Differential Expression Detection in Microarray Data

Jianhua Hu Department of Bioinformatics and Computational Biology

2.11.08

Outline

➢ Introduction

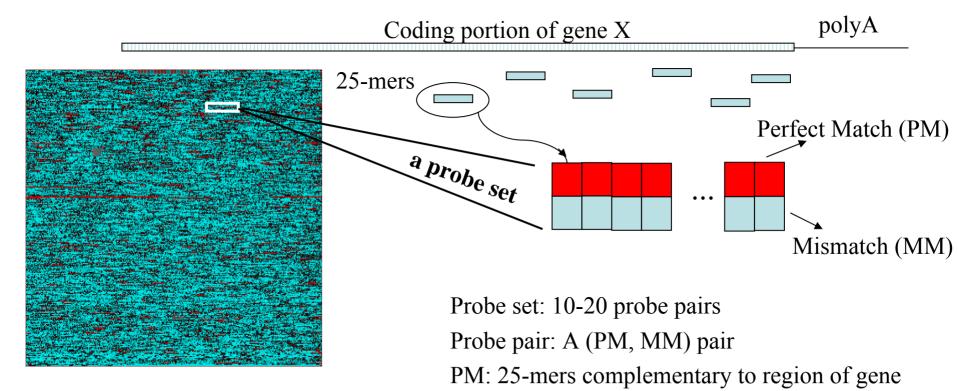
- Penalized t-statistics by Tusher et al. (2001) with implementation in the software ``SAM''.
- Moderated t-statistics by Smyth et al. (2004) with implmentation in R package ``limmod''.
- Likelihood-based identifying of differentially expressed genes by Hu and Wright (2007).

Introduction

- DNA microarrays play an important role in many areas of biomedical research.
- Two popular types: Spotted cDNA microarrays, multiprobe oligonucleotide arrays (Affymetrix Genechip).
- Multiprobe oligonucleotide array: probe redundancy, one "color".

Introduction

An example Affymetrix genechip array:

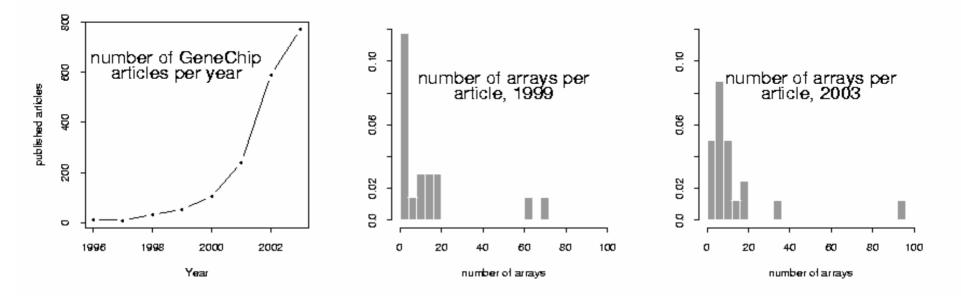


MM: Middle base is different to that of PM

Current methods

- Simple rule without accounting for expression variation:
 Chen et al. (1997) "fold changes" rule.
- Ordinary two-sample t-statistic:
 Dudoit et al. (2002), Thomas et al. (2001)
- Modified two-sample t-statistic:
 Tusher et al. (2001), Efron et al. (2001), Smyth (2004).

- "Borrowing" information from across the genes:
 - Eaves et al. (2002) weighted average of the sample variance and a local variance estimate for groups of genes.
 - Bayesian approaches: Newton et al. (2001), Baldi and Long (2001), Ibrahim et al. (2002).
- Uncertainty in the variance is an acute problem when the sample size is small.



- > The median number of arrays was 8 both in 1999 *and* 2003.
- > Illustrates importance of dealing with a wide range of sample sizes.

Significance analysis of Microarrays (SAM)

Tusher, Tibshirani, Chu (2001)

The Problem:

- Identifying differentially expressed genes
- Determine which changes are significant
- Enormous number of genes

Reminder: t-Test

- t-Test for a single gene:
- We want to know if the expression level changed from condition A to condition B.
- Null assumption: no change
- Sample the expression level of the genes in two conditions, A and B.
- Calculate $\overline{x}_A, \overline{x}_B$
- Ho: The groups are not different, $E(\overline{x}_A \overline{x}_B) = 0$

t-Test Cont'd

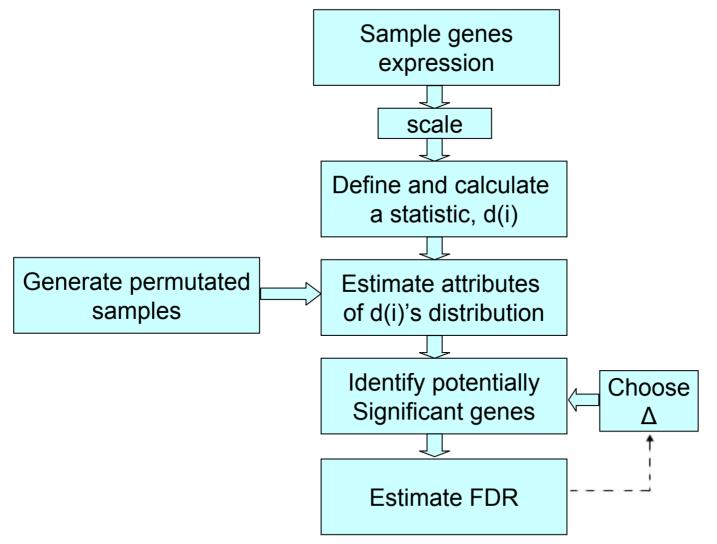
 Under H₀, and under the assumption that the data is normally distributed,

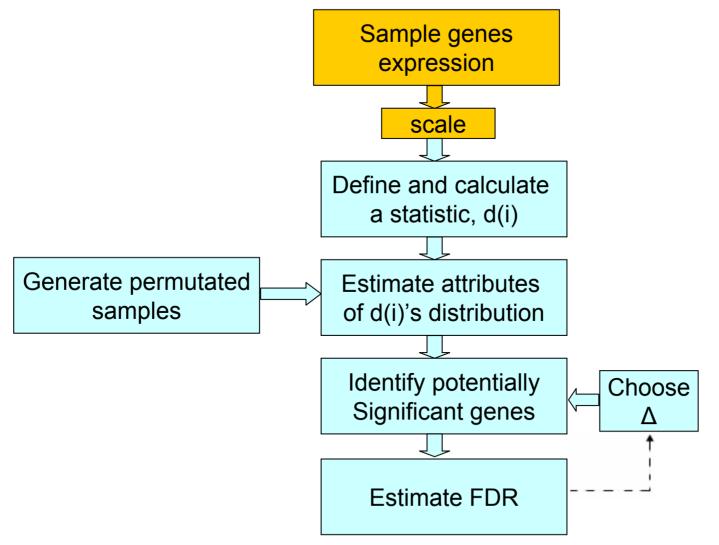
t-Statistic
$$\frac{(\overline{x}_A - \overline{x}_B) - 0}{\hat{\sigma}(\overline{x}_A - \overline{x}_B)} \sim t$$

• Use the distribution table to determine the significance of your results.

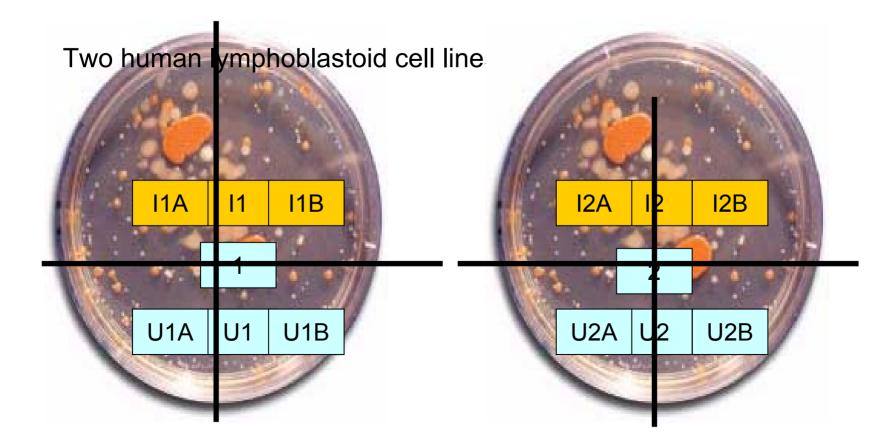
Multiple Hypothesis Testing

- Naïve solution: do t-test for each gene.
- Multiplicity Problem: The probability of error increases.
- We've seen ways to deal with it, that try to control the FWER or the FDR.
- Today: SAM (estimates FDR)

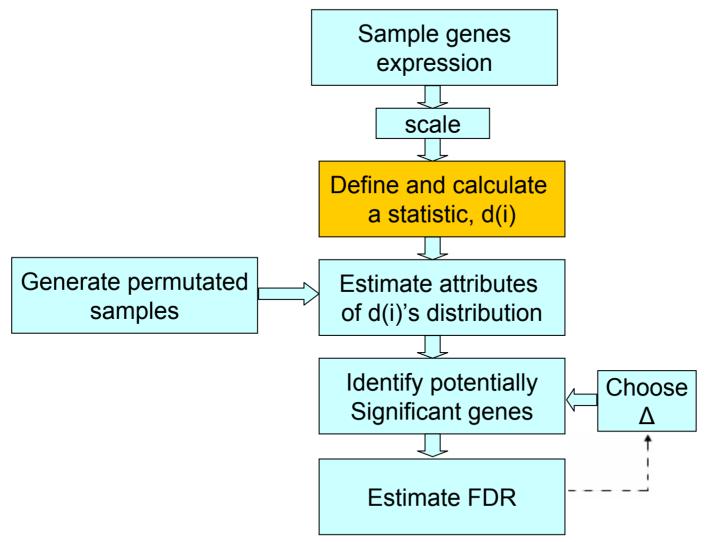




The Experiment



Eight hybridizations were performed.



SAM's statistic- Relative Difference

• Define a statistic, based on the ratio of change in gene expression to standard deviation in the data for this gene.

$$d(i) = \frac{\overline{x}_{I}(i) - \overline{x}_{U}(i)}{s(i) + s_{0}}$$
Estimate of the standard deviation of the numerator
Difference between the means of the two conditions
Estimate of the standard Fudge Factor

$$s(i) = \sqrt{\left(\frac{\frac{1}{n_1} + \frac{1}{n_2}}{n_1 + n_2 - 2}\right)} \left\{ \sum_m [x_m(i) - \overline{x}_I(i)]^2 + \sum_m [x_m(i) - \overline{x}_I(i)]^2 \right\}$$

Why s₀?

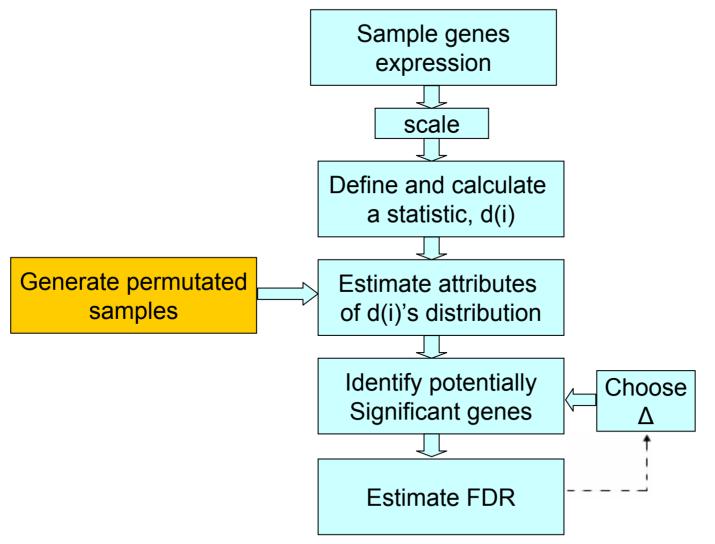
- At low expression levels, variance in d(i) can be high, due to small values of s(i).
- To compare d(i) across all genes, the distribution of d(i) should be independent of the level of gene expression and of s(i).
- Choose s₀ to make the coefficient of variation of d(i) approximately constant as a function of s(i).

Now what?

• We gave each gene a score.

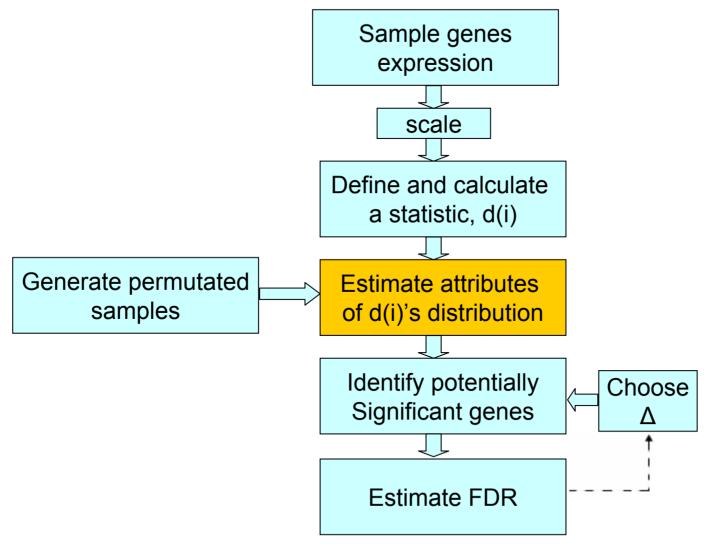
At what threshold should we call a gene significant?

How many false positives can we expect?



More data required

- Experiments are expensive.
- Instead, generate permutations of the data (mix the labels)
- Can we use all possible permutations?



Estimating d(i)'s Order Statistics

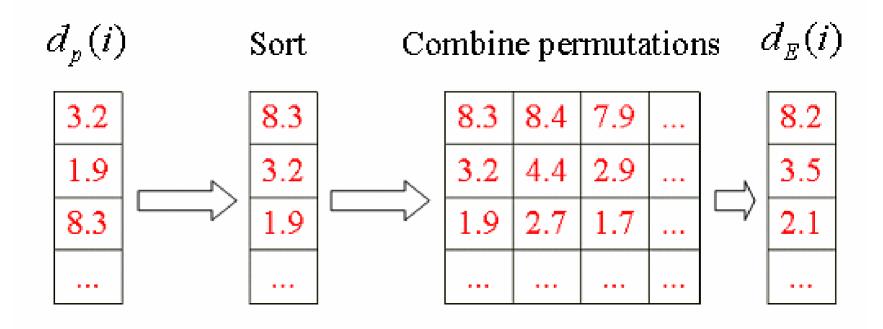
- For each permutation p, calculate $d_p(i)$. $d_p(i) = \frac{\overline{x}_{G1}(i) - \overline{x}_{G2}(i)}{s(i) + s_0}$
- Rank genes by magnitude:

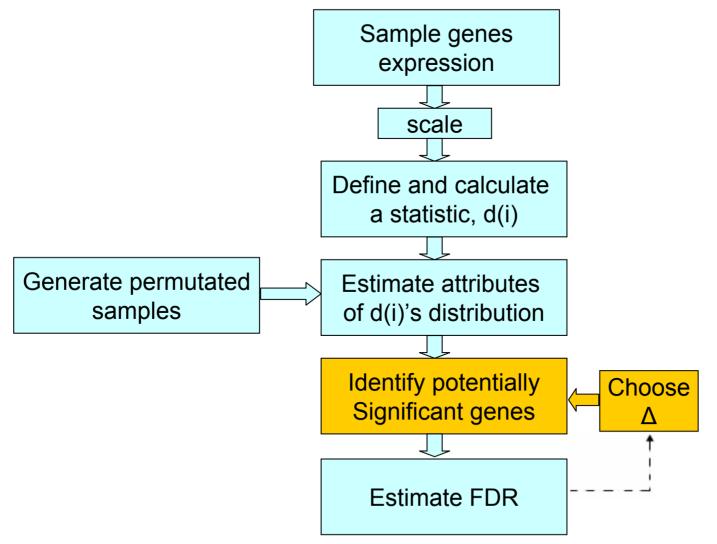
$$d_p(1) \ge d_p(2) \ge d_p(3) \ge \dots$$

• Define:

$$d_E(i) = \sum_p \frac{d_p(i)}{36}$$

Example

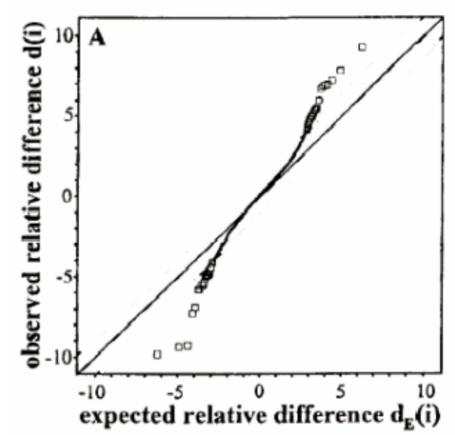




Identifying Significant Genes

- Now Rank the original d(i)'s: $d(1) \ge d(2) \ge d(3) \ge ...$
- Plot d(i) vs. d_E(i) :
- For most of the genes,

 $d(i) \cong d_E(i)$

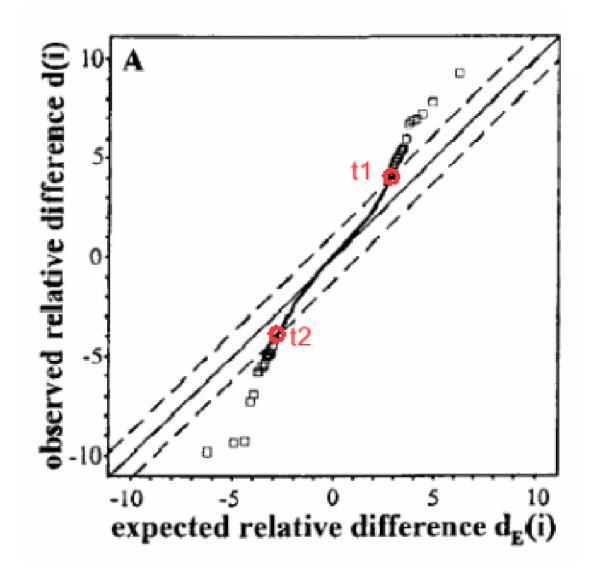


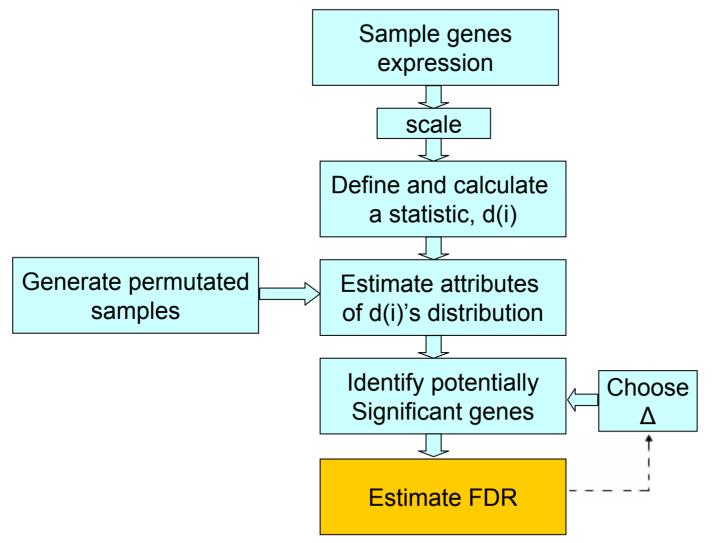
Identifying Significant Genes

- Define a threshold, Δ .
- Find the smallest positive d(i) such that $|d(i) d_E(i)| \ge \Delta$

call it t1.

- In a similar manner, find the largest negative d(i). Call it t2.
- For each gene i, if, $d(i) \ge t_1 \lor d(i) \le t_2$ call it potentially significant.





Estimate FDR

- t1 and t2 will be used as cutoffs.
- Calculate the average number of genes that exceed these values in the permutations.
- Estimate the number of falsely significant genes, under Ho:

$$\frac{1}{36} \sum_{p=1}^{36} \#\{i \mid d_p(i) \ge t_1 \lor d_p(i) \le t_2\}$$

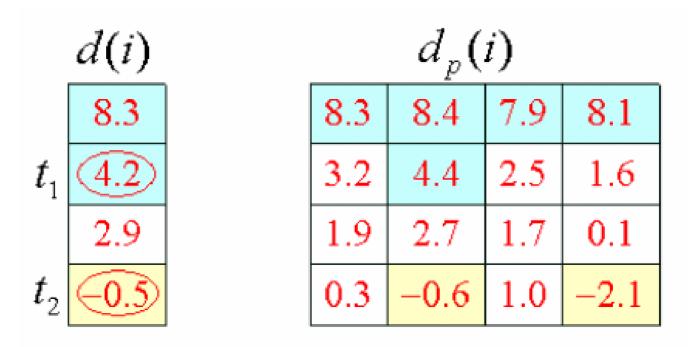
Divide by the number of genes called significant

FDR cont'd

$$FDR \approx \frac{\frac{1}{36} \sum_{p=1}^{36} \#\{i \mid d_p(i) \ge t_1 \lor d_p(i) \le t_2\}}{\#\{i \mid d(i) \ge t_1 \lor d(i) \le t_2\}}$$

• Note: Cutoffs are asymmetric

Example



$$FDR \approx \frac{\frac{7}{4}}{3} = 0.5833$$

How to choose Δ ?

Parameter	Number falsely significant	Number called significant	FDR
SAM			
$\Delta = 0.4$	134.9	288	47%
$\Delta = 0.5$	78.1	192	41%
$\Delta = 0.6$	56.1	162	35%
$\Delta = 0.9$	19.1	80	24%
$\Delta = 1.2$	8.4	46	18%

Omitting so caused higher FDR.

Test SAM's validity

- 10 out of 34 genes found have been reported in the literature as part of the response to IR
- 19 appear to be involved in the cell cycle
- 4 play role in DNA repair
- Perform Northern Blot- strong correlation found
- Artificial data sets- some genes induced, background noise

Moderated t-statistic

Smyth G. K. (2004)

Obtain a linear model for each gene g

$$\mathsf{E}(\mathsf{y}_g) = \mathsf{X}eta_g, \;\; \mathsf{var}(\mathsf{y}_g) = W_g^{-1}\sigma_g^2.$$

Estimate model by robust regression, least squares, or generalized least squares to obtain coefficients, $\hat{\beta}_{gj}$ estimators of σ_g^2 , s_g^2 standard errors, $\operatorname{se}(\hat{\beta}_{gj})^2 = \operatorname{c_{gj}s_g^2}$.

200

- 10,000-40,000 linear models.
- High dimensionality: Need to adjust for multiple testing, e.g., control family-wise error rate (FWE) or false discover rate (FDR).
- The key: borrow information across genes.

San

()

$$\hat{eta}_{gj} \sim N(eta_{gj}, c_{gj}\sigma_g^2)$$
 $P(eta_{gj}
eq 0) = p$
 $eta_{gj} \mid eta_{gj}
eq 0 \sim N(0, c_{0j}\sigma_g^2)$
 $s_g^2 \sim rac{\sigma_g^2}{d_g}\chi_{d_g}^2$
 $\sigma_g^2 \sim s_0^2(\chi_{d_0}^2/d_0)^{-1}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

Posterior variance estimators

$$ilde{s}_{g}^{2} = E(\sigma_{g}^{2} \mid s_{g}^{2}) = rac{s_{g}^{2}d_{g} + s_{0}^{2}d_{0}}{d_{g} + d_{0}}$$

$$ilde{t}_{gj} = rac{\hat{eta}_{gj}}{ ilde{s}_{g}\sqrt{c_{gj}}}$$

• The goal: eliminates large t-statistics merely from very small s.

San

Image: 1 million

The marginal distributions of the sample variances are moderated t-statistics are mutually independent

$$s_g^2 \sim s_0^2 F_{d,d_0}$$

$${ ilde t}_g \sim \{ egin{array}{c} t_{d_0+d} & {
m with \ prob} \ 1-p \ \sqrt{1+c_0/c} t_{d_0+d} & {
m with \ prob} \ p \end{array}
ight.$$

Degrees of freedom add!

San

医下颌 医下

Marginal moments of $log(s^2)$ lead to estimators of s_0 and d_0 : Estimate d_0 by solving

$$\psi'(d_0/2) = mean\{ns_e^2 - \psi'(d_g/2)\}$$

where

$$e_g = \log(s_g^2) - \psi(d_g/2) + \log(d_g/2),$$

and

$$s_e^2 = (e_g - \bar{e})^2/(n-1).$$

Finally

$$s_0^2 = \exp\{\bar{e} + \psi(d_0/2) - \log(d_0/2)\}.$$

Where $\psi()$ and $\psi^{'}()$ are the digamma and trigamma functions respectively.

SQ C

 $s_1, s_2, \cdots, s_g \to \tilde{s}_1, \tilde{s}_2, \cdots, \tilde{s}_g \to s_0$ $t_1, t_2, \cdots, t - g \to \tilde{t}_1, \tilde{t}_2, \cdots, \tilde{t}_g \to t_{g, \text{pooled}}$ The data decides whether \tilde{t}_g should be closer to $t_{g, \text{pooled}}$ or to t_g .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

let *r* be rank of $|\tilde{t}_g|$ in descending order, and let *F*() be the distribution function of the t-distribution. c_0 can be estimated by equating empirical to theoretical quantiles:

$$2[pF(-\sqrt{\frac{c_g}{c_g+c_0}} \mid \tilde{t}_g \mid; d_0+d_g) + (1-p)F(-\mid \tilde{t}_g \mid; d_0+d_g)] = \frac{r-0.5}{n}$$

Get overall estimator of c_0 by averaging the individual estimators from the top p/2 proportion of the $|\tilde{t}_g|$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣�?

()

Posterior probability of differential expression for any gene is

$$\frac{p(\beta \neq 0 \mid \hat{\beta}, s^2)}{p(\beta = 0 \mid \hat{\beta}, s^2)} = \frac{p}{1 - p} \left(\frac{c}{c + c_0}\right)^{1/2} \left\{\frac{\tilde{t}^2 + d + d_0}{\tilde{t}^2 \frac{c}{c + c_0} + d + d_0}\right\}^{\frac{1 + d + d_0}{2}}$$

It is a monotonic function of \tilde{t}^2 for constant d.

= 990

医下颌 医下

Image: A matched black

Limma

- Limma is an R package to find differentially expressed genes
- it uses linear models
 - fitted to normalized intensities (one-color)
 or log-ratios (two-color)
- assumption: normal distribution
- output: p-values (adjusted for multiple testing)

Documentation

- limma User's Guide, Gordon Smyth, Natalie Thorne, James Wettenhall
- help documents for each function
- Smyth, GK (2004). SAGMB 3 (1) article 3
- de Menezes RX, Boer JM, van Houwelingen JC (2004). Applied Bioinformatics 3: 229-235
- background on linear models: tech note by Renee de Menezes

limma

- linear models
 - can be used to compare two or more groups
 - can be used for multifactorial designs
 - e.g. genotype and treatment
- uses empirical Bayes analysis to improve power in small sample sizes

– borrowing information across genes

Pre-analysis steps

- read data into limma/affy
- basic quality control features
- background correction
- within-array normalization
- between-array normalization
- if duplicate spotting: sort data so that duplicates are together

Linear model

- make design matrix
- fit a linear model to estimate all the fold changes
- [make contrasts matrix]
- apply Bayesian smoothing to the standard errors (very important!)
- output: moderated t-statistics

Two color - start

- working directory containing
 - -*.gpr files
 - targets.txt file
 - -*.gal file (optional)

Reading in data

- basically the same as Anja Schiel has shown for Quality Control packages
 - read in a targets file including
 - file names for *.gpr files
 - cy3 and cy5 samples
 - read in *.gpr files using read.maimages()
 - option to use GenePix flag information
 - print layout (from *.gpr or *.gal file)
 - option to define spot types (controls)

Other BioC packages

• Limma package can work with microarray objects derived by these packages:

marray: marrayRaw and marrayNorm

• affy: single channel (exprSet)

Exploring data

- automate the production of plots for all arrays in an experiment
 - imageplot3by2
 - array image of R, Rb, G, Gb, M (R/G) (un)norm
 - plotMA3by2
 - MA plots before/after normalization
 - plotDensities
 - histogram of all intensities before/after normalization

Background correction

- default = subtract
 - disadvantage: negative values -> NAs
- "normexp", offset = 50
 - adjusts fg to bg to yield strictly positive intensities
 - use of an offset damps the variation of the logratios for very low intensities towards 0, i.e. stabilizes the variability of the M-values as a function of intensity
 - this is important for the empirical Bayes methods

Normalization 1

- normalizeWithinArray
 - normalizes M-values of each array separately
 - default = print-tip loess
 - not appropriate for e.g. Agilent arrays, which do not have print groups: method = "loess"
 - assumes bulk of probes not changed
 - symmetrical change is not required
 - spot quality weights (in RG) are used by default;
 weight = 0 will not influence normalization of other spots, but will be kept and normalized

Normalization 2

- normalizeBetweenArray
 - intensities of single-channel microarrays
 - log-ratios of two-color microarrays as a second step after within array normalization of the M-values
 - because: loess normalization doesn't affect the A-values
 - quantile normalization results in equal distributions across channels and arrays

Normalization 3

- normalizeBetweenArrays directly on twocolor data
 - quantile normalization directly to individual red and green intensities
 - vsn normalization should always be used directly on raw intensities
 - background subtraction is allowed,
 - but no correction (e.g. normexp) or loess!!!

Linear models

- design matrix
 - indicates which RNA samples have been applied to each array
 - rows: arrays; columns: coefficients
- contrast matrix
 - specifies which comparisons you would like to make between the RNA samples
 - for very simple experiments, you may not need a contrast matrix

Look at the result

topTable(fit, adjust="fdr")

 gives the top10 of differentially expressed genes (for each contrast)

- plotMA(fit)
- decideTests
 - makes a matrix with 0 (not selected) and -1/1 (selected for a specific p-value)
 - visualize by Venn diagram

Limma objects

- RGList (Red-Green, raw data)
 - generated by read.maimages
- MAList (M- and A-values, normalized data)
 - generated by MA.RG or normalizeWithinArrays
- MArrayLM (result of fitting linear model)
 generated by ImFit
- TestResults (results of testing a set of contrasts equal to 0 for each probe)
 - generated by decideTests

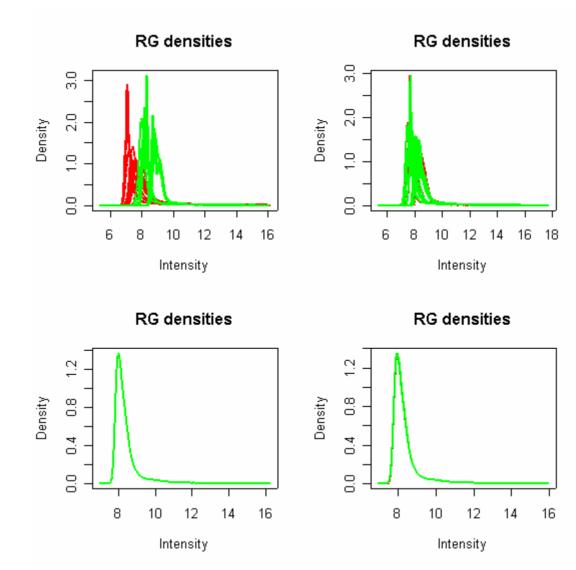
Example 1: paired design

- direct two-color design including dye-swap
- dataset "arthritis", Maaike van den Hoven
- platform: Sigmamouse, 23232 single spots
- 12 arrays, 2 groups:
 - untreated (6 biological replicates)
 - arthritis (6 biological replicates)
- question: find differentially expressed genes after induction of arthritis

targets.txt

🔎 targets.txt - Notepad				
File Edit Format View Help				
SlideNumberFileName101Sigmamouse101.gpr107Sigmamouse107.gpr111Sigmamouse111.gpr108Sigmamouse108.gpr103Sigmamouse103.gpr104Sigmamouse104.gpr105Sigmamouse105.gpr109Sigmamouse109.gpr112Sigmamouse112.gpr113Sigmamouse113.gpr104Sigmamouse114.gpr	NameCy3 1_0 1_2 2_0 2_2 4_0 4_2 5_0 5_2 6_0 6_2 7_0 7_2	Name⊂y5 1_2 2_2 2_0 4_2 4_0 5_2 5_0 6_2 6_0 7_2 7_0	Cy3 Cy5 wildtype arthritis wildtype arthritis wildtype arthritis wildtype arthritis wildtype arthritis wildtype arthritis	arthritis wildtype arthritis wildtype arthritis wildtype arthritis wildtype arthritis wildtype arthritis wildtype

plotDensities(RGb, MA, MA.q, MAq)



plotMA(RGb, MA, MAq)

Sigmamouse105

8

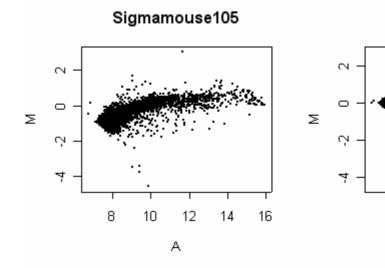
10

12

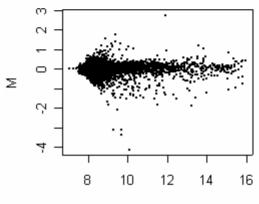
A

14

16



Sigmamouse105



A

topTable(MA.q, adjust="fdr")

Block I	Row Colu	umn	ID	Name M A	t	P.Value	В
1838	4 18	12	NM_026004	NA 1.996 9.3	1 9.58	0.00577	6.88
9277	20 4	15	NM_018762	NA 0.392 10.8	38 8.63	0.00577	5.91
5551	12 11	7	NM_017372	NA 1.741 9.3	7 8.55	0.00577	5.74
14031	29 22	17	AmbionSpike5	NA 1.053 14.2	24 8.43	3 0.00577	5.66
18056	38 7	16	NM_020611	NA 0.187 8.2	1 8.52	2 0.00577	5.52
15529	33 2	19	U52197	NA 0.340 8.8	3 8.28	0.00598	5.47
13274	28 10	8	X83919	NA 0.407 8.5	6 8.11	0.00598	5.18
22079	46 14	13	NM_026542	NA 2.017 9.9	7 8.08	0.00598	5.18
1155	3 9	11	X14097	NA 0.251 8.0	7 8.46	0.00577	5.16
13559	29 1	7	AmbionSpike5	NA 1.034 13.9	3 7.93	0.00598	5.03

AmbionSpike5 was spiked in at 2-fold change arthritis/untreated: log-ratio 1

The likelihood based approach

Hu and Wright (2007)

Notation

> A simple family of *t*-like statistics for gene *i*:

$$t_i^a = \frac{\overline{x_{1i}} - \overline{x_{2i}}}{s_i + a}, \text{ with } s_i = \sqrt{s_{1i}^2 / n_1 + s_{2i}^2 / n_2},$$

t⁰ is the "ordinary" Welch statistic, $f = n_1 + n_2 - 2.$

>
$$\delta_i = \frac{\mu_{1i} - \mu_{2i}}{\sqrt{\frac{\sigma_{1i}^2}{n_1} + \frac{\sigma_{2i}^2}{n_2}}}$$
, governs the power of the statistics.

> t^0 can be viewed as an **estimate** of δ . Its performance can be examined by the positive FDR in **Storey (2001)**,

$$FDR = Pr(H_0 \mid T \ge c)$$

FDR property of t⁰

- > FDR reaches a limit as $c \to \infty$,
- $\succ \delta$ s, independent random variable, with

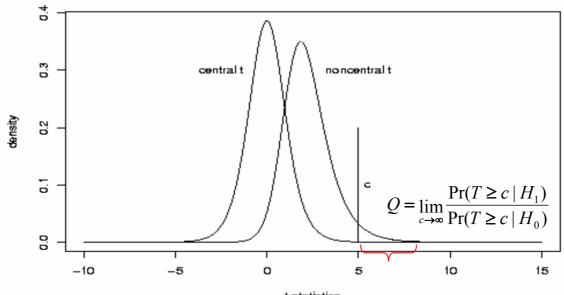
$$\delta_i = \begin{cases} 0 \text{ w.p. } \pi_0 \\ \delta' \text{ w.p. } \pi_1 \end{cases}$$

> **Theorem 1** $\lim_{c\to\infty} FDR = \pi_0 / (\pi_0 + \pi_1 Q)$, where

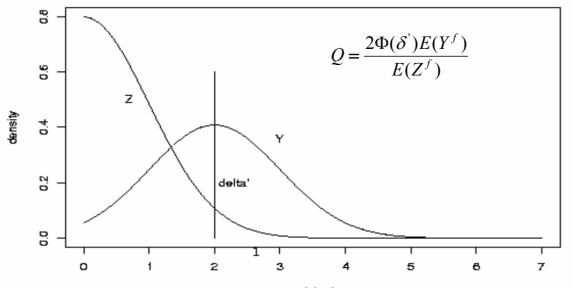
$$Q = \lim_{c \to \infty} \frac{\Pr(T \ge c \mid H_1)}{\Pr(T \ge c \mid H_0)} = \frac{2\Phi(\delta')E(Y^f)}{E(Z^f)},$$

Φ, the standard normal CDF; Y and Z, random variables with truncated normal densities, $p(y) = \exp(-(y - \delta')^2 / 2) / (\sqrt{2\pi} \Phi(\delta')), y \ge 0$ $p(z) = 2\exp(-z^2 / 2) / \sqrt{2\pi}, z \ge 0$

Visualizing the limit Q

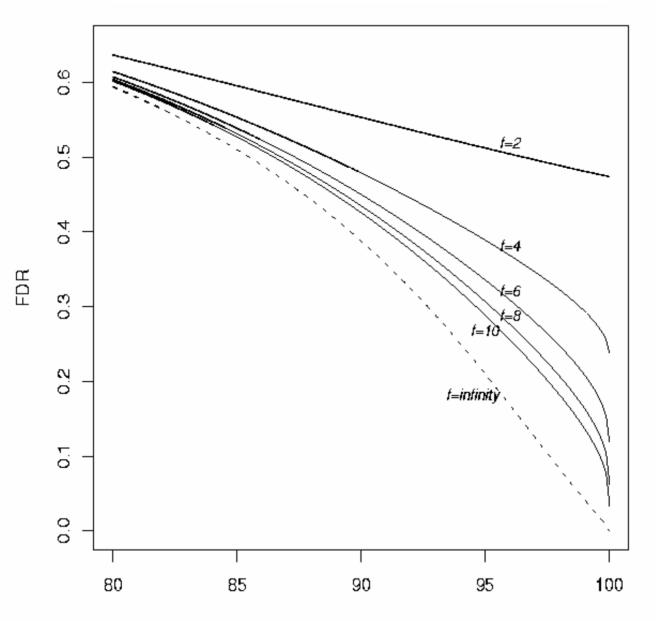


t statistics



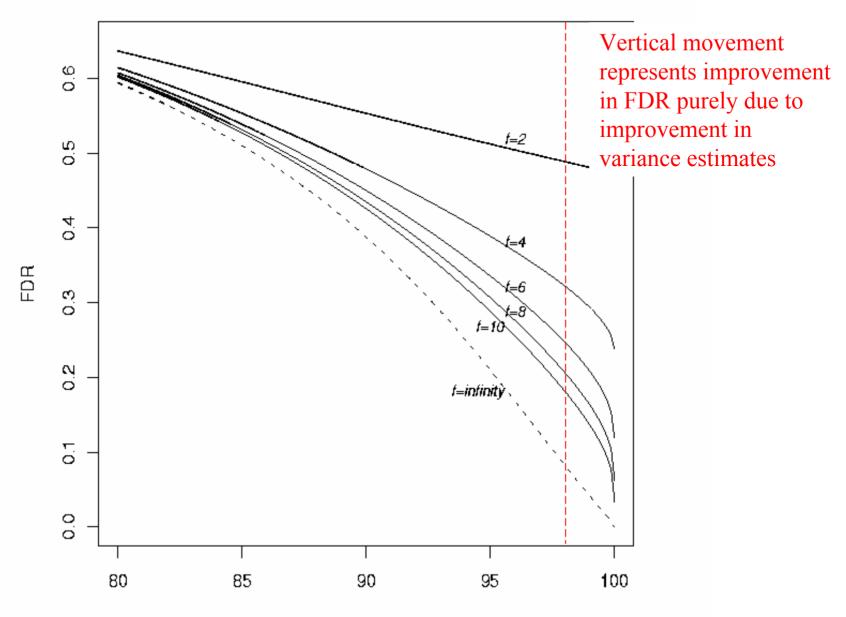
normal deviates

FDR curves for t^0 with $\pi_0 = 0.9$, $\delta' = 2$



threshold percentiles for rejection region

FDR curves for t⁰ with $\pi_0 = 0.9$, $\delta' = 2$

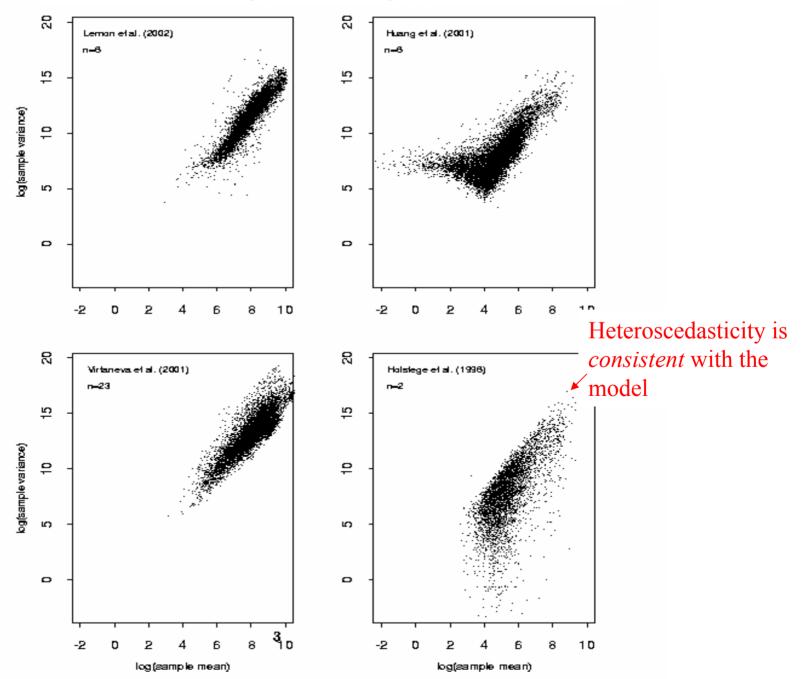


threshold percentiles for rejection region

Motivation

- > The variance estimation plays an important role.
- A roughly linear relationship between $\log(s^2)$ and $\log(\overline{x})$ is observed.

 $\log(s^2)$ vs. $\log(\overline{x})$



Statistical model

- → Under each experimental condition, the expression index estimate x_{ij} from $N(\mu_i, \sigma_i^2)$.
- Linear model is proposed,

 $\log(\sigma_i^2) = \alpha_0 + \alpha_1 \log(\mu_i) + \eta_i$

 η_i , a gene-specific random effect term, from $N(0, \xi^2)$.

> Maximum likelihood estimation: We assume the hierarchical model $x_{ij} \mid \mu_i, \sigma_i^2 \sim N(\mu_i, \sigma_i^2),$ $\log \sigma_i^2 \mid \mu_i \sim N(\alpha_0 + \alpha_1 log(\mu_i), \xi^2),$

$$L(\mu, \alpha_0, \alpha_1, \xi^2) = \prod_{i=1}^m \prod_{j=1}^n \int_{\eta_i} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp(-(x_{ij} - \mu_i)^2 / 2\sigma_i^2) \frac{1}{\sqrt{2\pi\xi^2}} \exp(-\eta_i^2 / 2\xi^2) d\eta_i$$

where σ_i^2 is substituted by $\exp(\alpha_0 + \alpha_1 \log(\mu_i) + \eta_i)$.

Parameter estimation

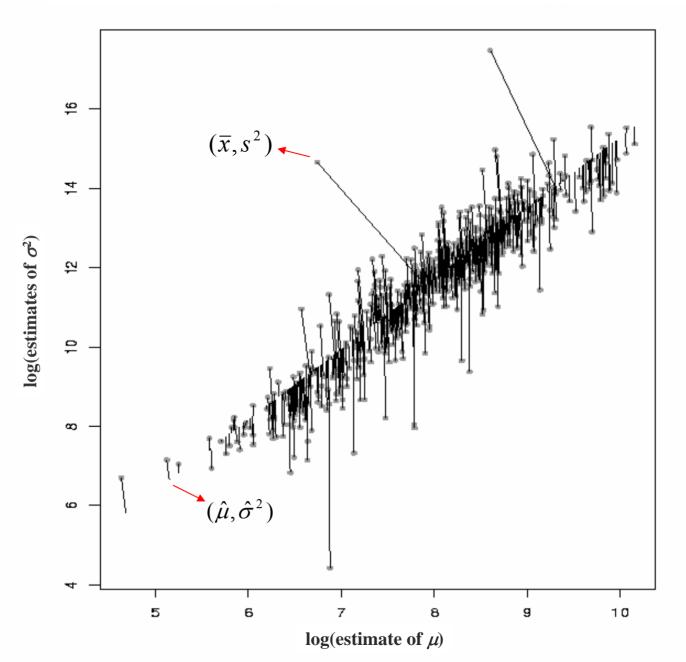
➤ Table 1: MLEs for the four data sets

	$\hat{lpha}_{_0}$	\hat{lpha}_1	$\hat{\xi}^2$
Lemon et al.	-5.853	1.697	0.049
Huang et al.	-5.08	2.27	0.80
Virtaneva et al.	-2.803	2.028	0.271
Bro et al.	-0.010	1.518	0.00

> The "best predictor" approach (McCulloch and Searle, 2001) is used to predict η_i : $BP(\eta_i) = E(\eta_i | x_i) = \int_{\eta_i} \eta_i p(\eta_i | x_i; \mu_i, \alpha_0, \alpha_1, \xi^2) d\eta_i$

Then σ^2 can be predicted based on the fixed parameter estimates and predicted η_i .

The shrinkage effect in estimating μ , σ^2



 \succ Eventually, MLE of δ_i can be obtained,

$$\hat{\delta}_{i} = \frac{\hat{\mu}_{1i} - \hat{\mu}_{2i}}{\sqrt{\frac{\hat{\sigma}_{1i}^{2}}{n_{1}} + \frac{\hat{\sigma}_{2i}^{2}}{n_{2}}}}$$

Small sample efficiency results

➤ The MSE of \$\higsirpsilon_i\$ nearly achieves the Cram\[equiversilon-Rao lower bound \$CRLB(\higsirpsilon_i) = (1 + b'(\delta_i))^2 / t_i(\delta_i)\$, $b(\delta_i) = \delta_i - E_{\delta_i}(\higsirpsilon_i)$, Fisher information $t_i(\delta_i)$.$

► Define

$$B = \frac{\iota_{\cdot}^{-1}(\delta_i)}{MSE(\hat{\delta}_i)} \le \frac{CRLB(\hat{\delta}_i)}{MSE(\hat{\delta}_i)} \le 1$$

B represents a conservative lower bound for the efficiency of $\hat{\delta}_i$.

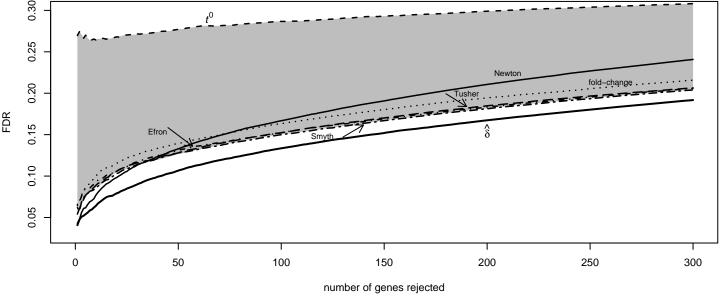
- \succ *B* nearly reaches 1, with no overdispersion (small sample size).
- \succ The situation of overdispersion is more complex.

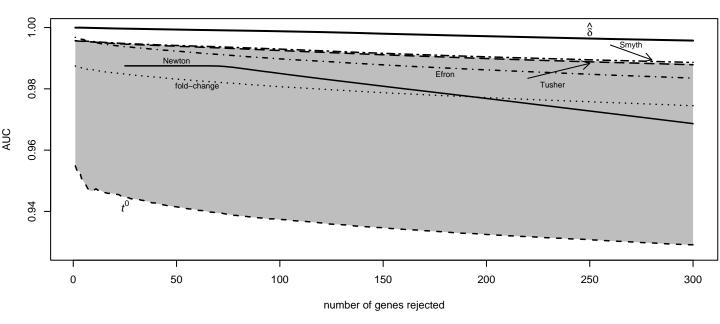
Criterion of comparing the statistics

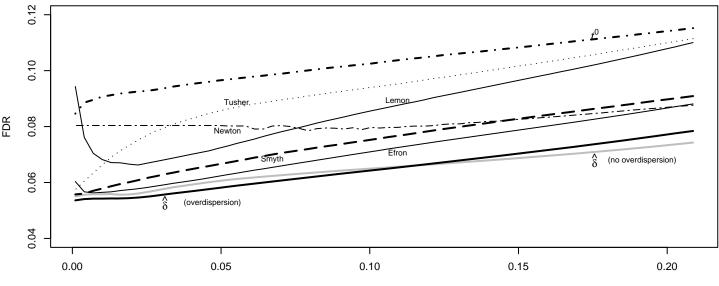
- Seneral criterion: how well the statistics preserve the rank order of the δ_i .
- > Discrete δ_i : FDR is used, fixing the number of rejected genes.
- > Continuous δ_i :
 - Receiver-operator characteristic curve (ROC), comparing the conditional distribution of the δs for T < c vs. $T \ge c$.
 - The area under the ROC curve (*AUC*), $Pr(\delta^R > \delta^A)$, the most commonly used summary.
- Relationship between FDR and AUC for discrete δ:
 Theorem 2 AUC = 1/2 (1 FDR + true accept/accept)

Simulation study

- Common set-up:
 - $n_1 = n_2 = 3, m = 10000.$
 - In each case, 2000 simulations are performed.
 - Choices of *a*:
 - percentiles 25, 50, 75, 90 and 100 of *s*, and 2max(*s*)
 - $a = 0, \infty$
 - criterion proposed in Tusher et al. (2001).
- \succ Discrete δ :
 - "realized" FDR (Genovese and Wasserman, 2002)
 - a case of $\delta' = 1$ and $\pi_0 = 0.7$
- Continuous δ: Sampling from a double exponential distribution with location 0 and variance 1/2.



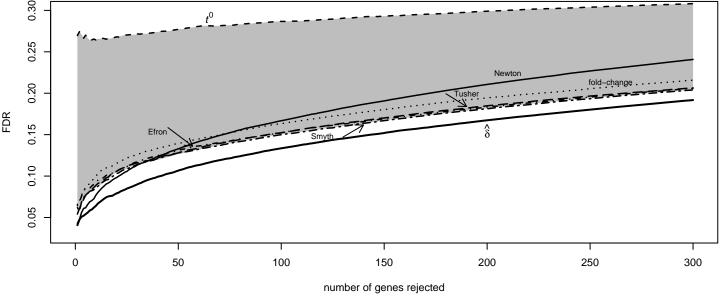


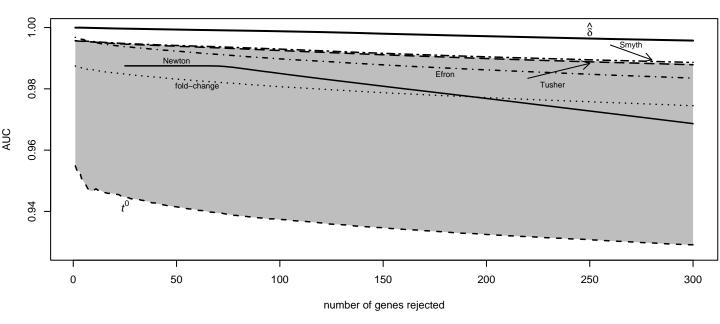


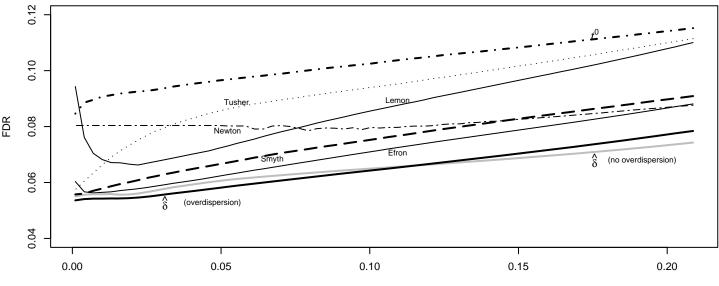
proportion of genes rejected

A case study

- Real data: A human fibroblast cell expression data set from Lemon et al. (2002) (6 vs. 6, under stimulated to 50:50 conditions)
- Small sample comparisons: $n_1 = n_2 = 2$
- Permutation procedures to estimate the FDR (Storey and Tibshirani, 2001)
 - "observed" distribution $\binom{6}{2}\binom{6}{2}$ comparisons of two conditions.
 - an empirical "null" distribution $-\binom{12}{2}\binom{10}{2}$ total comparisons of 2 vs. 2 arrays.







proportion of genes rejected