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Highlights
Single-cell profiling technologies provide
anunprecedented resolution in investigat-
ing the coordinated compositional and
state alterations of immune and stromal
components in response to cancer thera-
pies on the tumor microenvironment, en-
abling a holistic and more nuanced
understanding of treatment response
and resistance.

Multimodal characterization of the het-
erogeneity of baseline and perturbed
adaptive immune populations, espe-
cially T cells, offers a foundation for the
discovery of the most actionable thera-
Cancer treatment strategies have evolved significantly over the years, with che-
motherapy, targeted therapy, and immunotherapy as major pillars. Each modal-
ity leads to unique treatment outcomes by interacting with the tumor
microenvironment (TME), which imposes a fundamental selective pressure on
cancer progression. The advent of single-cell profiling technologies has revolu-
tionized our understanding of the intricate and heterogeneous nature of the
TME at an unprecedented resolution. This review delves into the commonalities
and differential manifestations of how cancer therapies reshape the microenvi-
ronment in diverse cancer types. We highlight how groundbreaking immune
checkpoint blockade (ICB) strategies alone or in combination with tumor-
targeting treatments are endowed with comprehensive mechanistic insights
when decoded at the single-cell level, aiming to drive forward future research
directions on personalized treatments.
peutic targets.

Key players in the tumor microenviron-
ment (TME) outside of the adaptive im-
mune populations, including cancer-
associated fibroblasts andmacrophages,
have emerged as effective mediators of
cancer therapeutic response or resis-
tance, frequently dependent on the
crosstalk with T and B lymphocytes.

Tumor-targeting treatments demon-
strate widespread TME-modulating
effects, often indirectly through con-
sequent immunostimulating signaling
elicited by remodeled tumor cells, jus-
tifying a combinatorial administration
with immunotherapies.
Distinct modes of action of established and emerging cancer therapies
Chemotherapy, targeted therapy, and immunotherapy are three major pillars but distinct modal-
ities of cancer treatment that have differentmodes of action (MoA) (see Glossary). Chemother-
apy exerts cytotoxic effects on cancer cells by interfering with their DNA synthesis, replication, or
repair. It achieves this by using agents that can alkylate DNA, inhibit DNA or RNA synthesis, or
disrupt microtubule function. Some examples of chemotherapy are alkylating agents
(e.g., cyclophosphamide and cisplatin), antimetabolites (e.g., methotrexate and 5-fluorouracil),
and plant alkaloids (e.g., vincristine and paclitaxel) [1]i. Chemotherapy is a standard first-line
treatment for many cancer types and can be used alone or in combination with other therapies.
Targeted therapy inhibits oncogenic signaling pathways that drive cancer cell proliferation,
survival, and invasion. It achieves this by using small-molecule inhibitors or monoclonal antibodies
that can selectively bind to and interfere with the function of specific molecular targets. Some ex-
amples of targeted therapy are small-molecule drugs (e.g., imatinib and gefitinib) and monoclonal
antibodies (e.g., sacituzumab govitecan, and cetuximab) [2]ii. Targeted therapy has for more than
two decades revolutionized the treatment of cancers with specific genetic alterations, with HER-
2-targeting trastuzumab in breast cancer [3], multi-kinase-targeting sorafenib in hepatocellular
carcinoma [4], and BRAF-targeting vemurafenib [5] being among the most successful pioneers.
More recently, the discovery of new cancer vulnerabilities and breakthroughs in oncology
pharmaceutical pipelines have led to the addition of more powerful weapons to the oncologist’s
arsenal, including PARP-inhibiting olaparib in ovarian cancer [6], TROP-2-targeting sacituzumab
govitecan in triple-negative breast cancer [7], and KRAS-targeting sotorasib in non-small cell lung
cancer (NSCLC) [8].
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Contrary to these tumor-targeting strategies relying on the understanding of cancer-intrinsic
factors, a recent paradigm shift in cancer research toward forming a holistic view of the tumor
ecosystem, with the cornerstone concept being the TME [9–12], has led to the focus on an
emerging frontier in cancer therapeutics, which is immunotherapy [13,14]. Immunotherapy mod-
ulates the immune system to enhance its antitumor activity. It achieves this by using endogenous
or exogenous agents that can stimulate or overcome immune checkpoints, induce immuno-
genic cell death, or elicit tumor-specific immune responses. Some examples of immunotherapy
are chimeric antigen receptor (CAR) T cell therapy (e.g., axicabtagene ciloleucel and
ciltacabtagene autoleucel), T cell engaging therapy (e.g., mosunetuzumab and teclistamab),
and cancer vaccines (e.g., sipuleucel-T and talimogene laherparepvec) [15]iii. ICB is probably
the most successful immunotherapy class in solid tumors, which blocks the checkpoints that
are normally involved in maintaining immune tolerance and preventing autoimmunity but inhibit
the immune system from attacking cancer cells. ICB has shown remarkable clinical efficacy in various
types of cancer. The nine FDA-approved checkpoint inhibitors targeting PD-1/L1, CTLA-4, and LAG-
3 are nowwidely used to treat cancer patients in diverse clinical settings, including as a first-line treat-
ment for advanced unresectable melanoma [16], as an adjuvant treatment for completely resected
NSCLC [17], and as a first-line treatment but in combination with targeted therapy for advanced
renal cell carcinoma [18]. Boundaries are now being pushed on the front of ICB therapeutics with
exciting clinical data coming out of trials testing their efficacy in treating early-stage cancers at the
neoadjuvant, preoperative stage [19–22]. This enthusiasm derives from a biologically sound theory
that an intact tumor ecosystem encompasses a greater tumor antigen load, a better TME
interaction infrastructure, and limited exposure to therapy-resistance-driving factors, thus bearing
significantly more potential for optimal immune responses toward the therapy. The community is
thus poised to witness the next wave of triumphs in ICB therapeutics.

Single-cell dissection of TME as a cornerstone of elucidating MoA of cancer
therapies
Once dismissed as bystanders in tumor progression, host stromal and immune cells surrounding
tumor cells have taken center stage as essential components of a highly structured and intercon-
nected ecosystem that is the TME, owing to their extensive communications with the malignancy.
An emerging and fast-evolving concept in cancer research, the term TME now bears a context
beyond the tumor per se that encompasses systemic immune responses materializing through-
out the body, involving mostly lymph nodes and blood vessels [9]. Such complexity in the com-
position and dynamics of the TME calls for high-throughput, unbiased, and high-resolution
methodologies for a better understanding. Traditional TME characterization approaches, such
as flow cytometry, immunofluorescence imaging, or bulk RNA sequencing (RNA-seq), rely on
pre-existing knowledge and cell-type defining marker panels, and dilute the contributions of
small immune cell subsets in the overall signal. In contrast, single-cell profiling technologies
allow detailed identification of diverse immune subsets in the TME at a higher resolution, thereby
providing a better opportunity to understand the contribution of immune cells to tumor progres-
sion and response [23–27]. For example, single-cell (sc)RNA-seq measures the transcriptome of
individual cells in a tissue sample. It can also interrogate multiple modalities simultaneously, char-
acterizing different genetic and epigenetic sequence information in a cell, such as DNA, gene
expression (GEX), chromatin accessibility, histone modification, protein abundance, T/B cell
receptor (TCR/BCR) sequence, and DNA methylation status [28–31]. Furthermore, spatial tran-
scriptomics enables the identification of spatially variable genes, prediction of tissue architecture,
cell-type localization, and the inference of cell–cell communication in a TME [32–35]. These
multimodal efforts in dissecting treatment-naive tumors have created comprehensive baseline
references for key TME populations, including T cells [36–39], fibroblasts [40–42], and myeloid
cells [43–45].
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Box 1. Special considerations in single-cell TME data analysis

With the establishment of numerousmethodological benchmarks and workflows, single-cell genomics, especially scRNA-
seq, has seen the maturation of a data analytical paradigm [28,106], for example, implemented by Seurat [107] and
scverse [108]. However, owing to the extraordinary heterogeneity of the TME and unique sampling conditions of tumor
samples, there is a myriad of special considerations beyond the routine practices an analyst needs to keep in mind. For
example, the coexistence of cell types with a wide range of total RNA content in the TME [109] requires extra effort on dis-
tinguishing empty droplets from those containing real cells. Specifically, a hard cutoff on per-droplet UMI or a single FDR
threshold on the output of sophisticated algorithms such as EmptyDrops [110] may not be sufficient. Depending on the
stage of tumor progression and the sampling, storage, and transportation conditions, single-cell/nucleus TME profiles
may face regular to serious levels of ambient RNA contamination that could hinder a clear separation of cell states espe-
cially with regard to intra-tumor-cell heterogeneity, the mitigation of which is already a challenge in normal tissues
[111–113]. On a similar note, a perhaps more inconspicuous issue is the enrichment of stress-related gene signatures
in TME cells, which may often be caused by harsh dissection processes or simply heightened necrotic activities within
the tumor core [114–116] but could lead to false interpretations as biologically authentic signals.

Even with a clean and balanced post-quality-control single-cell TME dataset, the analysis and interpretation of it need to be
conducted prudently with TME biology taken a priori. For instance, how to strike a balance between complying with com-
munity knowledge base and highlighting dataset specificity by choosing different clustering resolutions and following dif-
ferent classification paradigms, when annotating cell population identities, is a delicate job. The consensus that cancer
cells retain unique transcriptomes shaped by patient-specific driver genetic aberrations while nonmalignant cells show
cross-patient unified cell states would warrant the universal application of integration algorithms such as Harmony
[117]. However, the latest research has demonstrated a potential overcorrection effect of such methods where context-
dependent immune cell states failed to be preserved by single-cell data integration [118,119]. Cell state continuity is an
intriguing and important concept in understanding the TME dynamics, especially under therapeutic interventions. Methods
such as pseudotime estimation and RNA velocity, as well as the combination thereof, which saw their initial success in de-
lineating organogenesis or induced cellular differentiation, are now often applied to modeling a variety of cell state
transitioning events in the TME, including T cell exhaustion progression. However, whether the underlying mathematic as-
sumptions hold true in such diverse settings has rarely been deliberated, as called out by relevant comments [38,120].
Similarly, the statistical assumption of independent and identical distributions is often violated in cell-population-level differ-
ential gene expression analyses between conditions when it is not done in a pseudobulk manner but using single cells as
subjects [121].

Trends in Genetics

Glossary
Adjuvant treatment: a cancer
treatment given after the primary
treatment, such as surgery, to reduce
the risk of cancer recurrence.
Cancer vulnerabilities: weaknesses
or susceptibilities of cancer cells that can
be exploited by drugs or other
treatments to kill or inhibit them.
Cancer-intrinsic factors: factors that
originate from the cancer cells
themselves and that affect their growth,
survival, invasion, metastasis, or
response to therapy.
Clonal expansion: a process that
occurs when a specific subset of T cells
undergoes rapid expansion in response
to foreign antigen stimulation through
specific TCR recognition.
Homing: the process of recruitment
andmigration of immune cells to specific
organs or tissues, including cancer,
governed by interactions between
homing receptors on immune cells and
their ligands in tissues.
Immune checkpoints: molecules that
are expressed on the surface of immune
cells and interact with their ligands on
other cells to trigger either stimulatory or
inhibitory immune response signals.
Immune tolerance: a state of
unresponsiveness or nonreactivity of the
immune system to substances or
tissues that would normally elicit an
immune response.
Major histocompatibility complex
(MHC): a group of genes that code for
cell surface proteins that help the
immune system recognize foreign
antigens.
Major pathological response (MPR):
a strong degree of tumor reduction after
neoadjuvant therapy, usually defined as
having less than or equal to 10% of
residual viable tumor cells in the resected
specimen.
Minimal residual disease (MRD): the
small number of cancer cells that remain
in the body after treatment, a major
cause of relapse for patients with blood
cancer.
Mode of action (MoA): changes in
cell-level biochemical pathways or
processes induced by a drug or
substance, without specifying the exact
molecular targets or interactions.
Mutation-associated neoantigen
(MANA): altered peptides derived from
somatic mutations and presented by
MHC to be recognized by the immune
system to elicit an antitumor T cell
response.
When paired with the longitudinal sampling of patient tissue samples under specific treatment
regimens, single-cell profiling can also capture the dynamic changes of the TME in response to
different therapeutics, such as chemotherapy, targeted therapy, and immunotherapy (Box 1). Al-
ternatively, single-nucleus profiling can access a larger and more diverse collection of archival
tumor samples due to its capability of profiling single nuclei isolated from frozen tissues that
have been stored for long periods of time and are difficult to dissociate [46–48]. Even with only
single-time-point sampling; for example, either pre- or post-treatment, these efforts can be useful
in building a knowledge base of baseline or treatment-perturbed TME composition that has
predictive values given longitudinally collected patient response data. Beyond cell composition al-
terations, single-cell TME characterization can also reveal how these treatments affect the ex-
pression of genes and pathways that are involved in tumor growth, invasion, angiogenesis,
inflammation, and immunity at a cell-population or subpopulation resolution. These cellular and
molecular correlates with real-world clinical implications help uncover the mechanisms of treat-
ment resistance and sensitivity, as well as potential biomarkers and therapeutic targets
[49–54]. Notably, many of these findings can be quickly visualized and analyzed throughweb por-
tals such as TISCH [55]iv, SCRP-TCM [56]v, and metaICB [57]vi. The ultimate utility of these
insights is to help predict tumor response, as well as to discover new targets and biomarkers
for personalized cancer treatment (Figure 1).

TME-perturbing effects of ICB
Single-agent ICB
The initial findings of characterizing the TME of ICB-treated cancer patients were limited to
changes in T cell states induced by single-agent anti-PD-1/L1 or anti-CTLA-4 treatments. Specif-
ically, the therapeutic responses to ICB were thought to be driven by the reversal of the
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Figure 1. Elucidating TME dynamics under cancer therapies through longitudinal single-cell profiling. Digital
portrayals of therapy-experienced TME can be obtained from longitudinal multi-context single-cell sampling and will inform
research and clinical decisions based on therapy-associated biological signals. Abbreviations: PBMC, peripheral blood
mononuclear cell; scRNA-seq, single-cell RNA sequencing; snRNA-seq, single-nucleus RNA sequencing; TDLN, tumor-
draining lymph node; TME, tumor microenvironment. The image was created using BioRender (https://biorender.com/).
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Neoadjuvant treatment: a cancer
treatment given before the main or
primary treatment, usually to shrink the
tumor and make it easier to remove or
destroy by the main treatment.
Tertiary lymphoid structure (TLS): an
ectopic lymphoid tissue that forms in
nonlymphoid organs or tissues in
response to chronic inflammation
including cancer.
Tissue-resident memory (TRM):
TRM T cells are a group of long-lived
memory T cells that reside and function
within specific tissues without
recirculating in the blood or lymph.
Tumor antigen load: the total amount
of tumor antigens that are present in a
tumor, including tumor-specific antigens
and tumor-associated antigens.
Tumor-draining lymph node (TDLN):
a lymph node that is connected to a
tumor by a network of lymphatic vessels
and receives lymph fluid, soluble factors,
and cells from the tumor site and is often
the first site of solid tumor metastasis.
exhaustion program in tumor-reactive CD8+ T cells (Tex) within the TME (Box 2) [58–60]. Thus,
gene expression programs linked to cytotoxicity and acute activation have been recurrently re-
ported to be associated with a favorable response toward ICB (Figure 2 and Table 1). For exam-
ple, in basal cell carcinoma, PD-1 blockade induced clonal expansion of CD8+CD39+ T cells
expressing markers of chronic T cell activation and exhaustion [61]. Prostate cancer-specific
CD8+ T cells had increased IFNγ expression after androgen receptor blockade, leading to en-
hanced function and sensitization to anti-PD-1 immunotherapy [62]. Similarly, the expansion of
PD-1+ CD8+ T cells expressing cytotoxic activity, immune-cell homing, and exhaustion markers,
as well as CD4+ T cells showing T helper-1, and follicular-helper signatures, was observed in
breast cancer after anti-PD-1 administration [63]. In endometrial cancer, tumor regression after
anti-PD-1 therapy was associated with effector CD8+ T cells and activated CD16+ NK cells in
the circulation [64]. Additionally, tissue-resident memory (TRM) seems to be an indicator of
fast-responding antitumor CD8+ T cells. In a melanoma patient responding to anti-PD-1, a subset
of CD8+ TRM cells that are positive for both PD-1 and TIM-3 was significantly enriched after treat-
ment [65]. A study in NSCLC offered a more definitive connection between CD8+ T cell TRM and
tumor reactivity because it, along with an incompletely activated cytolytic program and less IL-7R
activity, marked a unique CD8+ T cell population that reacted specifically to mutation-
associated neoantigens (MANAs). However, in tumors without a major pathological
response (MPR) to anti-PD-1, these cells not only showed heightened expressions of T cell
4 Trends in Genetics, Month 2023, Vol. xx, No. xx
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Box 2. Emerging cancer therapeutic implications of T cell exhaustion

T cell exhaustion, initially discovered in the study of immune responses against chronic viral infections [122,123], has
emerged as a central theme in understanding the TME mechanisms of response and resistance towards immunotherapy
and perhaps tumor-targeting therapies as well [37,124,125]. A general consensus of its definition includes impaired
effector functions such as decreased production of cytotoxic markers (e.g., granzyme B and perforin) and inflammatory
cytokines (e.g., IFN and TNF), heightened expression of inhibitory receptors (e.g., PD-1 and TIM-3), and a hyporesponsive
proliferation capacity to antigen stimulation [126]. Beyond that, there is little to agree upon when it comes to the multifac-
eted nature of T cell exhaustion. Perhaps most frustratingly, we know these unique cell states are induced by chronic
antigen encounter, but we do not know for a fact whether the aforementioned alterations represent a failed T cell state
in the face of unresolved tumor burden or an adapted new identity in the pursuit of a balance between tumor control
and immunopathology. We are also only beginning to understand the level of heterogeneity in this seemingly unified
population, dependent on disease progression and tissue context, and how a wide range of microenvironmental factors
may shape the trajectory of T cell exhaustion.

Despite the enigmatic biology of T cell exhaustion, we have now developed a set of operational principles on where it is
positioned in cancer therapeutics, owing to extensive research on T cell responses to ICB in both mouse and human tu-
mors, often using single-cell technologies. For example, the abundance of pretreatment Tex cells often portends favorable
patient survival in multiple cancer types [127–129] but serves as a negative indicator of therapeutic efficacy when exam-
ined at a post-treatment time point [66,70]. These observations point to the other side of exhaustion being a measurement
of tumor reactivity. Longitudinally, single-cell profiling studies have consistently identified that a common consequence of
ICB on the TME is a shift in Tex cells to regain effector and even memory functions. Further, studies utilizing bulk or single-
cell T cell receptor sequencing (scTCR-seq) to coanalyze ICB-experienced TME, blood, and TDLNs have uncovered the
origin of these newly generated effector populations, a major contributor being the TCF1-marked pre-existing progenitor
exhaustion population [130–132]. Whether they are sourced from TME-infiltrated Tex reinvigoration [66,97,133] or
replenished Tpex from the periphery, particularly the TDLN [63,71–73,134,135], however, show considerable variations
among cancer types. Thus, instead of solely focusing on reinvigorating intratumoral Tex cells, a more viable approach in
many casesmay be to elicit systemic responses where Tpex can be recruited and clonally expanded. Indeed, mechanistic
studies in relevant mouse models have demonstrated that the key mediator of anti-PD-1/PD-L1 treatment is a group of
PD-L1+ conventional dendritic cells residing in the TDLN [136–138].
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dysfunction genes and reduced memory or effector activities but also stronger presence of TRM
signatures, suggesting greater plasticity and a more complex role of TRM cells in immunotherapy
than previously appreciated [66].

Another perspective to look at the Tex rejuvenation phenotype in terms of CD8+ T cell state trans-
formation involves the emergence of a progenitor-exhaustion CD8+ T cells (Tpex) program
(Figure 2 and Box 2) [57,67–69]. For example, anti-PD-1 treatment in advanced melanoma led
to two distinct states in CD8+ T cells, with one defined by the activation of Tpex transcription fac-
tor TCF1 and associated with positive clinical outcomes [70]. Findings from clear cell renal cell
carcinoma (ccRCC) identified the increased composition of Tpex, which is characterized by low
expression of coinhibitory molecules and high expression of GZMK as a major mediator of ICB
efficacy [71]. Through longitudinally profiling blood samples from head and neck squamous cell
carcinoma (HNSCC) patients undergoing anti-PD-L1 treatment, a recent study revealed that
CD8+ T cells with an intermediate strength of the progenitor exhaustion program were the
most enriched population in post-treatment circulation, offering a higher-resolution view of the
Tpex–Tex dichotomy in ICB response [72]. Adding a spatial context to Tpex emergence, a recent
study in NSCLC provided strong evidence of the coordination between CD4+ and CD8+ T cells
with common exhaustion programs being a predominant reactive force against tumor antigens
and their common supply being progenitors in tumor-draining lymph nodes (TDLNs).
These key findings were made through a direct comparison of tumor-infiltrating T cells between
tumor regions with or without viable cancer cells and those in the lymph nodes [73]. Finally, al-
though functioning through distinct mechanisms, the efficacy of an antibody-based T cell
engager (TCE) was also reported to be driven by the expansion of an effector CD8+ T cell popu-
lation. However, contrary to most ICB-based studies, the baseline abundance of terminally
exhausted CD8+ T cells in multiple myeloma was predictive of therapeutic failure [74], putting a
Trends in Genetics, Month 2023, Vol. xx, No. xx 5
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Figure 2. ICB-perturbed TME at the single-cell level. Alterations by ICB in the composition and cell state of specific
TME populations are highlighted for various cancer types. Red upward arrows indicate cell groups that are enriched after
treatment or positively correlated with the therapeutic response or described as a favorable TME factor. Blue downward
arrows indicate the opposite cases. Grey italicized texts indicate genes or gene signatures highlighted in original studies.
Abbreviations: BCC, basal cell carcinoma; BRCA, breast invasive carcinoma; ccRCC, clear-cell renal cell carcinoma; EC,
endometrial carcinoma; HNSCC, head, and neck squamous cell carcinoma; ICB, immune checkpoint blockade; mCRPC,
metastatic castration-resistant prostate cancer; MCC, Merkel cell carcinoma; MM, multiple myeloma; NSCLC, non-small
cell lung cancer; SKCM, skin cutaneous melanoma; TME, tumor microenvironment; UBC, urothelial bladder cancer. The
image was created using BioRender (https://biorender.com/).
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heavier emphasis on a favorable pretreatment TME rather than the rejuvenation potential thereof
for the success of T cell engagement and activation (Box 2) [74].

Outside of the T cell compartment, single-agent ICB can also elicit a systemic immune response
where the composition and state of numerous classes of non-lymphocytes can be modulated,
including even tumor cells (Figure 2 and Table 1). An example is the aforementioned breast can-
cer study, where the enrichment of activated CD8+ T cells was correlated with the expression of
major histocompatibility complex (MHC) class I/II molecules in cancer cells and immunoreg-
ulatory dendritic cells, and inversely correlated with the presence of inhibitory macrophages [63].
In another case, peripheral-myeloid-cell-specific interleukin-8 expression level at the baseline
stage was associated with loss of the myeloid antigen-presentation machinery in bladder cancer
patients not responding to an anti-PD-L1 antibody [75].

Combination ICB
PD-1 and CTLA-4 are the two best-studied immune checkpoints that are vital for achieving self-
tolerance and modulating immune responses. However, targeting only one of these checkpoints
at a time in clinics often leads to cancer immune resistance [76]. This is likely because, while both
6 Trends in Genetics, Month 2023, Vol. xx, No. xx
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Table 1. Single-cell TME profiling studies of tumors treated with immunotherapy

Cancer type Therapy
class

Therapy Target Cell type Data modality Refs

BCC ICB Pembrolizumab, cemiplimab PD-1 TME GEX + TCR [61]

ccRCC ICB Nivolumab, nivolumab + ipilimumab
PD-1,
CTLA-4

TME GEX + TCR [78]

ccRCC ICB Nivolumab PD-1 Tumor-infiltrating T cells GEX + TCR [71]

EC ICB Pembrolizumab PD-1 PBMCs GEX + TCR [64]

HNSCC ICB Nivolumab, nivolumab + ipilimumab
PD-1,
CTLA-4

Tumor-infiltrating immune
cells, PBMCs

GEX + TCR [79]

HNSCC ICB Atezolizumab PD-L1 TME, TDLN
GEX + TCR, GEX +
surface protein
abundance

[72]

HR+ and
triple-negative
BRCA

ICB Pembrolizumab PD-1 TME
GEX + TCR, GEX +
surface protein
abundance

[63]

MCC
ACT +
ICB

Autologous virus-specific CD8+ T cells,
followed by pembrolizumab+ ipilimumab

PD-1,
CTLA-4

TME, PBMCs GEX [81]

mCRPC ICB Pembrolizumab PD-1
Tumor-infiltrating immune
cells

GEX [62]

MM TCE Elranatamab
BCMA,
CD3

Tumor-infiltrating immune
cells, PBMCs

GEX + TCR + BCR [74]

NSCLC ICB Nivolumab PD-1
Tumor-infiltrating, lymph
node, adjacent normal lung
T cells

GEX + TCR [66]

NSCLC ICB Pembrolizumab, nivolumab PD-1
Tumor-infiltrating, lymph
node, adjacent normal lung
T cells

GEX + TCR [73]

SKCM ICB αPD-1, αPD-1 + αCTLA-4
PD-1,
CTLA-4

Tumor-infiltrating immune
cells

GEX [70]

SKCM ICB Nivolumab, nivolumab + ipilimumab
PD-1,
CTLA-4

Tumor-infiltrating immune
cells

GEX [80]

SKCM ICB Pembrolizumab, nivolumab + ipilimumab
PD-1,
CTLA-4

Tumor-infiltrating T cells GEX [65]

UBC ICB Atezolizumab PD-L1 PBMCs GEX [75]
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can inhibit T cell responses to tumors, they do so at different stages and locations of an immune
response. PD-1 suppresses T cells later in the immune response, mainly in peripheral tissues, by
binding to its ligands (PD-L1 and PD-L2) on tumor cells or other antigen-presenting cells (APCs)
and inhibiting signaling through CD28 and other receptors that promote T cell survival and func-
tion. CTLA-4 controls T cell proliferation early in the immune response, mainly in the TDLNs, by
competing with CD28 for binding to the same ligands (B7 molecules) on APCs [77]. The comple-
mentary therapeutic windows offered by diverse immunostimulatory effects were then exploited
in clinical trials to achieve improved patient response towards combination ICB. The US FDA has
now approved ipilimumab plus nivolumab and tremelimumab plus durvalumab, respectively, as
anti-PD-1/anti-CTLA-4 combination strategies to treat various types of cancervii.

Mechanistically, these combinations often demonstrate similar TME-perturbing effects as single
agents in single-cell studies (Figure 2 and Table 1). For example, the application of anti-PD-1
and anti-CTLA-4 in ccRCC revealed patient-dependent immune response heterogeneity,
marked by either CD8+ tissue-resident T cells in responsive patients or tumor-associated macro-
phages (TAMs) in resistant patients [78]. Likewise, in oral cancer patients, neoadjuvant anti-PD-1
Trends in Genetics, Month 2023, Vol. xx, No. xx 7
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and anti-CTLA-4 blockade induced the expansion of activated T cells that were further character-
ized by elevated TRM and cytotoxicity programs [79]. Switch from naive B cells to memory and
plasma B cells appeared to be a favorable contributor to effective ICB response in melanoma
and renal cell carcinoma, suggesting a pivotal role of B cells and tertiary lymphoid structures
(TLSs) in ICB response [80]. Although proven more effective than single agents, combinations
can still result in treatment resistance. A patient with metastatic Merkel cell carcinoma receiving
autologous Merkel cell polyomavirus specific CD8+ T cells, an adoptive cell therapy (ACT),
followed by anti-PD-1 and anti-CTLA-4 resulted in the transcriptional suppression of MHC-I
genes in the tumor cells and loss of activated tumor-infiltrating CD8+ T cells at the relapsed
stage, an indication of acquired resistance to the treatment [81].

TME-targeting potentials of cancer-intrinsic treatments
Despite strides in translational research and preliminary clinical trials, the approval rate for ad-
vanced immune checkpoint inhibitors or immunomodulators remains somewhat lowviii. However,
increasing evidence shows that traditional anticancer treatments can boost anticancer immunity,
either by directly affecting tumor cells or by producing off-target effects on immune cells [82–84].
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Table 2. Single-cell TME profiling studies of tumors treated with chemo-/targeted therapy and in combination with ICB

Cancer type Therapy class Therapy Target Cell type Data modality Refs

AML
Chemotherapy,
ICB

Azacitidine + nivolumab PD-1
TME, normal bone
marrow

GEX + TCR [96]

ccRCC
Targeted
therapy, ICB

Unspecified αPD-1, αPD-1 + αCTLA-4, αPD-1
+ VEGFi

PD-1, CTLA-4,
VEGF

TME GEX [101]

CLL
Targeted
therapy

Ibrutinib BTK PBMCs
GEX + surface
protein
abundance

[95]

CRC
Targeted
therapy, ICB

Dabrafenib + trametinib + spartalizumab
PD-1, BRAF,
MEK1/2

TME GEX [102]

CRC
Targeted
therapy, ICB

Celecoxib + toripalimab PD-1, COX-2 TME, normal tissue GEX [103]

ER-positive
BRCA

Targeted
therapy

Letrozole, letrozole + ribociclib
Estrogen,
CDK4/6

TME GEX [92]

Triple-negative
BRCA

Chemotherapy,
ICB

Paclitaxel, paclitaxel + atezolizumab PD-L1
Tumor-infiltrating
immune cells,
PBMCs

GEX + TCR +
chromatin
accessibility

[100]

ESCA Chemotherapy FLOT TME, normal tissue GEX [88]

Metastatic
BRCA or OV

Targeted
therapy, ICB

Ribociclib + spartalizumab PD-1, CDK4/6
Peripheral T cells,
tumor-infiltrating
immune cells

GEX + TCR [104]

MM
Targeted
therapy

Daratumumab, carfilzomib, lenalidomide,
dexamethasone

CD38,
proteosome,
cereblon

Bone marrow
plasma cells

GEX [90]

NSCLC
Chemotherapy,
ICB

Pembrolizumab + carboplatin + pemetrexed,
pembrolizumab + carboplatin +
albumin-bound paclitaxel

PD-1
Tumor-infiltrating T
cells

GEX + TCR [97]

NSCLC
Chemotherapy,
ICB

Carboplatin +
toripalimab/camrelizumab/sintilimab +
docetaxel/pemetrexed/gemcitabine

PD-1 TME GEX [98]

NSCLC
Targeted
therapy

Multiple TKIs
Tyrosine
kinases

TME GEX [94]

PDAC Chemotherapy FOLFIRINOX, gemcitabine/abraxane-based TME GEX [86]

PDAC Chemotherapy FOLFIRINOX, gemcitabine + nab-paclitaxel TME GEX [87]

SKCM
Chemotherapy,
targeted
therapy, ICB

Unspecified αPD-1 + αCTLA-4 +
chemotherapy/multiple targeted therapies

PD-1, CTLA-4,
multiple tumor
targets

TME GEX [99]

SKCM
Targeted
therapy

Dabrafenib, dabrafenib + trametinib BRAF, MEK1/2 PDX GEX [91]

STAD Chemotherapy
Paclitaxel + oxaliplatin, oxaliplatin + S-1,
oxaliplatin + calcium folinate + 5-FU

TME GEX [89]

UBC
Targeted
therapy

Tipifarnib HRAS TME GEX [93]

Trends in Genetics
These observations came as no surprise as chemotherapy and targeted therapy, for instance,
have long been known to induce immunogenic cell death, which releases damage-associated
molecular patterns and tumor antigens that stimulate antitumor immunity. For example,
anthracyclines can induce the exposure of calreticulin on the surface of dying tumor cells,
which can then facilitate their phagocytosis by dendritic cells [85]

However, these implications are largely confined to preclinical models or clinical histological ob-
servations, limited in comprehensiveness and resolution. Thus, single-cell profiling of the TME
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perturbed by chemotherapy or targeted therapy as a large-scale unbiased approach has been
able to offer a more precise and definitive view of the specific cellular mediators underlying their
immunostimulatory effects (Figure 3 and Table 2). These studies commonly adopted a whole-
tissue sample preparation strategy where the bona fide composition of a complete TME is
retained, thus offering vital insights into how a systemic immune response is elicited by cancer
treatments. This is a unique advantage in studies involving tumor-targeting strategies because
such information is often masked in ICB-related studies where a prior bias toward enriching the
immune component is applied to increase the immune cell capture rate.

Chemotherapy
A case study in pancreatic ductal adenocarcinoma showed that chemotherapy suppressed
immunosuppressive TME reprogramming by downregulating TIGIT on CD8+ T cells and
inhibiting their interactions with cancer cells [86]. A second study in the same disease context
revealed more cellular mediators of chemotherapy-induced immunostimulation, including sig-
nificant enrichment for inflammatory cancer-associated fibroblasts (CAFs) and an increase in
CD8+ T cells [87]. Similarly, in the TME of esophageal adenocarcinoma, an increase in the
ratio of effector CD8+ T cells to regulatory CD4+ T cells (Tregs) appeared to be a major conse-
quence of chemotherapy [88]. However, immunosuppressive effects were also observed for
chemotherapy in other cancer types, including in stomach adenocarcinoma, where it de-
creased CD4+ and CD8+ T cells, increased endothelial cells and fibroblasts, and activated
proangiogenic pathways in cancer cells [89]. These distinct chemotherapy outcomes in
post-treatment T cell abundance and fitness suggest that while conventional chemotherapy
is widely recognized for its expansive cytotoxic impact on rapidly dividing cells, particularly
those in the immune system, other agents may bring in favorable net effect to the TME, thus
being synergistic with ICB (which is discussed later).

Targeted therapy
Similar to chemotherapy, several single-cell TME profiles have been generated for samples from
patients treated with targeted therapy (Figure 3 and Table 2). However, a large proportion of these
efforts were concentrated on the perturbation effect on cancer cells, presumably due to their per-
ceived highly cancer-specific MoA. For instance, in relapsed multiple myeloma patients, a combi-
nation of chemotherapy-induced changes in malignant plasma cells was characterized by
hypoxia tolerance, protein folding, and mitochondrial respiration signatures [90]. Concurrent
RAF/MEK inhibition in melanoma resulted in a shift in the composition of minimal residual
disease (MRD) cells, marked by the expression of a neural crest stem cell transcriptional pro-
gram primarily driven by the nuclear receptor RXRG [91]. Combination therapy of endocrine treat-
ment with a CDK inhibitor in early-stage estrogen-receptor-positive breast cancer led to cancer-
cell-specific loss of estrogen signaling and upregulation of JNK signaling in resistant tumors [92].

Several studies also support the TME-perturbing role of targeted therapy while connecting them
to cancer-intrinsic alterations (Figure 3 and Table 2). In chemorefractory muscle-invasive urothelial
bladder cancer, treatment with an HRAS-targeting agent boosted PD-L1 expression in surviving
tumor cells and accumulated multiple immunosuppressive immune subsets, including M2-like
macrophages, exhausted CD8+ T cells, andmyofibroblastic CAFs, leading to acquired resistance
to this treatment but a favorable response to subsequent treatment with a PD-L1 inhibitor [93]. In
metastatic lung cancer patients, targeted therapy, particularly with tyrosine kinase inhibitors
(TKIs), enabled an antitumor TME in the residual disease stage by enriching for T cells and deplet-
ing macrophages (especially an IDO1+ subset) but later enhanced an opposite trend when the
disease progressed. Such retreat from a transitory immunostimulatory TMEwas linked to a series
of progression-friendly behaviors retained in surviving cancer cells in the residual disease,
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CellPress logo


Trends in Genetics
including an alveolar-regenerative cell signature and upregulation of kynurenine, plasminogen,
and gap-junction pathways [94]. The application of ibrutinib, a Bruton tyrosine kinase (BTK) inhib-
itor, resulted in a marked transformation in the chronic lymphocytic leukemia (CLL) microenviron-
ment, highlighted by the increased percentage of CD8+ T cells exhibiting a cytotoxic and/or
exhaustion program [95].

Chemotherapy or targeted therapy in combination with ICB as superior TME
immunostimulants
ICB with chemotherapy
The newly developed TME-focused perspectives for tumor-targeting therapies have opened new
avenues to explore their possible synergies with ICB (Figure 3 and Table 2). Consequently, many
recent FDA drug approvals that widen treatment choices for patients with solid tumors primarily
involved antibodies that target PD-1/L1 in combination with chemotherapy and TKI. In acute my-
eloid leukemia (AML), tumors responding to a combination of azacytidine, a cytidine nucleoside
analog, and anti-PD-1 treatment were enriched for a clonally expanded GZMK+ CD8+ T cell
population with stem-like features, while nonresponding tumors were characterized by cancer-
intrinsic chromosome 7/7q loss [96]. Similarly, integrating anti-PD-1 with multiple chemother-
apies to treat NSCLC patients drove the emergence of clonally expanded GZMK+ Tpex cells
[97]. Another study in NSCLC, where PD-1 blockade was combined with chemotherapy in a neo-
adjuvant setting, induced expansion and activation of cytotoxic CD8+ T cells and CD16+ NK cells,
reduction of immunosuppressive Tregs, and remodeling of TAMs into a neutral phenotype.
Accordingly, tumors showing MPR were specifically characterized by activated antigen
presentation in cancer cells and transcriptional signatures of FCRL4+FCRL5+ memory B cells
and CD16+CX3CR1+ monocytes, while those with no major responses exhibited overexpression
of estrogen metabolism enzymes and elevated serum estradiol in cancer cells [98]. Efforts were
also made to search for cancer-intrinsic factors in connection with a favorable TME state shift.
For example, in melanoma patients treated with a variety of therapeutics, including anti-PD-1,
anti-CTLA-4, chemotherapy, and their combinations, the expression of a resistance program
was induced in cancer cells, which was associated with T cell exclusion and immune evasion,
thus leading to treatment resistance. Interestingly, the expression of this program could be re-
pressed through CDK4/6-inhibition in a mouse model [99].

Given the shared TME phenotypic outcomes in terms of T cell rejuvenation, it would be meaning-
ful to disentangle the effects independently contributed by chemotherapy and ICB. This would
not only help gain mechanistic insights into immunostimulatory mediators of vastly different na-
tures, but also facilitate better-informed clinical decisions to reduce treatment burden. A study in-
volving advanced triple-negative breast cancer patients offered valuable data to address this
issue by directly comparing the TME alteration effects of the two treatment arms where either
paclitaxel or paclitaxel plus anti-PD-1 was applied. While the combination therapy boosted the
composition of multiple immunostimulatory populations, such as CXCL13+ T cells, lymphoid
tissue inducer cells, follicular B cells, and conventional type 1 dendritic cells, the monotherapy
significantly decreased their abundance and instead led to the activation of suppressive TAMs.
Paired single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) profil-
ing of combination-treated tumors also revealed enhanced chromatin accessibilities in genes of
effector properties, especially in the CXCL13+ CD8+ T cell population [100].

ICB with targeted therapy
Concern about ICB–chemotherapy combination causing severe adverse effects is certainly
justified, given the extensive damage to normal tissue cells, despite largely positive outcomes in
clinical trials. Targeted therapy generally causes fewer and less severe side effects compared
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Outstanding questions
How can we exploit emerging single-
cell sequencing modalities such as
scATAC-seq, to establish new dimen-
sions of treatment-induced T cell
state shifting on top of transcriptional
programs and surface protein
expressions, especially those regard-
ing upstream epigenetic regulatory
circuitries?

What are the direct and indirect
mechanisms underlying the
immunostimulatory effects of
chemotherapy and targeted therapies
and how to disentangle their
differential impacts on the TME than
immunotherapy in patients treated
with combination therapies?

While current studies provide valuable
insights into the TME in response to
various cancer treatments, most of
them are based on endpoint analysis.
How can we monitor the fine-grained
TME dynamics over the course of
treatments, especially in the context
of treatment resistance?

Can we develop more sophisticated
experimental and computational
models that factor in the spatial
contexts to capture TME perturbations
under various treatments, predict pa-
tient response, and inform personal-
ized therapeutic strategies?
with chemotherapy. It also induces swift disease control and high response rates but limited du-
rability when used as monotherapy, thereby offering an opportunity for ICB synergy (Figure 3 and
Table 2). For instance, patients with advanced ccRCC who responded to combined PD-1 block-
ade and VEGF inhibition had augmented effector T cell response, while all patients including
nonresponding individuals had increased inflammatory and immunosuppressive macrophages
as well as angiogenic cancer cells [101]. In colorectal cancer patients, combined PD-1, BRAF,
and MEK inhibition had greater induction of tumor cell-intrinsic interferon signaling response,
stronger suppression of MAPK signaling activity, and significant enrichment of CD8+ T cells in
those who had longer progression-free survival [102]. Again, in colorectal cancer, a coordinated
reduction of proliferative CD8+ TRM cells, CD4+ Tregs, proinflammatory IL1B+ monocytes, and
CCL2+ fibroblasts, and an increase in the proportions of CD8+ Tem cells, CD4+ T helper cells,
CD20+ B cells, and HLA-DRA+ endothelial cells were observed following neoadjuvant PD-1
blockade and COX-2 inhibition [103]. Even a chemotherapy-like combination strategy that
would theoretically deplete fast-expanding lymphocytes, such as tumor-reactive CD8+ T cells,
was successful, echoing the TME-reinvigorating synergy observed for ICB–chemotherapy com-
binations. This study in metastatic breast and ovarian cancer found that CDK4/6 inhibition along
with PD-1 targeting not only allowed highly expanded cytotoxic effector CD8+ T cell clones to
emerge in the circulation but skewed them toward a memory program with high GZMK and
EOMES expression, reinforcing a stem-like antitumor T cell pool [104]. However, this is not to
postulate that targeted therapy will always be a positive force to improve the immunoactivity of
TME and a better choice in combination with ICB than chemotherapy. Instead, the efficacy of
such a strategy would still depend on (i) utilizing appropriate biomarkers to monitor and
predict therapeutic response and toxicity, and (ii) establishing optimal timing, sequence, and
dosage for a specific combination. For example, head and neck cancer patients benefited from
longer intervals between PI3Kδ inhibitor administration, which caused less depletion of Treg
cells and less severe colitis. Follow-up single-cell TME profiling of mouse models treated with
PI3Kδ validated intermittent dosing regimens to be superior in mitigating Treg-related adverse
effects [105].

Concluding remarks
The integration of traditional cancer treatments with immunotherapy, such as ICB, represents one
of the most exciting frontiers in cancer research and treatment. By modulating the TME, these
treatments have the potential to significantly improve patient outcomes. However, a deeper
understanding of the interactions between cancer cells, immune cells, and other components
of the TME is needed to fully realize the potential of these treatment strategies. To this end, we
anticipate that breakthroughs in this field will derive from three aspects of technological advance-
ments. First, integrating multimodal data from various sources, including genomics, transcripto-
mics, proteomics, and metabolomics, along with cutting-edge computational and machine
learning techniques, will help create more comprehensive models of the TME. Second, longitudi-
nal single-cell profiling of patient samples at a finer time scale, rather than just before, during, and
after treatment, could provide valuable insights into fine-grained dynamic changes in the TME and
reveal highly transitory but key events mediating treatment resistance. Third, the development of
new spatial profiling technologies, such as spatial transcriptomics and multiplex imaging, can
help provide a systematic view and illuminate the complexity of the TME on an unprecedented
scale, such as its cell organization, microenvironmental niches, nutrient gradients, and cell–cell in-
teractions. These features, when extracted jointly, can pinpoint organizational immune hallmarks
that are associated with patient outcomes. As we continue to unravel the complexity of the TME
through single-cell profiling and other advanced techniques, we may uncover new treatment tar-
gets and strategies to overcome treatment resistance, ultimately bringing us closer to the goal of
personalized cancer therapy (see Outstanding questions).
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