Advanced Statistical Methods for the
analysis of Gene Expression and Proteomics

Veera Baladandayuthapan
(pronounced as Veera B)
University of Texas M.D. Anderson Cancer Center Houston, Texas, USA
veera@mdanderson.org veera@mdanderson.org

STORY TILL NOW.

- What is Bioinformatics?
- As the generation, organization, and analysis of biological data
(initially genomic data)

Atrracted lot of interest in dififerent fields: Computer Science
hhysics, Engineering and of course Statistics
Physics, Engneering and of course Stataistics

- Microarrays
- What are they? What they measure?
- Pre-processing issues: normalization, technical vs biological
variation
- Downstream analysis

Microarray Technology

- High-throughput assays for understanding molecular biology
- Simultaneously measure expression levels for thousands of genes
- By understanding how "gene expression" changes across multiple nditions
- Researches gain clues about gene functions
- How genes work together to carry out biological functions

Many applications in a variety of studies; attracted considerable statistical literature

- Other techniques to measure gene expression

Serial analysis of gene expression (SAGE); cDNA library
sequencing; difterential display; cDNA subtraction; multiplex
sequencingy difiterentit
quantitative RTPCR

Statistical Issues with microarray data

- Preprocessing of the data

Assess spot quality, reliability of signal, normalize data

- Differential expression (Last two classes and next class) Identify which genes are up-/down-regulated in different sets of
experimental conditions experimental conditions
- Classification/Discrimination (supervised learning) Use gene expression profile to predict type of tumor (class
prediction) prediction)
- Clustering (unsupervised learning) Determine genes that are coexpressed or new subtypes of disease
(class discovery) eature (gene) selectio

Feature Selection in a context

- Variable important by itself
- Gene independently ranked by some criteria
- Gene important in a contex
- Combine variables
- Model for combining variables is needed
- Important genes not in a context
- Model averaging; ensemble learning
- Today's lecture: Gene selection in a context: Classificatio

Dimension reduction

- Often in microarrays: $n \ll p$
- Order of n : tens or hundreds
- Order of p : thousands or more
- Therefore it is advisabbe/essential from a practical and methodological point of view to reduce the dimension i.e. p; not all methodological point of v
genes affect the process
- Termed Variable/Gene/Feature selection
- Statistical theory: Model selection i.e. different set(s) of variables(genes) different models
Rich literature in non-microarray context also: stepwise backward, forward regression; AIC; BIC.

Classification

- Objective: assign objects to classes (groups) on the basis of
measurements on the objetcs
- Unsupervised: classes are unknown and want to discover them from data apriori
- Supervised: classes are known apriori and want to use a traningllearning set of labeled objects to form a classifier for classification of future observations
- In microarray context
- Objects are microarrays here, and are to be classified as belonging

10 one of a number of predefined classes $\{1,2, \ldots, K\}$
Each array has a class label: $Y \in\{1,2, \ldots, K\}$ and associated
feature vector of G genes: $X=\left\{X_{1}, X_{2}, \ldots, X_{G}\right\}$ and the aim is to feature vector of G.
predict Y from X.

Classification

Suppose there are two populations, healthy and disease individuals. Let the
class labels (arbitrary) $Y_{i}=0$ if individual j is healthy and $Y_{i}=1$ is individ las disease. The classifier function, $T\left(X_{j}\right)$, predicits Y_{i}, given variables X_{j}.

$$
\left.0^{\circ} 0\right)^{10, n}
$$

Different nomenclature in different fields:

- Discriminant analysis (multivariate statistics)
- Supervised learning (machine learning/artificial intelligence in compute science)
- Prediction, predictive classification (Bayesian)

In Tumor classification: reliable and precise classification essentia - In tumor classuification reatessul cancer treatment

- Characterizing molecular variations among tumor by monitoring gene expression
- Hope is that microarrays will lead to more reliable tumor classification

Statistical Decision theory

- Useful to view classification as a statistical decision theory problem
- Suppose observation Y 's are id from an unknown multivariate $\pi_{k}=p(Y=K)$. Obiects in class k have feature vectors with clas conditional density $p_{k}(x)=p(X \mid Y=k)$.
- A loss function $L(i, j)$ quartifies the loss incurred by erroneously
- Aloss function $L(i, j)$ quantifies the loss in in
classitying a member of class i as class j.
- The risk function for a classifier $T(X)$ is just the expected (average) los $R(T)=E[(Y, T(X))]=\sum_{k} E[L(k, T(X)) \mid Y=k] \pi_{k}$ For symmertic loss i.e. $L(i, j)=1$ for $i \neq j$ then the risk turns out to be
simple missclassification rate: $p(T(X) \neq Y)$

- In the (unlikely) situation that we know both $p_{k}(X)$ and π_{k}, we can use Bayes rule to express po
feature gene vector x

$$
p(k \mid X)=\frac{\pi_{k} p_{k}(X)}{\sum_{i} \pi_{i} p_{i}(X)}
$$

$T_{B}(X)=\operatorname{argmax}_{k} \mathbf{p}(\mathbf{k} \mid \mathbf{X})$
s risk.
$\operatorname{argmax}_{\mathrm{L}} \mathrm{L} p(\mathrm{k} \mid \mathbf{X})$

- Many classfiers can viewed as versions of this general rule, with either

Density estimation approaches e.g. Gaussian maximum likelihood
analysis); mostly linear
Direct function estimation approach: Regression methods e.g.
logistic/robit regression, neural networks, lassification trees; can be adapted to be more flexible

Gaussian Discriminant Rules

- If we assume multivariate Gaussian (normal) class densities for $T(X)=\operatorname{argmin}_{k}\left\{\left(X-\mu_{k}\right) \Sigma_{k}^{-1}\left(X-\mu_{k}\right)^{\prime}+\log \left|\Sigma_{k}\right|-2 \log \pi_{k}\right\}$
- In general, this is a quadratic rule (Quadratic discriminant analysis, or
QDA) in standard multivariate analysis function of the Mahalanobis QDA) in standard multivariate analy
distance: $\left(\boldsymbol{X}-\mu_{k}\right) \Sigma_{k}^{1}\left(\boldsymbol{X}-\mu_{k}\right)^{\prime}$
- In practice, population mean vectors μ_{k} and covariance matrices Σ_{k} are
estimated by corresponding sample quantities
- Most common classifiers are variations of the Gaussian discriminant rule
- Frequentist analogue of Bayes Rule
- MLE chooses the parameter value that makes the chance of the
observaitons the lighest
- For known class conditional densities $p_{\boldsymbol{k}}(\boldsymbol{x})=\boldsymbol{p}(\boldsymbol{x} \mid \boldsymbol{Y}=\boldsymbol{\gamma})$, the ML rule $C_{M}(x)=\operatorname{argmax} p_{k}(x)$
- In case of equal class priors: π_{k}, this is same as Bayes Ruie
- Otherwise, ML rule is not optimal => does not minimize the risk function


```
```

Discriminant Analysis

```
```

Discriminant Analysis
- Fisher Linear Discrimnant Analysis (FLDA)
- Fisher Linear Discrimnant Analysis (FLDA)
- Finds linear combinations (a'X) of the gene expression profiles
- Finds linear combinations (a'X) of the gene expression profiles
sums of squares (\frac{\delta}{(\mp@subsup{g}{}{\prime};\mp@subsup{B}{0}{0}}\mathbf{0})
sums of squares (\frac{\delta}{(\mp@subsup{g}{}{\prime};\mp@subsup{B}{0}{0}}\mathbf{0})
- Predicts the class of an observation X by the class whose mean vector
- Predicts the class of an observation X by the class whose mean vector
- Predicts the class of an observation x by the class whose mean vector

```
```

 - Predicts the class of an observation x by the class whose mean vector
    ```
```



```
```

 - Standard method in most multivariate statistics books
    ```
```

 - Standard method in most multivariate statistics books
 - Two main steps:(1) Dimension reduction via eigen values (2)
 - Two main steps:(1) Dimension reduction via eigen values (2)
 - Note: No distribution over X's - Nonparametric method
    ```
```

 - Note: No distribution over X's - Nonparametric method
    ```
```

```
- Fisher Linear Discrimnant Analysis (FLDA)
- Finds linear combinations ( \(a^{\prime}\) ) of the gene expression profiles
\(X=X_{1}, \ldots, X_{\rho}\) with large ratios of between-groups to within-groups
```



```
Predicts the class of an observation \(X\) by the class whose mean vector
is closest to \(X\) in terms of the discriminant variables
- Classifier: \(T(X)=\operatorname{argmin} d_{k}(x)\) where \(\left.d_{k}^{2}(x)=\sum_{i=1}^{s}[x-(\bar{x})]_{k}\right) v_{i} ; v_{l}\)
are discriminating variables.
Standard method in most multivariate statistics books
Classification using the discriminant variables.
```



```
Common Classifiers
    - QDA: \(\boldsymbol{T}(X)=\operatorname{argmin}_{k}\left\{\left(X-\mu_{k}\right) \Sigma_{k}^{-1}\left(X-\mu_{k}\right)+\log \left|\Sigma_{k}\right|-2 \log \pi_{k}\right\}\)
    - Linear discriminant analysis (LDA): :I \(\Sigma_{k}=\Sigma\) and \(\pi_{k}\) is constant for al
        \(\boldsymbol{T}(\boldsymbol{X})=\operatorname{argmin}_{k}\left\{\left(X-\mu_{k}\right) \Sigma^{1}\left(X-\mu_{k}\right)\right\}\)
            \(=\operatorname{argmin}_{k}\left\{\mu_{k} \Sigma^{1} \mu_{k}-2 \times \Sigma^{-1} \mu_{k}^{\prime}\right\}\)
    Diagonal quadratic discriminant analysis (DQDA):
    \(\Sigma_{k}=\operatorname{diag}\left(\sigma_{k}^{2}, \ldots, \sigma_{k c}^{2}\right)\)
            \(\tau(X)=\operatorname{argmin}_{k} \sum_{\mathrm{k}=1}^{\mathrm{G}}\left\{\frac{\left.\mathrm{x}_{\mathrm{x}}-\mu_{\mathrm{kg}}\right)^{2}}{\sigma_{\mathrm{kg}}^{2}}+\log \sigma_{\mathrm{k}_{\mathrm{k}}^{2}}^{2}\right\}\)
- Diagonal linear discriminant analysis (DLDA): If \(\Sigma_{k}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{G}^{2}\right)\),
    \(T(X)=\operatorname{argmin}_{k} \sum_{\mathrm{g}=1}^{\mathrm{G}}\left\{\frac{\left.\mathrm{X}_{\mathrm{g}}-\mu_{\mathrm{k} g}\right)^{2}}{\sigma_{\mathrm{g}}^{2}}\right\}\)
```


Possible Drawback

- Microarray data are very rich and complex; linear or even quadratic classification boundaries may not be flexible enough
- Features (genes) may have mixture distributions within classes
- Curse of dimensionality: for large number of genes the performance may degrade rapidly due to over-parameterization and high variance of parameter estimates
- There are methods and algorithms to overcome some of these problems (later in the course)
- Very nice article comparing common classification methods: Dudoit, Fridlyand, Speed (JASA, 2002)

Various Modifications

- Nearest Centroid $\left(\Sigma_{k}=I_{G}\right) ; G$ is the number of genes
- Flexible discriminant analysis; Penalized Discriminant Analysis, Mixture Discriminant Analysis
- These are widely used especially for microarray data for a variety
- Simple and intuitive: predict class closest to sample mean
- Estimated Bayes Rule: LDA is Bayes rule with Gaussian
distributions
- Easy to implement
- Reasonable performance: low classification error

[^0]
Feature Selection in Classification

- Two ways to do this
- Do feature selection first and then build a classifier (Filter methods) Implicity as an inherent part of the classifier building procedure
- Filter methods
- Simplest: one-gene-at-a-time approaches using univariate test
statistics e.g. tor F test, signal to noise ratio, Wilcoxon statistics, statistics
p -values
More advanced methods: consider joint distribution of genes;
ordering methods such as random forests
apper methods: depends on classifier
- Some Bayesian classifiers inherently take care of this (more later) Bottomline: Feature selection important and is an aspect of classifier training

Revisit Classification Rule

Suppose independent random variables (possibly vectors) $X_{i n}, \ldots, X_{i}$,
are observed from popuations $i=1, \ldots, K$, each with probability distribuionter

The likelihood of the data is

$$
\prod_{i=1}^{K} \prod_{j=1}^{N_{i}} f_{i}\left(X_{i j} \mid \theta_{i}\right),
$$

where the θ 's are unobserved population parameters.

Classification Rules

In Bayesian parametric classification, a new observation Z is classified by assigning a prior distribution to ne ${ }_{i, j}, \pi\left(\theta_{1}, \ldots, \theta_{K}\right)$, and updating

$$
\pi\left(\theta_{1}, \ldots, \theta_{K} \mid X\right) \propto \prod_{i=1}^{K} \prod_{j=1}^{N_{i}} f_{i}\left(X_{i j} \mid \theta_{i}\right) \pi\left(\theta_{1}, \ldots, \theta_{K}\right) .
$$

The predictive distribution for the i-th population of a new observation
$f_{i}(Z \mid X)=\int_{\theta_{i}} f_{i}\left(Z \mid \theta_{i}\right) \pi\left(\theta_{i} \mid X\right) d \theta_{i}$
ior all i, integrating over $\theta \mid X$.

The Bayesian prediction rule assigns Z to the population i for which

$$
\pi_{i} f_{i}(Z \mid X)>\pi_{i} f_{i}(Z \mid X)
$$

for all i^{\prime}, again at random in the event of ties. The posterior distributio
or all I_{i}^{\prime}, again at random in the event of ties. The posterior distribu
of $f_{i}\left(Z \theta_{i}\right)$ is known given X, at least up to a ormalizing constant.
$P(Z=i)=\frac{\pi_{i} f_{i}(Z \mid X)}{\sum_{i} \pi_{i} f_{i}(Z \mid X)}$
Frequentist methods sometimes resort to large sample or resampling theory in order to determine the uncertainty in prediction. Measuring the uncertainty in the Bayesian classification rule is straightforward, once $\tau(\theta, X)$ is obtaine

Bayesian Linear Classifiers

Suppose that independent random (p-dim) variables $X_{i 1}, \ldots, X_{i N}$ are Suppose that independent random (p-did) variables $X_{i 1}, \ldots, X_{i}$ are
observed rom popuations $\delta=1, \ldots, K, w_{\text {with }} j=1, \ldots, N_{i}$ observations
each, with probability distributions $N\left(\mu_{i}, \Sigma_{i}\right)$, where $\theta_{i}=\left(\mu_{i}, \Sigma_{i}\right)$ are the nobserved population mean and covariance of X
he likelihood for the data is
$p\left(X \mid \mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{K}\right)=\prod_{i=1}^{K} \prod_{i=1}^{N} N\left(X_{i j} \mid \mu_{i}, \Sigma_{i}\right)$

BAYESIAN LINEAR CLASSIFIERS

In the context of microarray data, $x_{i j}$ denotes the vector of gene expression intensity values for individual j in population i. In typica studies, $k=2$ or 3 , for example comparing cancer to normal gene
xpression, or different types, or stages, of cancer. Shese studies ten to be large, $N>1$
considered small.
A convenient, non-informative prior for $\mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{K}$ is
$\pi\left(\mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{K}\right) \propto \prod_{i=1}^{K}\left|\Sigma_{i}\right|^{(\rho+1) / 2}$.

Example

xample Consider the case of two populations (classes), where
$\Sigma_{1}=\Sigma_{2}$, the frequentist rule is to assign \mathbf{x} to class 1 if

$$
P=\frac{q_{1} f_{1}(\mathbf{x})}{q_{1} f_{1}(\mathbf{x})+q_{2} f_{2}(\mathbf{x})}=\left[1+\left(q_{1} / q_{2}\right) \exp (-L)\right]^{-1}
$$

is greater than 1 , class 2 if $P<1$ and at random if $P=1$, where L is he log-density ratio,
$L=\log \left(f_{1}(\mathbf{x}) / f_{2}(\mathbf{x})\right)=\left(\hat{\delta}_{2}-\hat{\delta}_{1}\right) / 2$
randomly selected observation

The predictive distribution of a new observation Z is
$f_{i}\left(z \bar{x}_{i}, S_{i}, \pi_{i}\right) \propto$

$$
\frac{N_{i}}{N_{i}+1}{ }^{p / 2}\left[1+\frac{N_{i}\left(z-\overline{-}_{i}\right)^{\prime} S_{i}^{-1}\left(z-\bar{X}_{i}\right)}{\left(N_{i}+1\right)(N-k)}\right]^{-(N-k+1) / 2}
$$

$$
\text { where } N=\sum_{i=1}^{k} N_{i}, \bar{X}_{i}=N_{i}^{-1} \sum_{j=1}^{N_{i}} X_{i j}^{\prime} \text { and }
$$

$\left(N_{i}-1\right) S_{i}=\sum_{j}\left(X_{i j}-\bar{X}_{i}\right)\left(X_{i j}-\bar{X}_{i}\right)^{\prime}$
Proof: see Press (2003) Bayesian Statistics

$$
\hat{\Sigma}=\frac{\left(N_{1}-1\right) S_{1}+\left(N_{2}-1\right) S_{2}}{\left(N_{1}+N_{2}-2\right)} .
$$ $P_{B}=\left[1+\left(q_{1} / q_{2}\right) \exp \left(-L_{B}\right)\right]^{-1}$

with 1 analogously
where
$L_{B}=\frac{1}{2}(\nu+1) \log \left[\left(\nu+r_{2} \hat{\delta}_{2}\right) /\left(\nu+r_{1} \hat{\delta}_{1}\right)\right]+\frac{1}{2} p \log \left[r_{1} / r_{2}\right]$
$r_{i}=N_{j} /\left(N_{i}+1\right)$ and $\nu=N_{1}+N_{2}-2 . P_{B}=p\left(Z \in \pi_{i} \mid X\right)=E[P \mid X]$
(Rigby 1997, JASA).

- Suppose some subset of genes from the microarray are truely he genes have no information for discrimination.
- Based on non-informative priors, how do you account for the
uncertainty in the feature selection? How would a frequentist? ypically the heurisicic approach is to select the featuers first, classifier.
- Either way, in applications with array data, there is uncertainty in
choosing the features.

Feature Selection

For any given feature set, of size p,

${ }_{\left(z \mid X_{i}, \gamma, p\right) \propto}$

$$
{\frac{N_{i}}{N_{i}+1}}^{p / 2}\left[1+\frac{N_{i}\left(z-\bar{x}_{i)^{\prime}} S_{i}^{-1}\left(z-\bar{x}_{i)}\right)\right.}{\left(N_{i}+1\right)(N-k)}\right]^{-(N-k+1),}
$$

where $\bar{x}_{i /}$ and S_{γ} are derived from the selected subset of gene ccounting for uncertainty in feature selection involves integrating of the posterior distribution of $p, \gamma_{1}, \ldots, \gamma_{M}$.
$f_{i}(z \mid X) \propto \int_{p} \int_{\Gamma} f_{i}\left(z_{j} \mid X_{\gamma}\right) \pi(\gamma, p \mid X) d \gamma d p$
for $i=1$, K.

Feature Selection revisited

In practice investigating the posterior density for all possible subsets of
$X_{\text {y }}$ of size p is infeasible. Fortunately the unnormalized posterior of
(γ, p) may be evaluated as
$\tilde{\pi}(p, \gamma \mid X) \propto \prod_{i=1}^{K} \prod_{j=1}^{N_{i}} f_{i}\left(X_{i j} \mid \gamma, p\right) \pi(\gamma, p)$
$\mathrm{d} f_{i}(z \mid X)$ may be obtained by
$f_{i}(z \mid X)=\frac{\tilde{f}_{i}}{\sum_{i=1}^{K} \tilde{f}_{i}}$
where where
$\tilde{t}_{i}=\int_{p} \int_{\Gamma} f_{i}\left(z_{i} \mid X_{\gamma}\right) \tilde{\pi}(\gamma, p \mid X) d \gamma d p$.

```
Suman. Frequentist vs bayesian
```

Classification

- Bayesian and Frequentist classification rules depend on the
likelihood function
- Bayesian rules allow prior information
- Bayesian rules flexibly account for all uncertainty in θ (features).
- Bayesian classifiers yield exact measures of prediction
uncertainty.
- Intuitively Bayesian Classifiers can reduce variance, by averaging
over the uncertainty in θ, see Lehmann (1990) for discussiog of bias/variance tradeoff in classification.

Bayesian Analysis of a Linear Model

The linear model can be written as

$$
Y=X \beta+9
$$

where Y is a $n \times 1$ response, X is a $n \times p$ matrix of covariates, β
is a $p \times 1$ vector of coefficients (unobserved) and

$$
\epsilon \sim N_{n}\left(0, \sigma^{2} I\right)
$$

Let $M=X\left(X^{\prime} X\right)^{-} X^{\prime}$, and $\tau=\sigma^{-2}$, where - denotes gener-
alized inverse. Recall that the UMVUE of $\mu=E(Y)=X \beta$ is
$M Y$. We would like to derive the posterior distribution of β and τ under noninformative priors.

```
Detour: Bayesian Analysis of a Linear Model
The linear model, is frequenty used in many biostatistical
applications, including
    1. dose response modeling
    2. polynomial regression
    3. exposure assessment
    4. analysis of variance (ANOVA) problems comparing
        treatment groups
    (See Case studies in Biometry by Lange et al., John Wiley \&
    Sons.)
```


Bayesian Analysis of a Linear Model

Theorem 1

Suppose τ is known, X is of full rank p, and
$\pi(\beta) \propto 1$.
Then

$$
\beta \mid y, \tau \sim N_{p}\left(\hat{\beta}, \tau^{-1}\left(X^{\prime} X\right)^{-1}\right),
$$

where
$\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$.

```
Bayesian Analysis of a Linear Model
Proof:
\(p(\beta \mid y, \tau) \propto \exp \left\{-\frac{\tau}{2}(Y-X \beta)^{\prime}(Y-X \beta)\right\}\)
    \(=\exp \left\{-\frac{\tau}{2}\left[Y^{\prime}(I-M) Y+(\beta-\hat{\beta})^{\prime} X^{\prime} X(\beta-\hat{\beta})\right]\right\}\)
    \(=\exp \left\{-\frac{\tau}{2}\left[(\beta-\hat{\beta})^{\prime} X^{\prime} X(\beta-\hat{\beta})\right]\right\}\)
Note that
    \(Y^{\prime}(I-M) Y+(\beta-\hat{\beta})^{\prime} X^{\prime} X(\beta-\hat{\beta})\)
    \(\gamma^{\prime}(I-M) Y+\beta^{\prime} X^{\prime} X \beta-2 \hat{\beta}^{\prime} X^{\prime} X \beta+\hat{\beta}^{\prime} X^{\prime} X\)
    \(Y^{\prime}(I-M) Y+\beta^{\prime} X^{\prime} X \beta-2 Y^{\prime} X\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right) \beta+Y^{\prime} M Y\)
```

Thus
$p(\beta \mid y, \tau) \propto \exp \left\{-\frac{\tau}{2}(\beta-\hat{\beta})^{\prime} X^{\prime} X(\beta-\hat{\beta})\right\}$.
We can recognize this as a normal kernel with mean $\hat{\beta}$ and covariance matrix $\tau^{-1}\left(X^{\prime} X\right)^{-1}$. Thus,

$$
\beta \mid y, \tau \sim N_{p}\left(\hat{\beta}, \tau^{-1}\left(X^{\prime} X\right)^{-1}\right)
$$

```
Bayesian Analysis of a Linear Model
    Theorem 2
    When \tau is known, Jeffreys prior for \beta}\mathrm{ is a uniform prior, i.e.,
        \pi(\beta)\propto1.
    Proof:
        logp(y|\beta,\tau)] = -\frac{n}{2}
    \frac{\partial}{\partial\beta}}\operatorname{log}[({||,\tau)]=\frac{\partial}{\partial\beta}[-\frac{T}{2}(Y-X\beta\mp@subsup{)}{}{\prime}(Y-X\beta)
        = 交 [-\frac{T}{2}}[\mp@subsup{Y}{}{\prime}Y-2\mp@subsup{\beta}{}{\prime}\mp@subsup{X}{}{\prime}Y+\mp@subsup{\beta}{}{\prime}\mp@subsup{X}{}{\prime}X\beta]
        = \tau\mp@subsup{X}{}{\prime}Y-\tau(\mp@subsup{X}{}{\prime}X)\beta
```


bayesian analysis of a Linear model

Consider the linear model where both β and τ are unknow
Then Jeffreys joint prior for (β, τ) is given by
$\pi(\beta \mid \tau) \propto \tau\left(X^{\prime} X\right)^{p / 2-1}$
Proof: Exercis
Theorem 4
Consider the linear model with both β and τ unknown, and
suppose
$\pi(\beta, \tau) \propto \tau^{-1}$.

Bayesian analysis of a Linear Model

Thus,
$p(\beta \mid \beta) \propto \int_{0}^{\infty} \tau^{\pi / 2-1} \exp \left\{-\frac{\tau}{2}\left[Y^{\prime}(I-M) Y+(Y-X \beta)^{\prime}(Y-X \beta)\right\} d \tau\right.$
$=\left[Y^{\prime}(I-M) Y+(\beta-\hat{\beta})^{\prime} X^{\prime} X(\beta-\hat{\beta})\right]^{-n / 2}$
Let $s^{2}=Y^{\prime}(I-M) Y /(n-p)$. Then the above integral is
$=\left[(n-p) s^{2}+(\beta-\hat{\beta})^{\prime} X^{\prime} X(\beta-\hat{\beta}]^{-(n-p+p) / 2}\right.$
$=\left[1+\frac{1}{s^{2}(n-p)}(\beta-\hat{\beta})^{\prime} X^{\prime} X(\beta-\hat{\beta})\right]^{-(n-p+p) / 2}$
Thus, $\beta \mid y \sim S_{p}\left(n-p, \hat{\beta}, s^{2}\left(X^{\prime} X\right)^{-1}\right)$.


```
bayesian Analysis of a Linear Model
Then
        \(\beta \mid y \sim S_{p}\left(n-p, \hat{\beta}, s^{2}\left(X^{\prime} X\right)^{-1}\right)\),
where \(s^{2}=Y^{\prime}(I-M) Y /(n-p)\) and
\(t \mid y \sim \operatorname{gamma}\left((n-p) / 2, s^{2}(n-p) / 2\right)\).
Proof:
We have
    \(p(\beta, \tau \mid y) \propto \tau^{n / 2-1} \exp \left\{-\frac{\tau}{2}(Y-X \beta)^{\prime}(Y-X \beta)\right\}\)
        \(=\tau^{n / 2-1-1} \exp \left\{-\frac{T}{2}\left[Y^{\prime}(I-M) Y+(\beta-\hat{\beta})^{\prime} X^{\prime} X(\beta-\hat{\beta}]\right\}\right.\)
```



```
Bayesian Analysis of a Linear Model
    and
        \(\hat{\delta}^{\hat{s}^{2}}=\left(n+\delta_{0}\right)^{-1}\left(Y^{\prime}(I-M) Y+\left(\hat{\beta}-\mu_{0}\right)^{\prime}\left(A^{\prime} X^{\prime} X\right)\left(\hat{\beta}-\mu_{0}\right)+\gamma_{0}\right)\)
    and
        \(\tau \left\lvert\, y \sim \operatorname{gamma}\left(\frac{\left(n+\delta_{0}\right)}{2}, \frac{\tilde{s}^{2}\left(n+\delta_{0}\right)}{2}\right)\right.\)
Proof: Exercise
Hint:
        \(\pi(\beta, \tau \mid Y) \propto \tau^{\frac{n+p+\delta_{0}}{2}-1} e^{-\frac{\tau}{\frac{1}{2}} Q}\)
where
```


bayesian analysis of a Linear Model

$Q=(Y-X \beta)^{\prime}(Y-X \beta)+\left(\beta-\mu_{o}\right)^{\prime} \Sigma_{o}^{-1}\left(\beta-\mu_{o}\right)+\delta_{o}$
Notice that
$\begin{aligned}(Y-X \beta)^{\prime}(Y-X \beta) & =\beta^{\prime} X^{\prime} X \beta-\beta^{\prime} X^{\prime} Y-Y^{\prime} X \beta+Y^{\prime} Y \\ & =(\beta-\hat{\beta})^{\prime} X^{\prime} X(\beta-\hat{\beta})+Y^{\prime}(I-M) Y\end{aligned}$
Setting $Q=\left(\beta-\beta^{*}\right)^{\prime} \sum^{*-1}\left(\beta-\beta^{*}\right)$ we have
$Q=\beta^{\prime} X^{\prime} X \beta-\hat{\beta}^{\prime} X^{\prime} X \beta-\beta^{\prime} X^{\prime} X \hat{\beta}+\hat{\beta}^{\prime} X^{\prime} X \hat{\beta}+\left[Y^{\prime} Y-Y^{\prime} M Y\right.$
$+\left[\beta^{2} \Sigma_{o}^{-1} \beta-\mu_{0} \Sigma_{0}^{-1} \beta-\beta^{2} \Sigma_{o}^{-\mu_{0}+\mu_{0} \Sigma_{0}^{-} \mu_{0} \mid+}\right.$


```
Bayesian Analysis of a Linear Model
    Rearranging terms, and equating quadratic and linear terms we
    find that
    \Sigma
    \Sigma \Sigma*-1}\mp@subsup{\beta}{}{*}=\mp@subsup{X}{}{\prime}X\hat{\beta}+\mp@subsup{\Sigma}{o}{-1}\mp@subsup{\mu}{o}{
    \beta
```


Bayesian anova Models for Gene Expression Data

The One-Way ANOVA model, for gene \boldsymbol{g} is defined for a single response vector \boldsymbol{Y}_{g} as

$$
\begin{equation*}
Y_{g}=x^{\top} \beta_{g}+\epsilon_{g} \tag{1}
\end{equation*}
$$

where \boldsymbol{x}^{T} is a matrix of indicator variables for $\boldsymbol{j}=\mathbf{1}, \ldots, \boldsymbol{k}$ treatments ($\boldsymbol{k}=\mathbf{2}$ often, in marker studies) and β_{g}

$$
\beta_{g}=\left(\beta_{g 1}, \ldots, \beta_{g k}\right)
$$

Bayesian Feature Selection

Note that in biomarker discovery we are interested in variable
selection, i.e. determining the set of genes responsible for significant
tariation between the $j=1, \quad k$ treatment groups. Variable selection
variation bew high-dimsion, krea discussed in works variable selection
gorims for high-a $=1$ nension are discussed in work by

- George and McCulloch (1997): Bayesian variable selection via Gibbs Sampline
Brown, Vannucci and Fearn (1998): Multivariate extension
- Storey (2003): FDR based
- Lee (2003), Sha (2006): Probit binary/multinomial regression with
- Ishwaran and Rao (2003): ANOVA models for gene expression
- Ishwaran and Rao (2003): ANOVA models for gene
- Ibrahim, Chen and Gray (2002): Threshold models

Extending Basic ANOVA Model

- One of the first Bayesian models for dififerentiar expression was

One of the first Bayesian modeles tor difit
that of Ibrahim, Chen and Gray (2002)

- Propose a general parametric Bayesian model that accomplishes
two goals.
types of cancer which genes best discriminate between different
- Characterize the expression patters in the tumor tissues
- Model the expression under each tissue condition (normal/tumor) as coming from a mixture of a point mass and a log-normal distribution

Extending Basic anova Model

Model gene expression \boldsymbol{x} as
$x= \begin{cases}c_{o} & \text { with probability } p \\ c_{0}+y & \text { with probability } 1-p\end{cases}$
where $\boldsymbol{c}_{\boldsymbol{c}}>\boldsymbol{0}$ is the threshold level at which \boldsymbol{x} is considered not
expressed. This is a truncated distribution, where $\boldsymbol{c}_{\boldsymbol{o}}$ is the lower ound, and y, is the continuous part
 $P\left(\delta_{i g}=1\right) \equiv P\left(x_{i g}=c_{0}\right)=p_{i g}$

Extending Basic AnOVA Model

Let $\theta=\left(\mu, \sigma^{2}, p\right)$ be the collection of all parameters for $j=\mathbf{1 , 2}$ and $g=1, \ldots, G$. Then conditional on the observed data $D=(x, \delta)$, the likelihood for θ is given by,
$L(\theta \mid D)=\prod_{j l g} p_{l g}^{\delta_{l g}}\left(1-p_{i g}\right)^{1-\delta_{l g} p}\left(y_{i g} \mid \mu_{j g}, \sigma_{I g}^{2}\right)^{1-\delta_{l g}}$
With this formulation, all the fundamental questions can be answered by the summary characteristics of the posterior distribution of θ. For example, a quantity of interest is the expection,
$\psi_{i g}=E_{\delta, y[}\left[c_{o} \delta_{i g}+\left(1-\delta_{i g}\right)\left(c_{o}+y_{i g g}| |_{i g}, \mu_{j g}, \sigma_{i g}^{2}\right]\right.$ $=c_{o} p_{g g}+\left(1-p_{j g}\right)\left(c_{o}+\exp \left\{\mu_{j g}+\frac{\sigma_{j g}^{2}}{2}\right\}\right)$.

Extending Basic ANOVA Model

For gene-wise treatment comparisons, e.g. normal versus tumor expression in gene g, the summarize the posterior distribution of, $\xi_{g}=\psi_{2 g} / \psi_{1 g}$
(3)
for each gene $g=1, \ldots, G$
Priors:

```
\(\mu_{i g} \mid \mu_{j}, \sigma_{i g}^{2} \sim N\left(\mu_{j}, \tau_{o} \sigma_{g g}^{2} / \bar{n}_{j}\right)\)
\(\sigma_{i g}^{2} \sim \operatorname{IG}\left(a_{i j}, b_{j o}\right)\)
\(\mu_{j_{0}} \sim N\left(m_{j}, \nu_{j_{0}}^{2}\right)\)
```


where $\bar{n}_{j}=\frac{1}{6} \sum_{g=1}^{a}\left(n_{j}-\sum_{g=1}^{n_{j}} \delta_{i g}\right)$

Extending Basic AnOVA Model

Note this that in this model formulation, the priors induce a priori
correlation between the genes. It can be shown that
$\left(\mu_{i g}, \mu_{j g^{\prime}}\right) \sim N_{2}\left(\mu^{*}, \Sigma^{*}\right)$, with $\mu^{*}=\left(m_{j}, m_{j o}\right)^{\prime}$ and

$$
\Sigma^{*}=\left(\begin{array}{cc}
\frac{\tau_{0} \sigma_{i j}^{2}}{n_{j}}+\nu_{i o}^{2} & \nu_{i o}^{2} \\
\nu_{i o}^{2} & \frac{\tau_{o} o_{j o}^{2}}{n_{j}}+\nu_{i o}^{2}
\end{array}\right)
$$

This implies that $\operatorname{Corr}\left(\mu_{i g}, \mu_{i q^{\prime}} \mid \sigma_{i g}^{2}, \sigma_{a^{\prime}}^{2}, \nu / \nu_{j o}\right) \rightarrow \mathbf{1}$ as $\bar{n}_{l} \rightarrow \infty$ or $v_{j o}^{2} \rightarrow \infty$, thus borrowing strength across genes.

[^1]Bayesian Analysis of Variance for Microarrays

(BAM)

Ishwaran and Rao (2003, 2005a, 2005b

- An extension of the ANOVA model to detect differential expression in genes within a model selection framework
BAM approach uses a special inferential regularization known as spike-and-slab shinkage that provides an optimal balance
between total false detections and total false non-detections
Use a parameteric stochastic variable selection procedure first
proposed by Mitchell and Beauchamp (1988)
Recast the problem of finding differentially expressing genes as
determining which factors are significant in a Bayesian ANOVA determ
- Mitchell and Beauchamp (JASA, 1988)

$$
y_{i}=x_{i}^{\top} \beta+\epsilon_{i}
$$

$\left(Y_{i} \mid X_{i}, \beta, \sigma^{2}\right) \sim N\left(X_{i}^{\top} \beta, \sigma^{2}\right), \quad i=1, \ldots, n$
 $\begin{aligned}\left(\lambda_{g} \mid \lambda_{g}\right) & \sim\left(1-\lambda_{g}\right. \\ \lambda_{g} & \sim U(0,1)\end{aligned}$
$\left(\tau_{g}^{-2} \mid \mathbf{a}_{1}, a_{2}\right) \sim \operatorname{Gamma}\left(\mathbf{a}_{1}, a_{2}\right)$
$\left(\sigma^{-2} \mid \boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right) \sim \operatorname{Gamma}\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right)$
where \boldsymbol{Y}_{i} is the response/gene expression, $\boldsymbol{X}_{\boldsymbol{i}}$ is the G-dimensional covariate with β as the associated regression coefficients and σ^{2} the measurement error
$\left(Y_{i} \mid X_{i}, \beta, \sigma^{2}\right) \sim N\left(X_{i}^{\top} \beta, \sigma^{2}\right), \quad i=1, \ldots, n$
$\begin{aligned}\left(\beta_{g}| |_{g}, \tau_{g}^{2}\right) & \sim N\left(0, \gamma_{g} \tau_{g}^{2}\right), \quad g=1, \ldots \\ \left(\gamma_{g} \mid \lambda_{g}\right) & \sim\left(1-\lambda_{g}\right) \delta_{\gamma \gamma}(\cdot)+\lambda_{g} \delta_{1}(\cdot)\end{aligned}$
$\left(\gamma_{g} \mid \lambda_{g}\right) \sim\left(1-\lambda_{g}\right) \delta_{\gamma^{*}}(\cdot)+\lambda_{g} \delta_{1}(\cdot)$
The key feature in this model is that the prior variance $\nu^{2}=\tau^{2}$ (4)
given coeffficient in this model is that the prior variance $\nu_{g}^{2}=\gamma_{g} \tau_{g}^{2}$ on a given coefficient β_{g} has a bimodal distribution, which is calibrated vi occurs when $\gamma_{g}=1$ and τ_{g}^{2} is large, thus inducing a large values for β_{g}, indicating the covariate could be potentially informative. Simimiarly, small values of ν_{g}^{2} occur when $\gamma_{g}=\gamma^{*}$ (fixed to a pre-specified smal value), which leads to shrinkage of β_{Ω}

- IR extend this variable selection framework to microarray data, via an ANOVA model and its corresponding representation as a linea
regression model

Note: ANOVA can be written as a regression and vice-versa

- The two-group setting is discussed in Ishwaran and Rao (2003)
where $\mathrm{\Gamma}=\operatorname{diag}\left(\nu_{1}^{2}, \ldots, \nu_{\mathrm{G}}^{2}\right), \tau^{2}=\left(\tau_{1}^{2}, \ldots, \tau_{G}^{2}\right)$ and
$Y=\left(Y_{1}, \ldots, Y_{n}\right)$. This is the (generalized) ridge regression estimate of \boldsymbol{Y} on \boldsymbol{X} with weights $\sigma^{2} \Gamma^{-1}$. Shrinkage is induced via the small diagonal elements of Γ, which are determined by the posteriors of γ, τ^{2} and λ.
 BAM

For a group $I=1,2$, let $Y_{\text {gil }}$ denote the gene expression from array individua $=1, \ldots, n_{g, 0}$, f gene $g=1, \ldots, G$. The interest then is to identitiy difiternetially expressed genes between two groups say, control(I $I=1$) versu
treatment group $(I=2)$. To this end, the ANOVA model can then be written as,
$\gamma_{g i \prime}=\theta_{g, 0}+\mu_{g, 0}\left\{\{I=2\}+\epsilon_{g i \prime}\right.$
where the errors $\epsilon_{g i l}$ are asssumed id $N\left(0, \sigma^{2}\right)$. $\theta_{g, 0}$ model the mean of the gth gene in the contron group. In this model those genest that are dififerentiall on $\mu_{g, 0}$.

BA	AM
The authors then go through a series of tranformations of the data, before they fit the above model. There are two primary transformation: centering and rescaling the data. They transformed data used for down-stream analysis is,	
$\bar{\gamma}_{g i l}=\left(\gamma_{g i l}-\bar{Y}_{g 1}\right) \sqrt{n / \hat{\sigma}_{n}^{2}}$	
where	
	$\hat{\sigma}_{n}^{2}=(n-p)^{-1} \sum_{g i i}\left(Y_{g i l}-\bar{r}_{g 2} 2\{I=2\}-\bar{Y}_{g 1}\{\{I=1\})^{2}\right.$
is the usual unbaised (pooled) estimator of $\sigma_{0}^{2}, n=\sum_{g=1}^{p} \boldsymbol{n}_{j}$ is the total number of observations, $\bar{X}_{g l}$ is mean of group I.	
- Centering: reduces the number of parameters and correlation between the model parameters θ_{g} and μ_{g}.	
	Rescaling to force the variance σ^{2} to be approximately equal to n

where \bar{Y} is a vector of expression values obtained by concatenating the values $\tilde{Y}_{g 1}$ in a vector, $\tilde{\beta}_{0}$ are the new vector regression coefificients unde matrix such that the second moments are equal to 1 is of dimension $n \times 2 p$.

bam

The effect of these transtormations is, for genes that are differentialy
xpressed, to induce a conditional mean and variance for μ_{g}
$\mu_{g} \approx \frac{\sqrt{\bar{\sigma}_{g, 2}}}{\hat{\sigma}^{2}}\left(\bar{\gamma}_{g, l=1}-\bar{r}_{g, l=2}\right)$
$\frac{\nu_{2 g}^{2}}{\nu_{2}^{2} g+1} a \approx 1$
Their "Bayes Test Statistic" is
$\mu_{g}^{*}=\mathrm{E}\left(\mu_{\mathrm{s}} \mid \mathbf{Y}\right) \sqrt{\mathbf{n}_{\mathrm{g}_{\mathrm{s}}} / \mathbf{n}_{\mathrm{E}}}$
This $\mathrm{E}\left(\mu_{\mathrm{g}} \mathrm{Y}\right)$ is the compared to a $\mathrm{N}\left(0, \boldsymbol{n}_{g}, 1 / n_{g}\right)$ distribution to test whether $\mu_{g, \text { on }}$ is non-zero. This forms the basis of the Zcut procedure for differential gene expression. IR further discuss an extension called FDRMix to con
the FDR via a hybrid version of the Beniamini and Hochberg (1995)

- Lung cancer Aftymetrix microarray dataset of Wachi, Yoneda and Wu 2005). Expression values of 2288 genes collected from 10 patients,
of whom had squamous cell carcinoma (SCC) of the

- BAM software available at http://www.bamarray.com/

BAM ExaMple

Genes that are truly differentially expressed will have posterior variances determined in a data adapivive manner by balancing the total false detections

- Microarray data: large n small p
- Classtication and feature selection
- Both have their advantages and disadvantages

[^0]: How do we evaluate Classifiers?

 - Error rates
 - Resubstitution estimation: fit a single classifier to the data, and applies this classifier in turn to each data observation
 Problem: downward bias; underestimates classification error
 Probeetimes severely)
 (somnwar
 - Test and training data: divide cases in learning set into two sets, $S 1$ and
 S2; classifier buitt using $\mathrm{S1}$, error rate computed tor $\mathrm{S2}$. $\mathrm{S1}$ and $\$ 2$ must Se il casstierial).
 Problem: reduced effective sample size
 - V -fold Crossvalidation: learning set randomly divided into V subsets of
 (nearly equal size. Build classifiers leaving one set out; test set error nates computed on left out set and averaged.
 Problem: Bias-variance tradeoff: smaller V can give larger bias but
 smaller variance
 maller variance
 $\stackrel{\circ}{ }$ Other methods: Aggregating:Bagging:Boosting $\quad . \quad . \quad \cdots=$

[^1]: Extending Basic AnOVA Model
 The general gene selection algorithm under the specified model
 proceeds as,

 - Compute posterior distributions of ξ_{g} 's for $g=1, \ldots, G$ and find $\gamma_{g}=P\left(\xi_{g}>1 \mid D\right)$
 reshold γ_{0} for γ_{g}
 else $\mu_{1 g}=\mu_{2 g}$ and aitierentially expressed, require $\mu_{1 g} \neq \mu_{2 g}$
 Create several sumbereats a submodel.
 Compare models by the L-measure (see lbrahim and Col 1994;Laud and librahim, 1995)
 - L-measure defined as:
 $L=E\left[(z-x)^{\prime}(z-x)\right]$
 istribution expectation is with respect to the posterior predictive
 $p(Z \mid D)=\int p(z \mid \theta) p(\theta \mid D) d \theta$

