes. Unfortunately, the results from several trials 
of hypoxia-targeted therapy have been disappointing17,27–29. This is 
probably because of our limited understanding of how molecular 
signatures are affected by the hypoxia microenvironment and our 
lack of rational combination therapies. Most clinical trials focus on 
overcoming the drug-resistant effects of hypoxia, while hypoxia may 
also result in increasing drug sensitivity in some patients15. These 
patients may not receive clinical benefit from hypoxia-targeted 
therapy and/or combination treatments. Thus, our systematic clas-
sification of hypoxia status and the identification of hypoxia-biased 
signatures have crucial clinical implications; this analysis can help to 
evaluate the clinical benefit of hypoxia-targeted therapy.

Our study has several limitations. First, large-scale tumour sam-
ples with multiple omic datasets (for example, TCGA) generally  
do not provide direct values for hypoxia status, for example, O2  
levels. Therefore, we had to indirectly infer the relative hypoxia 
status through the hypoxia gene signature in each cancer type, as 
described in previous studies6,7,32. We validated the performance 
of this hypoxia gene signature using independent datasets where 
hypoxia status is known. Second, large-scale datasets often provide 
the bulk of information across different cell types within a sample. 
With advancements in single-cell profiling technology, future efforts 
should take tumour heterogeneity into consideration. Third, our 
analyses provide a comprehensive catalogue of molecular alterations 
associated with hypoxia. Despite the causal effects demonstrated by 
many previous studies and a few cases within our experiments, fur-
ther efforts are necessary to identify which alterations are directly 
affected by hypoxia. Finally, most clinical trials do not have the 
information of the hypoxia status of patients’ tumours. Thus, we 
have limited data to further validate our observations in more rig-
orous clinical settings. Nonetheless, our study calls attention to the 
need to include tumour hypoxia status in future clinical studies.

Methods
Multi-omic data and clinical data for TCGA samples. Molecular data, including 
mRNA expression, miRNA expression, protein expression, DNA methylation, 
somatic mutations, SCNAs and clinical data, including tumour stage, histology 
subtype, sex and overall survival times, across 33 cancer types were downloaded 
from the TCGA data portal (https://portal.gdc.cancer.gov/). One gene may have 
multiple methylation probes; we selected the probe that most negatively correlated 
with the expression of the corresponding gene39. We downloaded tumour purity 
data from the Tumor IMmune Estimation Resource65 (http://cistrome.org/TIMER/
download.html). If not available, we obtained TCGA tumour purity data from 
a previous study66 (https://doi.org/10.5281/zenodo.253193) to complement our 
data. Normalized metabolite levels of the 23 TCGA breast cancer samples were 
downloaded from a previous study43. We identified different metabolites using a 
two-sided Student’s t-test (P < 0.05).

Classification of hypoxia status across different cancer types. We selected a 15-
gene expression signature (ACOT7, ADM, ALDOA, CDKN3, ENO1, LDHA, MIF, 
MRPS17, NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6 and VEGFA)6 that 
has been shown to perform the best when classifying hypoxia status. This gene 
signature was defined based on gene function and analysis of in vivo co-expression 
patterns and was highly enriched for hypoxia-regulated pathways6. The hypoxia 
score for each tumour sample or cancer cell line was calculated by using gene set 
variation analysis67 based on 15 mRNA-based hypoxia signatures. The Student’s 
t-test was used to assess the statistical difference between hypoxic and normoxic 
conditions in different cancer cell lines. Spearman’s rank correlation was used  

to assess the correlation among hypoxia scores based on different gene signatures. 
We kept 24 cancer types with a sample size ≥ 100, and filtered KIRC and COAD 
samples with relatively high mutation frequency in VHL (≥5%) to avoid the 
effects of pseudohypoxia in the tumours. To classify hypoxia status, we employed 
unsupervised hierarchical clustering7 to cluster samples in each cancer type based 
on the 15 mRNA-based hypoxia signatures. The top three sub-clusters were 
assigned as hypoxia score-high, score-intermediate and score-low groups in  
each cancer type. We included 21 cancer types with ≥ 30 samples in both hypoxia 
score-high and hypoxia score-low groups for further analysis (Supplementary  
Fig. 2 and Supplementary Table 2). To avoid the confounding factors from the 
potential mixture, we excluded samples from the hypoxia score-intermediate  
group from further analysis.

Identification of alterations between hypoxia score-high and hypoxia  
score-low tumours. To balance the potentially confounding factors (such as 
tumour stage, histology subtype and the other factors listed previously) between 
hypoxia score-high and hypoxia score-low groups, we performed the propensity 
score algorithm39,40. Briefly, we first calculated the propensity score using logistic 
regression with hypoxia status as a variable, and performed matching weights38 
to reweight samples based on their propensity scores. We considered the clinical 
confounding factors to be balanced between weighted hypoxia score-high 
and score-low samples if the standardized difference between their weighted 
propensity scores was < 10%. We then compared the molecular data between 
these two balanced groups and calculated the P values and FDRs. To eliminate 
random noise in signal detection, we used permutation tests by randomly 
selecting the hypoxia score-high or score-low labels of patient samples and 
repeated these steps 100 times. We calculated the ratio of the appearance of 
a significant feature set in these permuted datasets and retained the feature 
sets with a permutation test of P < 0.05 for further analysis. The statistical 
significance for each molecular data type in each cancer type is as follows: 
mRNA and miRNA expression: fold change > 2, FDR < 0.05; total protein 
or phosphorylated protein: difference > 0.2, FDR < 0.05; DNA methylation: 
difference > 0.2, FDR < 0.05; somatic mutation and SCNA: FDR < 0.05.

Analysis of clinically actionable genes and drug response. We downloaded 
clinically actionable genes identified as targets of FDA-approved therapeutic 
drugs or biomarkers from a previous study56 (https://software.broadinstitute.
org/cancer/cga/target). We collected the therapeutic drugs and their prescription 
information from the FDA Drug Approvals and Databases site (https://www.fda.
gov/Drugs/InformationOnDrugs/)60. We retained clinically actionable genes with 
the corresponding drugs as therapeutic targets for further analysis. To assess drug 
response in cancer cell lines, we downloaded the drug sensitivity area under the 
dose–response curve (AUC) and gene expression profiles for cancer cell lines 
from the GDSC (http://www.cancerrxgene.org/downloads)44. We calculated the 
Spearman’s rank correlation between gene expression and the AUCs from the 
GDSC68 and used Spearman’s rank correlation coefficient |rs| > 0.3 and FDR < 0.05 
for statistical significance.

To assess the drug response in TCGA patient samples, we downloaded the 
imputed tumour response to 138 anticancer drugs in cancer patients from a 
previous study59. We calculated the correlation between imputed drug response 
and hypoxia-associated mRNA expression, miRNA expression, protein expression 
and DNA methylation using Spearman’s rank correlation, considering |rs| > 0.2 
and FDR < 0.05 for statistical significance. To compare the imputed drug response 
between groups with or without mutations and SCNAs, we used the Student’s t-test 
and considered FDR < 0.05 as statistically significant.

Cell culture and reagents. A549 and H1299 were purchased from the American 
Type Culture Collection and Characterized Cell Line Core Facility (MD Anderson 
Cancer Center) and were cultured in DMEM supplemented with 10% fetal bovine 
serum (Gibco) at 37 °C in 5% CO2 (v/v). Akt inhibitor VIII was purchased from 
Cayman Chemical (catalogue no. 612847-09-3); PHA-665752 (catalogue no. 
S1070), camptothecin (catalogue no. S1288) and bexarotene (catalogue no. S2098) 
were purchased from Selleck Chemicals.

Cell proliferation assay. The effect of the drug on cell proliferation was 
determined using a CellTiter 96 AQueous One Solution Cell Proliferation Assay 
Kit (Promega) according to the manufacturer’s instructions. Cells were plated in 
96-well plates (4 replicates per condition). The following day, cells were treated 
with a range of drug concentrations prepared by serial dilution. Plates were 
incubated under normoxic conditions (37 °C, 5% CO2, 21% O2) or under hypoxic 
conditions (37 °C, 5% CO2, 1% O2). After 3 d of treatment, assays were performed 
by adding 20 µl of the CellTiter 96 AQueous One Solution Reagent directly to the 
culture wells, incubating for 1 h and then recording absorbance at 490 nm with 
an EnVision Plate Reader (PerkinElmer). Relative growth was normalized to the 
untreated samples in each group. Drug response data analysis was performed with 
Prism version 7.00 (GraphPad software).

Analysis of clinical trial data. We examined clinical trials with data of related 
drugs and cancer types in our study from ClinicalTrials.gov (https://clinicaltrials.
gov/). We identified only one clinical trial (NCT00411671, BATTLE Program: 
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Sorafenib in Patients With NSCLC) that had both detailed clinical outcomes 
and mRNA expression data (NCBI GEO accession no. GSE33072). Patients who 
received sorafenib treatment were classified into two groups based on the hypoxia 
scores of their tumour samples. We used a log-rank test to assess the difference in 
the overall survival times between the two groups.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
Codes were implemented in R and have been deposited in GitHub: https://github.
com/youqiongye/HAMFA.

Data availability
All data supporting the findings of the current study are listed in Supplementary 
Tables 1–3 and Supplementary Data 1–3.
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