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STORY TILL NOW....

What is Bioinformatics?

As the generation, organization, and analysis of biological data
(initially genomic data)

Attracted lot of interest in different fields: Computer Science,
Physics, Engineering and of course Statistics

Microarrays

What are they?; What they measure?

Pre-processing issues: normalization, technical vs biological
variation

Downstream analysis
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MICROARRAY TECHNOLOGY

High-throughput assays for understanding molecular biology

Simultaneously measure expression levels for thousands of genes

By understanding how “gene expression” changes across multiple
conditions

Researches gain clues about gene functions

How genes work together to carry out biological functions

Many applications in a variety of studies; attracted considerable
statistical literature

Other techniques to measure gene expression
Serial analysis of gene expression (SAGE); cDNA library
sequencing; differential display; cDNA subtraction; multiplex
quantitative RT-PCR
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FINAL DATA FOR ANALYSIS

What statisticians work with: Gene Expression Matrix

Samples Gene 1 Gene 2 · · · Gene p
1 X X · · · X
2 X X · · · X
...

...
...

...
...

n X X · · · X

X = Gene expression intensities (some form)

p = Number of genes (usually in thousands)

n = Number of samples (micorarrays) (n ! p)

Y (tissue type/phenotype) = 0 if Normal; 1 if Cancer (binary)

Z = Design variables for controlled experiments (e.g. Drug A/B) OR
Covariates
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STATISTICAL ISSUES WITH MICROARRAY DATA

Preprocessing of the data

Assess spot quality, reliability of signal, normalize data

Differential expression (Last two classes and next class)

Identify which genes are up-/down-regulated in different sets of
experimental conditions

Classification/Discrimination (supervised learning)

Use gene expression profile to predict type of tumor (class
prediction)

Clustering (unsupervised learning)

Determine genes that are coexpressed or new subtypes of disease
(class discovery)

Feature (gene) selection
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DIMENSION REDUCTION

Often in microarrays: n << p

Order of n: tens or hundreds

Order of p: thousands or more

Therefore it is advisable/essential from a practical and
methodological point of view to reduce the dimension i.e. p; not all
genes affect the process

Termed Variable/Gene/Feature selection

Statistical theory: Model selection i.e. different set(s) of
variables(genes) different models

Rich literature in non-microarray context also: stepwise,
backward, forward regression; AIC; BIC.
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FEATURE SELECTION IN A CONTEXT

Variable important by itself

Gene independently ranked by some criteria

Gene important in a context

Combine variables

Model for combining variables is needed

Important genes not in a context

Model averaging; ensemble learning

Today’s lecture: Gene selection in a context: Classification
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CLASSIFICATION

Objective: assign objects to classes (groups) on the basis of
measurements on the objetcs

Unsupervised: classes are unknown and want to discover them
from data apriori

Supervised: classes are known apriori and want to use a
traning/learning set of labeled objects to form a classifier for
classification of future observations

In microarray context

Objects are microarrays here, and are to be classified as belonging
to one of a number of predefined classes {1, 2, . . . , K}

Each array has a class label: Y ∈ {1, 2, . . . , K} and associated
feature vector of G genes: X = {X1, X2, . . . , XG} and the aim is to
predict Y from X .
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CLASSIFICATION

Suppose there are two populations, healthy and disease individuals. Let the
class labels (arbitrary) Yj = 0 if individual j is healthy and Yj = 1 is individual j
has disease. The classifier function, T (Xj), predicts Yj , given variables Xj .
The function is a mapping from X to the class labels, T : X → {0, 1}.

Classification

Suppose there are two populations, healthy and disease

individuals. Let the class labels (arbitrary) Yj = 0 if individual j

is healthy and Yj = 1 is individual j has disease. The classifier

function, T (Xj), predicts Yj , given clinical variables Xj . The

function is a mapping from X to the class labels,

T : X → {0, 1}.

!"#$

%&'()

Bayesian Classification – p.4/32

Different nomenclature in different fields:

1 Discriminant analysis (multivariate statistics)
2 Supervised learning (machine learning/artificial intelligence in computer

science)
3 Pattern recognition (engineering)
4 Prediction, predictive classification (Bayesian)
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WHY IS IT IMPORTANT

In Tumor classification: reliable and precise classification essential
for successful cancer treatment

Characterizing molecular variations among tumor by monitoring
gene expression

Hope is that microarrays will lead to more reliable tumor
classification
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STATISTICAL DECISION THEORY

Useful to view classification as a statistical decision theory problem

Suppose observation Y’s are iid from an unknown multivariate
distribution. Denote population proportion of objects of class k as
πk = p(Y = K ). Objects in class k have feature vectors with class
conditional density pk (x) = p(x|Y = k).

A loss function L(i, j) quantifies the loss incurred by erroneously
classifying a member of class i as class j .

The risk function for a classifier T (X) is just the expected (average) loss

R(T ) = E[L(Y , T (X))] =
∑

k

E[L(k , T (X))|Y = k ]πk

For symmetric loss i.e. L(i, j) = 1 for i "= j then the risk turns out to be
simple missclassification rate: p(T (X) "= Y )

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

CLASSIFICATION AND BAYES RULE - I

In the (unlikely) situation that we know both pk (x) and πk , we can use
Bayes rule to express posterior probability p(k |x) of class k given a
feature gene vector x

p(k |X) =
πk pk (x)

∑
i πipi(x)

Bayes’ rule predicts class with highest posterior probability

TB(X) = argmaxkp(k|X)

Bayes rule minimizes the risk function/misclassifiation rate under a
symmetric loss function – Bayes risk.

TB(X) = argmaxkLkp(k|X)
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CLASSIFICATION AND BAYES RULE - II

Many classfiers can viewed as versions of this general rule, with either
parametric or nonparametric estimators of p(k |X). There are two
general paradigms to estimate p(k |X).

Density estimation approaches e.g. Gaussian maximum likelihood
discriminant rules (discrimnant analysis); mostly linear

Direct function estimation approach: Regression methods e.g.
logistic/probit regression, neural networks, classification trees; can be
adapted to be more flexible
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MAXIMUM LIKELIHOOD DISCRIMINANT RULES

Frequentist analogue of Bayes Rule

MLE chooses the parameter value that makes the chance of the
observations the highest

For known class conditional densities pk (x) = p(x|Y = k), the ML rule
predicts the class of x that gives the largest likelihood to x:
CM(x) = argmaxkpk(x).

In case of equal class priors: πk , this is same as Bayes Rule

Otherwise, ML rule is not optimal => does not minimize the risk function
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DISCRIMINANT ANALYSIS

Fisher Linear Discrimnant Analysis (FLDA)

Finds linear combinations (a′X) of the gene expression profiles
X = X1, ..., Xp with large ratios of between-groups to within-groups
sums of squares ( a′Ba

a′Wa ) - discriminant variables

Predicts the class of an observation X by the class whose mean vector
is closest to X in terms of the discriminant variables

Classifier: T (X) = argminkdk(x) where d2
k (x) =

∑S
i=1[x − ¯(x)]k )vl ; vl

are discriminating variables.

Standard method in most multivariate statistics books

Two main steps: (1) Dimension reduction via eigen values (2)
Classification using the discriminant variables.

Note: No distribution over X’s - Nonparametric method
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GAUSSIAN DISCRIMINANT RULES

If we assume multivariate Gaussian (normal) class densities for
X |Y = k ∼ N(µk , Σk ), the ML classifier is

T (X) = argmink{(X − µk )Σ−1
k (X − µk )′ + log|Σk | − 2logπk}

In general, this is a quadratic rule (Quadratic discriminant analysis, or
QDA) in standard multivariate analysis; function of the Mahalanobis
distance: (X − µk )Σ−1

k (X − µk )′

In practice, population mean vectors µk and covariance matrices Σk are
estimated by corresponding sample quantities

Most common classifiers are variations of the Gaussian discriminant rule
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COMMON CLASSIFIERS

QDA: T (X) = argmink{(X − µk )Σ−1
k (X − µk ) + log|Σk | − 2logπk}

Linear discriminant analysis (LDA): If Σk = Σ and πk is constant for all
k then

T (X) = argmink{(X − µk )Σ1(X − µk )}
= argmink{µkΣ1µk − 2xΣ−1µ′

k}

Diagonal quadratic discriminant analysis (DQDA): If
Σk = diag(σ2

k1, . . . , σ2
kG),

T (X) = argmink

G∑

g=1

{
xg − µkg)2

σ2
kg

+ logσ2
kg}

Diagonal linear discriminant analysis (DLDA): If Σk = diag(σ2
1, . . . , σ2

G),

T (X) = argmink

G∑

g=1

{
xg − µkg)2

σ2
g

}
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VARIOUS MODIFICATIONS

Nearest Centroid (Σk = IG); G is the number of genes

Flexible discriminant analysis; Penalized Discriminant Analysis;
Mixture Discriminant Analysis

These are widely used especially for microarray data for a variety
of reasons

Simple and intuitive: predict class closest to sample mean

Estimated Bayes Rule: LDA is Bayes rule with Gaussian
distributions

Easy to implement

Reasonable performance: low classification error
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POSSIBLE DRAWBACKS

Microarray data are very rich and complex; linear or even
quadratic classification boundaries may not be flexible enough

Features (genes) may have mixture distributions within classes

Curse of dimensionality: for large number of genes the
performance may degrade rapidly due to over-parameterization
and high variance of parameter estimates

There are methods and algorithms to overcome some of these
problems (later in the course)

Very nice article comparing common classification methods:
Dudoit, Fridlyand, Speed (JASA, 2002)
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HOW DO WE EVALUATE CLASSIFIERS?

Error rates

Resubstitution estimation: fit a single classifier to the data, and applies
this classifier in turn to each data observation
Problem: downward bias; underestimates classification error
(sometimes severely)

Test and training data: divide cases in learning set into two sets, S1 and
S2; classifier built using S1, error rate computed for S2. S1 and S2 must
be iid (crucial).
Problem: reduced effective sample size

V-fold Crossvalidation: learning set randomly divided into V subsets of
(nearly) equal size. Build classifiers leaving one set out; test set error
rates computed on left out set and averaged.
Problem: Bias-variance tradeoff: smaller V can give larger bias but
smaller variance

Other methods: Aggregating;Bagging;Boosting
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FEATURE SELECTION IN CLASSIFICATION

Two ways to do this

Do feature selection first and then build a classifier (Filter methods)

Implicitly as an inherent part of the classifier building procedure
(Wrapper methods)

Filter methods

Simplest: one-gene-at-a-time approaches using univariate test
statistics e.g. t or F test, signal to noise ratio, Wilcoxon statistics,
p-values

More advanced methods: consider joint distribution of genes;
ordering methods such as random forests

Wrapper methods: depends on classifier

Some Bayesian classifiers inherently take care of this (more later)

Bottomline: Feature selection important and is an aspect of
classifier training
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REVISIT CLASSIFICATION RULES

Suppose independent random variables (possibly vectors) Xi1, ..., XiNi

are observed from popuations i = 1, ..., K , each with probability
distribution fi(θi).
The likelihood of the data is

K∏

i=1

Ni∏

j=1

fi(Xij |θi),

where the θi ’s are unobserved population parameters.
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CLASSIFICATION RULES

In classical frequentist parametric classification (as discussed before),
a new observation Z is classified by estimating θi from the training
observations, θ̂i , and plugging θ̂i back into the likelihood to form
prediction rules. Z is assigned to the class i for which

fi(Z |θ̂i) > fi ′(Z |θ̂i ′)

for all i ′, and assigned randomly in the event of ties.
There are some disadvantages to this approach. To a Bayesian, θ is
unknown, and therefore the uncertainty in θ should be taken into
account when making predictions. See Lehmann (1990) for discussion
of bias/variance tradeoff in classification.
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CLASSIFICATION RULES

In Bayesian parametric classification, a new observation Z is classified
by assigning a prior distribution to the θi ’s, π(θ1, ..., θK ), and updating
the prior distribution to obtain a posterior distribution

π(θ1, ..., θK |X ) ∝
K∏

i=1

Ni∏

j=1

fi(Xij |θi)π(θ1, ..., θK ).

The predictive distribution for the i-th population of a new observation
Z is

fi(Z |X ) =

∫

Θi

fi(Z |θi)π(θi |X )dθi ,

for all i , integrating over θ|X .
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CLASSIFICATION RULES

The Bayesian prediction rule assigns Z to the population i for which

πi fi(Z |X ) > πi ′ fi ′(Z |X )

for all i ′, again at random in the event of ties. The posterior distribution
of fi(Z |θi) is known given X , at least up to a normalizing constant.

P(Z = i) =
πi fi(Z |X )∑
i ′ πi ′ fi ′(Z |X )
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CLASSIFICATION RULES

Frequentist methods sometimes resort to large sample or resampling
theory in order to determine the uncertainty in prediction.
Measuring the uncertainty in the Bayesian classification rule is
straightforward, once π(θi |X ) is obtained.
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BAYESIAN LINEAR CLASSIFIERS

Suppose that independent random (p-dim) variables Xi1, ..., XiNi are
observed from popuations i = 1, ..., K , with j = 1, ..., Ni observations
each, with probability distributions N(µi ,Σi), where θi = (µi ,Σi) are the
unobserved population mean and covariance of Xij .
The likelihood for the data is

p(X |µ1, ..., µk ,Σ1, ...,ΣK ) =
K∏

i=1

Ni∏

j=1

N
(
Xij |µi ,Σi

)

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

CLASSIFICATION RULES
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BAYESIAN LINEAR CLASSIFIERS

In the context of microarray data, Xij denotes the vector of gene
expression intensity values for individual j in population i . In typical
studies, k=2 or 3, for example comparing cancer to normal gene
expression, or different types, or stages, of cancer. These studies tend
to be large, N > 100. Although for microarray classification Ni < 200 is
considered small.
A convenient, non-informative prior for µ1, ..., µk ,Σ1, ...,ΣK is

π(µ1, ..., µk ,Σ1, ...,ΣK ) ∝
K∏

i=1

| Σi |(p+1)/2 .
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BAYESIAN LINEAR CLASSIFIERS

The predictive distribution of a new observation Z is

fi(z|x̄i , Si , πi) ∝

Ni
Ni + 1

p/2
[

1 +
Ni(z − X̄i)

′S−1
i (z − X̄i)

(Ni + 1)(N − k)

]−(N−k+1)/2

where N =
∑k

i=1 Ni , X̄i = N−1
i

∑Ni
j=1 X ′

ij and

(Ni − 1)Si =
∑

j(Xij − X̄i)(Xij − X̄i)
′

Proof: see Press (2003) Bayesian Statistics
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EXAMPLE

Example Consider the case of two populations (classes), where
Σ1 = Σ2, the frequentist rule is to assign x to class 1 if

P =
q1f1(x)

q1f1(x) + q2f2(x)
= [1 + (q1/q2)exp(−L)]−1

is greater than 1, class 2 if P < 1 and at random if P = 1, where L is
the log-density ratio,

L = log(f1(x)/f2(x)) = (δ̂2 − δ̂1)/2

for δ̂i = (x − x̄i)
′Σ̂−1(x − x̄i), and qi is the known probability that a

randomly selected observation is from population i for i = 1, 2.
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EXAMPLE

Example Con’t

Σ̂ =
(N1 − 1)S1 + (N2 − 1)S2

(N1 + N2 − 2)
.

The Bayesian rule, in the case of vague prior knowledge, is to compare

PB = [1 + (q1/q2)exp(−LB)]−1

with 1 analogously,
where

LB =
1
2
(ν + 1)log[(ν + r2δ̂2)/(ν + r1δ̂1)] +

1
2

plog[r1/r2],

ri = Ni/(Ni + 1) and ν = N1 + N2 − 2. PB = p(Z ∈ πi |X ) = E [P|X ]
(Rigby 1997, JASA).
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FEATURE SELECTION REVISITED

1 Suppose some subset of genes from the microarray are truely
differentially expressed in different populations, while the rest of
the genes have no information for discrimination.

2 Based on non-informative priors, how do you account for the
uncertainty in the feature selection? How would a frequentist?
Typically the heuristic approach is to select the featuers first,
based on some criterion, univariate or multivariate, and then fit the
classifier.

3 Either way, in applications with array data, there is uncertainty in
choosing the features.
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FEATURE SELECTION REVISITED

Suppose Σi ≡ Σ for all i . We introduce the indicator variable γg , such
that γg = 1 if gene g is included in the model and γg = 0 if gene g is
excluded. A robust noninformative prior for (Σ, p, γ1, ..., γG) is

π(p, γ1, ..., γM) = π(γ1, ..., γM |p)π(p)

∝ I




M∑

g=1

γg = p



× λpe−λ

p!
| Σ |(p+1)/2
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FEATURE SELECTION

For any given feature set, of size p,
fi(z|Xi , γ, p) ∝

Ni
Ni + 1

p/2
[

1 +
Ni(z − x̄iγ)′S−1

γ (z − x̄iγ)

(Ni + 1)(N − k)

]−(N−k+1)/2

where x̄iγ and Sγ are derived from the selected subset of genes.
Accounting for uncertainty in feature selection involves integrating of
the posterior distribution of p, γ1, ..., γM .

fi(z|X ) ∝
∫

P

∫

Γ
fi(zγ |Xγ)π(γ, p|X )dγdp

for i = 1, .., .K .
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FEATURE SELECTION REVISITED

In practice investigating the posterior density for all possible subsets of
Xγ of size p is infeasible. Fortunately the unnormalized posterior of
(γ, p) may be evaluated as

π̃(p, γ|X ) ∝
K∏

i=1

Ni∏

j=1

fi(Xij |γ, p)π(γ, p)

and fi(z|X ) may be obtained by

fi(z|X ) =
f̃i∑K
i=1 f̃i

where where

f̃i =

∫

P

∫

Γ
fi(zγ |Xγ)π̃(γ, p|X )dγdp.
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SUMMARY: FREQUENTIST VS BAYESIAN
CLASSIFICATION

1 Bayesian and Frequentist classification rules depend on the
likelihood function

2 Bayesian rules allow prior information
3 Bayesian rules flexibly account for all uncertainty in θ (features).
4 Bayesian classifiers yield exact measures of prediction

uncertainty.
5 Intuitively Bayesian Classifiers can reduce variance, by averaging

over the uncertainty in θ, see Lehmann (1990) for discussion of
bias/variance tradeoff in classification.
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DETOUR: BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

The linear model, is frequenty used in many biostatistical

applications, including

1. dose response modeling

2. polynomial regression

3. exposure assessment

4. analysis of variance (ANOVA) problems comparing

treatment groups

(See Case studies in Biometry by Lange et al., John Wiley &

Sons.)

Bayesian Analysis of the Linear Model – p.2/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

The linear model can be written as

Y = Xβ + ε

where Y is a n× 1 response,X is a n× p matrix of covariates, β

is a p × 1 vector of coefficients (unobserved) and

ε ∼ Nn(0,σ2I).

Let M = X(X ′X)−X ′, and τ = σ−2, where − denotes gener-

alized inverse. Recall that the UMVUE of µ = E(Y ) = Xβ is

MY . We would like to derive the posterior distribution of β and

τ under noninformative priors.

Bayesian Analysis of the Linear Model – p.3/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Theorem 1

Suppose τ is known, X is of full rank p, and

π(β) ∝ 1.

Then

β|y, τ ∼ Np

(

β̂, τ−1 (X ′X)−1
)

,

where

β̂ = (X ′X)−1 X ′Y.

Bayesian Analysis of the Linear Model – p.4/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Proof:

p(β|y, τ) ∝ exp
{

−
τ

2
(Y − Xβ)′(Y − Xβ)

}

= exp
{

−
τ

2

[

Y ′(I − M)Y + (β − β̂)′X ′X(β − β̂)
]}

= exp
{

−
τ

2

[

(β − β̂)′X ′X(β − β̂)
]}

.

Note that

Y ′(I − M)Y + (β − β̂)′X′X(β − β̂)

= Y ′(I − M)Y + β′X′Xβ − 2β̂′X′Xβ + β̂′X′Xβ̂

= Y ′(I − M)Y + β′X′Xβ − 2Y ′X(X′X)−1(X′X)β + Y ′MY

Bayesian Analysis of the Linear Model – p.5/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

= Y ′Y + β′X′Xβ − 2Y ′Xβ = (Y − Xβ)′(Y − Xβ).

Thus

p(β|y, τ) ∝ exp
{

−
τ

2
(β − β̂)′X ′X(β − β̂)

}

.

We can recognize this as a normal kernel with mean β̂ and

covariance matrix τ−1(X ′X)−1. Thus,

β|y, τ ∼ Np

(

β̂, τ−1(X ′X)−1
)

.

Bayesian Analysis of the Linear Model – p.6/??

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Theorem 2

When τ is known, Jeffreys prior for β is a uniform prior, i.e.,

π(β) ∝ 1.

Proof:

log[p(y|β, τ)] = −
n

2
log(2π) +

n

2
log(τ) −

τ

2
(Y − Xβ)′(Y − Xβ)

∂

∂β
log[p(y|β, τ)] =

∂

∂β

h

−
τ

2
(Y − Xβ)′(Y − Xβ)

i

=
∂

∂β

h

−
τ

2

ˆ

Y ′Y − 2β′X′Y + β′X′Xβ
˜

i

= τX′Y − τ(X′X)β.

Bayesian Analysis of the Linear Model – p.7/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Also,

∂2

∂β∂β′
log[p(y|β, τ)] = −τ(X ′X),

and therefore,

I(β) = τ(X ′X).

Thus Jeffreys prior for β is given by

π(β|τ) ∝ |τ(X ′X)|1/2 ∝ 1.

Bayesian Analysis of the Linear Model – p.8/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Theorem 3

Consider the linear model where both β and τ are unknown.

Then Jeffreys joint prior for (β, τ ) is given by

π(β|τ) ∝ τ(X ′X)p/2−1.

Proof: Exercise

Theorem 4

Consider the linear model with both β and τ unknown, and

suppose

π(β, τ) ∝ τ−1.

Bayesian Analysis of the Linear Model – p.9/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Then

β|y ∼ Sp

(

n − p, β̂, s2(X ′X)−1
)

,

where s2 = Y ′(I − M)Y/(n − p) and

t|y ∼ gamma((n − p)/2, s2(n − p)/2).

Proof:
We have

p(β, τ |y) ∝ τn/2−1exp
n

−
τ

2
(Y − Xβ)′(Y − Xβ)

o

= τn/2−1exp
n

−
τ

2

h

Y ′(I − M)Y + (β − β̂)′X′X(β − β̂)
io

Bayesian Analysis of the Linear Model – p.10/??

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Thus,

p(β|y) ∝

Z

∞

0
τn/2−1exp

n

−
τ

2

ˆ

Y ′(I − M)Y + (Y − Xβ)′(Y − Xβ)
˜

o

dτ

=
h

Y ′(I − M)Y + (β − β̂)′X′X(β − β̂)
i

−n/2
.

Let s2 = Y ′(I − M)Y/(n − p). Then the above integral is

=
h

(n − p)s2 + (β − β̂)′X′X(β − β̂)
i

−(n−p+p)/2

=

»

1 +
1

s2(n − p)
(β − β̂)′X′X(β − β̂)

–

−(n−p+p)/2

Thus, β|y ∼ Sp(n − p, β̂, s2(X ′X)−1).

Bayesian Analysis of the Linear Model – p.11/??

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Now,

p(τ |y) ∝

Z

∞

−∞

τn/2−1exp
n

−
τ

2

ˆ

Y ′(I − M)Y + (Y − Xβ)′(Y − Xβ)
˜

o

dβ

= τn/2−1exp
n

−
τ

2

ˆ

Y ′(I − M)Y
˜

o

Z

∞

−∞

exp
n

−
τ

2
(β − β̂)′(β − β̂)

o

dβ

∝ τ (n−p)/2−1exp
n

−
τ

2

ˆ

Y ′(I − M)Y
˜

o

= τ (n−p)/2−1exp
n

−
τ

2

ˆ

(n − p)s2˜

o

Thus τ |y ∼ gamma ((n − p)/2, s2(n − p)/2).

Bayesian Analysis of the Linear Model – p.12/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Theorem 5

Consider the linear model with β and τ unknown, and suppose

β|τ ∼ Np(µo, τ
−1Σo)

τ ∼ gamma

(

δo

2
,
γo

2

)

Then β|y ∼ Sp (n + δo, β∗, s̃2(X ′X + Σ−1
o )−1) , where

β∗ = Λµo + (I − Λ)β̂,

Λ = (X′X + Σ−1
o )−1Σ−1

o ,

β̂ = (X′X)−1X′Y,

Bayesian Analysis of the Linear Model – p.13/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

and

s̃2 = (n + δo)−1[Y ′(I − M)Y + (β̂ − µo)′(Λ′X′X)(β̂ − µo) + γo],

and

τ |y ∼ gamma

(

(n + δo)

2
,
s̃2(n + δo)

2

)

.

Proof: Exercise

Hint:

π(β, τ |Y ) ∝ τ
n+p+δo

2 −1e−
τ
2 Q

where

Bayesian Analysis of the Linear Model – p.14/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Q = (Y − Xβ)′(Y − Xβ) + (β − µo)
′Σ−1

o (β − µo) + δo

Notice that

(Y − Xβ)′(Y − Xβ) = β′X′Xβ − β′X′Y − Y ′Xβ + Y ′Y

= (β − β̂)′X′X(β − β̂) + Y ′(I − M)Y.

Setting Q = (β − β∗)′Σ∗−1(β − β∗) we have

Q = β′X′Xβ − β̂′X′Xβ − β′X′Xβ̂ + β̂′X′Xβ̂ + [Y ′Y − Y ′MY ]

+[β′Σ−1
o β − µ′

oΣ−1
o β − β′Σ−1

o µo + µ′

oΣ−1
o µo] + δo

= β′Σ∗−1β − β∗′Σ∗−1β − β′Σ∗−1β∗′ + β∗
′

Σ∗−1β∗

Bayesian Analysis of the Linear Model – p.15/??
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BAYESIAN ANALYSIS OF A LINEAR MODEL
Bayesian Analysis of the Linear Model

Rearranging terms, and equating quadratic and linear terms we

find that

Σ∗ =
(

X ′X + Σ−1
o

)−1

Σ∗−1β∗ = X ′Xβ̂ + Σ−1
o µo

β∗ =
(

X ′X + Σ−1
o

)−1
(

X ′Xβ̂ + Σ−1
o µo

)

Bayesian Analysis of the Linear Model – p.16/??
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BAYESIAN ANOVA MODELS FOR GENE EXPRESSION
DATA

The One-Way ANOVA model, for gene g is defined for a single
response vector Yg as

Yg = xT βg + εg (1)

where xT is a matrix of indicator variables for j = 1, . . . , k treatments
(k = 2 often, in marker studies) and βg

βg = (βg1, . . . , βgk ) (2)

is the k -dimensional (unknown) vector of treatment effects for gene g,
and σ2

g is the unknown variance of εg .
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BAYESIAN ANOVA MODELS FOR GENE EXPRESSION
DATA

For βg = (βg1, . . . , βgk ) one could assume either non-informative
and informative prior specifications (depending on the case). See

Lindley and Smith (1972) article for an extensive treatment of the
Bayesian linear model

The ANOVA model is very powerful, and popular, for microarray
analysis. The model has a strong basis in normal theory, and may be
applied in many settings.

Note: In this model setup, the genes are assumed independent,
largely out of convenience and admittedly naivete.
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BAYESIAN FEATURE SELECTION

Note that in biomarker discovery we are interested in variable
selection, i.e. determining the set of genes responsible for significant
variation between the j = 1, ..., k treatment groups. Variable selection
algorithms for high-dimension are discussed in work by:

George and McCulloch (1997): Bayesian variable selection via
Gibbs Sampline
Brown, Vannucci and Fearn (1998): Multivariate extension
Storey (2003): FDR based
Lee (2003), Sha (2006): Probit binary/multinomial regression with
variable selection
Ishwaran and Rao (2003): ANOVA models for gene expression
Ibrahim, Chen and Gray (2002): Threshold models

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

EXTENDING BASIC ANOVA MODEL

One of the first Bayesian models for differential expression was
that of Ibrahim, Chen and Gray (2002)
Propose a general parametric Bayesian model that accomplishes
two goals.
Determines which genes best discriminate between different
types of cancer
Characterize the expression patters in the tumor tissues
Model the expression under each tissue condition (normal/tumor)
as coming from a mixture of a point mass and a log-normal
distribution
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EXTENDING BASIC ANOVA MODEL

Model gene expression x as,

x =

{
co with probability p

co + y with probability 1 − p

where co > 0 is the threshold level at which x is considered not
expressed. This is a truncated distribution, where co is the lower
bound, and y , is the continuous part.
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EXTENDING BASIC ANOVA MODEL

Let xjig denote the gene expression where j indexes the tissue type
(e.g. 1=normal, 2=tumor), i indexes the individual, i = 1, . . . , nj and g
indexes the gene, g = 1, . . . , G. Similarly, yjig denote the continuous
component if the gene expression level for the j th tissue type for the
i th individual and the gth gene.

Assume yjig are independently log-normal distributed as,

p(yijg|µjg, σ2
jg) = (2π)−1/2y−1

jig σ−1
jg

×exp

{
−

1
2σ2

jg
(log(yjig) − µjg)2

}

Let δjig = 1 is xjig = co and 0 otherwise. Further, the prior probability
P(δjig = 1) ≡ P(xjig = c0) = pjg

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

EXTENDING BASIC ANOVA MODEL

Let θ = (µ, σ2, p) be the collection of all parameters for j = 1, 2 and
g = 1, . . . , G. Then conditional on the observed data D = (x, δ), the
likelihood for θ is given by,

L(θ|D) =
∏

jig

pδjig
jg (1 − pjg)1−δjig p(yjig|µjg, σ2

jg)1−δjig

With this formulation, all the fundamental questions can be answered
by the summary characteristics of the posterior distribution of θ. For
example, a quantity of interest is the expection,

ψjg = Eδ,y [coδjig + (1 − δjig)(co + yjig)|pjg, µjg, σ2
jg]

= copjg + (1 − pjg)

(
co + exp

{
µjg +

σ2
jg

2

})
.
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EXTENDING BASIC ANOVA MODEL

For gene-wise treatment comparisons, e.g. normal versus tumor
expression in gene g, the summarize the posterior distribution of,

ξg = ψ2g/ψ1g (3)

for each gene g = 1, . . . , G.

Priors:

µjg|µjo, σ2
jg ∼ N(µjo, τoσ2

jg/n̄j)

σ2
jg ∼ IG(ajo, bjo)

µjo ∼ N(mjo, ν2
jo)

logit(pjg) ∼ N(ujo, kjoω2
jo)

ujo ∼ N(ûjo, hjoω2
jo)

where n̄j = 1
G

∑G
g=1

(
nj −

∑nj
g=1 δjig

)
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EXTENDING BASIC ANOVA MODEL

Note this that in this model formulation, the priors induce a priori
correlation between the genes. It can be shown that
(µjg, µjg′) ∼ N2(µ∗, Σ∗), with µ∗ = (mjo, mjo)′ and

Σ∗ =




τoσ2

jg
n̄j

+ ν2
jo ν2

jo

ν2
jo

τoσ2
jg′

n̄j
+ ν2

jo



 .

This implies that Corr(µjg, µjg′ |σ2
jg, σ2

jg′ , νjo) → 1 as n̄j → ∞ or
ν2

jo → ∞, thus borrowing strength across genes.
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EXTENDING BASIC ANOVA MODEL

The general gene selection algorithm under the specified model
proceeds as,

1 Compute posterior distributions of ξg ’s for g = 1, ..., G and find
γg = P(ξg > 1|D)

2 Select a threshold γo for γg
3 If gene g is declared differentially expressed, require µ1g "= µ2g ,

else µ1g = µ2g , and create a submodel.
4 Create several submodels using different γo = .7, .8, .9, ...
5 Compare models by the L-measure (see Ibrahim and Laud,

1994;Laud and Ibrahim, 1995)
6 L-measure defined as:

L = E[(z − x)′(z − x)]

where the expectation is with respect to the posterior predictive
distribution

p(Z |D) =
∫

p(z|θ)p(θ|D)dθ
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BAYESIAN ANALYSIS OF VARIANCE FOR MICROARRAYS
(BAM)

Ishwaran and Rao (2003, 2005a, 2005b)

An extension of the ANOVA model to detect differential expression
in genes within a model selection framework

BAM approach uses a special inferential regularization known as
spike-and-slab shrinkage that provides an optimal balance
between total false detections and total false non-detections

Use a parameteric stochastic variable selection procedure first
proposed by Mitchell and Beauchamp (1988)

Recast the problem of finding differentially expressing genes as
determining which factors are significant in a Bayesian ANOVA
model
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BAYESIAN VARIABLE SELECTION IN LINEAR MODELS

Mitchell and Beauchamp (JASA, 1988)

Yi = xT
i β + εi

(Yi |Xi , β, σ2) ∼ N(X T
i β, σ2), i = 1, . . . , n

(βg|γg, τ 2
g ) ∼ N(0, γgτ 2

g ), g = 1, . . . , G
(γg|λg) ∼ (1 − λg)δγ∗(·) + λgδ1(·)

λg ∼ U(0, 1)

(τ−2
g |a1, a2) ∼ Gamma(a1, a2)

(σ−2|b1, b2) ∼ Gamma(b1, b2).

where Yi is the response/gene expression, Xi is the
G-dimensional covariate with β as the associated regression
coefficients and σ2 the measurement error
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BAYESIAN VARIABLE SELECTION IN LINEAR MODELS

(Yi |Xi , β, σ2) ∼ N(X T
i β, σ2), i = 1, . . . , n

(βg|γg, τ 2
g ) ∼ N(0, γgτ 2

g ), g = 1, . . . , G
(γg|λg) ∼ (1 − λg)δγ∗(·) + λgδ1(·)

(4)

The key feature in this model is that the prior variance ν2
g = γgτ 2

g on a
given coefficient βg has a bimodal distribution, which is calibrated via
the choice of priors on τ 2

g and γg . For example, a large value of ν2
g

occurs when γg = 1 and τ 2
g is large, thus inducing a large values for

βg , indicating the covariate could be potentially informative. Similarly,
small values of ν2

g occur when γg = γ∗ (fixed to a pre-specified small
value), which leads to shrinkage of βg .
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BAYESIAN VARIABLE SELECTION IN LINEAR MODELS

Under the above model formulation, the conditional posterior mean of
β is,

E(β|ν2, σ2, Y ) = (σ2Γ−1 + X T X)−1X T Y , (5)

where Γ = diag(ν2
1 , . . . , ν2

G), τ 2 = (τ 2
1 , . . . , τ 2

G) and
Y = (Y1, . . . , Yn). This is the (generalized) ridge regression estimate
of Y on X with weights σ2Γ−1. Shrinkage is induced via the small
diagonal elements of Γ, which are determined by the posteriors of γ,
τ 2 and λ.
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BAM

IR extend this variable selection framework to microarray data, via
an ANOVA model and its corresponding representation as a linear
regression model

Note: ANOVA can be written as a regression and vice-versa

The two-group setting is discussed in Ishwaran and Rao (2003)
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BAM

For a group l = 1, 2, let Ygil denote the gene expression from array/individual
i = 1, . . . , ng,l of gene g = 1, . . . , G. The interest then is to identify
differnetially expressed genes between two groups say, control(l = 1) versus
treatment group(l = 2). To this end, the ANOVA model can then be written
as,

Ygil = θg,0 + µg,0I{l = 2} + εgil

where the errors εgil are asssumed iid N(0, σ2). θg,0 model the mean of the
gth gene in the control group. In this model those genes that are differentially
expressed correspond to µg,0 "= 0 i.e. turned on or off depending on the sign
on µg,0.
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The authors then go through a series of tranformations of the data, before
they fit the above model. There are two primary transformation: centering and
rescaling the data. They transformed data used for down-stream analysis is,

Ỹgil = (Ygil − Ȳg1)
√

n/σ̂2
n

where

σ̂2
n = (n − p)−1

∑

gil

(Ygil − Ȳg2I{l = 2} − Ȳg1I{l = 1})2

is the usual unbaised (pooled) estimator of σ2
0 , n =

∑p
g=1 nj is the total

number of observations, X̄gl is mean of group l .

1 Centering: reduces the number of parameters and correlation between
the model parameters θg and µg .

2 Rescaling to force the variance σ2 to be approximately equal to n
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BAM

Finally the transformed model that is fit to the data is,

Ỹ = X̃ T β̃0 + ε̃ (6)

where Ỹ is a vector of expression values obtained by concatenating the
values Ỹgil in a vector, β̃0 are the new vector regression coefficients under
scaling and ε̃ is the vector of measurement errors. X̃ is the rescaled design
matrix such that the second moments are equal to 1 is of dimension n × 2p.
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The effect of these transformations is, for genes that are differentially
expressed, to induce a conditional mean and variance for µg

µg ≈
√ng,2

σ̂2n
(Ȳg,l=1 − Ȳg,l=2)

ν2
2g

ν2
2 g + 1

a ≈ 1

Their “Bayes Test Statistic” is

µ∗
g = E(µg|Y)

√
ng,1/ng

This E(µg|Y) is the compared to a N(0, ng,1/ng) distribution to test whether
µg,0 is non-zero. This forms the basis of the Zcut procedure for differential
gene expression. IR further discuss an extension called FDRMix to control
the FDR via a hybrid version of the Benjamini and Hochberg (1995)
procedure.
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BAM ILLUSTRATION: SHRINKAGE
Ishwaran and Rao: Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection 443

Figure 2. (a) Estimated Values for jE(¹j jY )j Versus var(¹j jY ) and (b) Absolute Mean Differences jSYj ;2 ¡ SYj;1 j Versus var(¹j jY ) From the Gene
Simulation Model of Figure 1. Circles indicate genes whose true means are ¹j;0 D 0; crosses, genes whose true means are ¹j ;0 6D 0.

small. Figure 2(b) shows that the genes with large posterior
variances are those with group mean differences of intermedi-
ate size. Thus the jump is seen because BAM is shrinking the
posterior means while in!ating the variance for these interme-
diate values, making it harder to reject the null ¹j;0 D 0. It is
clear that to better classify those genes with moderate values
for jE.¹j jY /j, we need to adjust the variance to equal nj =nj;1.
As illustration, consider the two vertical lines in Figure 2(a).
The thin-dashed line is the value for the 99.5th percentile from
a standard normal(0, 1) distribution, whereas the thick-dashed
line is the same percentile from a normal(0, 2) distribution.Ob-

serve how the adjustment to the variance helps avoid misclassi-
fying genes.

Remark 4. It is instructive to work out the posterior condi-
tional variance without using the centering method (5). Now
we expect Oµj;n to be non-zero and that v2

2j¡1 will be large. If
¹j;0 is non-zero, then v2

2j will be large, and hence

b6¡1
j;n ¼

Á
nj =nj;1 ¡

p
nj nj;2=nj;1

¡
p

nj nj;2=nj;1 nj =nj;1

!

:
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BAM ILLUSTRATION

Ishwaran and Rao: Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection 445

Figure 3. BAM Test Statistics ¹¤
j ;n Versus Zj;n From Simulations in Figure 1. Expressed genes are represented by crosses; nonexpressedgenes,

by circles. (Nonexpressed genes are the values mostly near 0 on the x-axis that have been shrunken by BAM.)

this approach, we use Tj D E.¹j jY /, the posterior mean value
for ¹j , as the test statistic in selecting models.

To implement FDRmix, we need to derive F0.dTj /, the con-
ditional density for Tj under the null hypothesis ¹j;0 D 0. Al-
though an exact derivation is infeasible, an accurate and simple
approximationfor F0 can be derived by considering O¹j;n, given
earlier in (6). Suppose that the null is true. Although the poste-
rior should identify gene j as having a mean of 0, there will still
be a positive posterior probability of a large º2

2j and a resulting
misclassi!cation. Equation (7) identi!es Tj under this scenario.
Suppose that the data are balancedwith !xed group sizes so that
nj;1 D N1 and nj;2 D N2. Then, under the null, conditioningon
the event Aj D fº2

2j is largeg,

.Tj jAj ;¹j;0 D 0/ ¼
p

N2

O¾n
.SYj;2 ¡ SYj;1/

¼ normal.0; .N1 C N2/=N1/:

On the other hand, if the posterior correctly identi!es that gene
j is not expressing (i.e., that Ac

j D fº2
2j ¼ 0g), then (6) suggests

that

.Tj jAc
j;¹j;0 D 0/ ¼

p
N2

O¾n.1 C 1=v2
2j /

.SYj;2 ¡ SYj;1/

for some small value of v2
2j . Under the null, this also has a nor-

mal distribution with mean 0, but unlike in the previous case,
the theoretical variance here is not so clear.

These arguments suggest that we can approximate the null
distribution of Tj using the two-point normal mixture,

F0.dTj/ ¼ .1 ¡ 50/Á.Tj jV1/ C 50Á.Tj jV2/;

where Á.¢jV / denotes a normal density with mean 0 and vari-
ance V . We anticipate that V2 D .N1 C N2/=N1 but the values
for V1 and 50 D PrfAj j¹j;0 D 0g are unknown. All of these

values, however, can be easily estimated by !tting a two-point
normal mixture to simulated data. Thus to estimate V1, V2, and
50, we simulate data from the model (4), where ¹j;0 D 0 for
all j D 1; : : : ; p. (Typically we would choose p to be some
large number; here we used 25,000.) Notice that this simula-
tion requires knowing only the sample sizes N1 and N2 and the
value for ¾ 2

0 , which can be estimated accurately from the origi-
nal data. We then run the BAM procedure on the simulated data
and !t a two-point mixture model to the averaged values for
¹j collected from the Gibbs output. The results from !tting the
mixture can now be used to derive p values, which are then an-
alyzed in the usual way by the BH method to determine which
hypotheses to reject. To compute the p values, suppose that T o

j

is the estimated value for E.¹j jY / from the original (nonsimu-
lated) data. Then its p value, Pj , can be approximated by

Pj D 2PrfjT o
j j < Tj j¹j;0 D 0g

¼ 2.1 ¡ 508.jT o
j j=

p
V2/ ¡ .1 ¡ 50/8.jT o

j j=
p

V1//;

where 8.¢/ denotes a standard normal cdf.

5. COMPARISON PROCEDURES

We tested BAM against several different model selection pro-
cedures, includingwhat we call “Bayes exch,” “Z-test,” “Bonf,”
and “BH.” Here we give brief descriptions of these methods.

Z-test. Here genes are identi!ed by the Z-test statistics de-
!ned earlier in (8). The Z-test procedure identi!es gene j as
expressing if jZj;nj ¸ z®=2.

Bonf. The Bonf procedure is a Bonferroni correction to
Z-test. Thus gene j is identi!ed as expressing if jZj;nj ¸
z®=.2p/.

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

BAM EXAMPLE

Lung cancer Affymetrix microarray dataset of Wachi, Yoneda and Wu
(2005). Expression values of 22283 genes collected from 10 patients, 5
of whom had squamous cell carcinoma (SCC) of the
lung and 5 were normal patients. The dataset is available for download at:
http://www.ncbi.nlm.nih.gov/∼geo/query/acc.cgi?acc=GSE3268

BAM software available at http://www.bamarray.com/
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BAM EXAMPLE

BAM assumes equal variance for each group, and uses a CART
variance stabilization algorithm.
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BAM EXAMPLE

Genes that are truly differentially expressed will have posterior variances
converge to 1 in the far right and left side of the plot. The cut-off values are

determined in a data adaptive manner by balancing the total false detections
against total false non-detections.
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SUMMARY

1 Microarray data: large n small p
2 Classification and feature selection
3 Frequentist and Bayesian perspectives
4 Both have their advantages and disadvantages
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