Advanced Statistical Methods for the
Analysis of Gene Expression and Proteomics

Veera Baladandayuthapani
(pronounced as Veera B)

University of Texas M.D. Anderson Cancer Center Houston, Texas, USA
veera@mdanderson.org

TILL NOW

- Microarray Classification
- Various approaches: last lecture

Linear/Quadratic Discriminant Analysis
Maximum Likelihood Discrint Analysis.
Bayesian linear classifiers: Linear models for Differential expression

- Today: Nonlinear Methods

Regression Methods: Generalized (Non)-linear Models (GLMs)
Solines; SVM; Kernel methods
Theory motivated in a Bayesian framework but estimation can be any method.

Generalized Linear Models

The class of generalized linear models is a natural generalization
of the classical linear model. Generalized linear models include
as special cases, linear regression and analysis of variance
models, logit and probit models for quantal response data,
log-linear models and multinomial response models for counts,
some commonly used models for survival data.
To simplify the transition from the classical normal linear model, i.e. $Y=X \beta+\epsilon, \epsilon \sim N_{n}\left(0, \sigma^{2} I\right)$ to generalized linear models, it will be important to characterize specific aspects of the linear model

Generalized Linear Models

1. Random component: $Y \sim N_{n}\left(\mu, \sigma^{2} I\right)$, where $\mu=X \beta$.

Note that the linear model has constant variance.
2. Systematic component: The covariate comprises the
systematic component of the model. For the $i^{i \text { h }}$ observation, we let

$$
\eta_{i}=x_{i}^{\prime} \beta, \quad i=1, \ldots, n
$$

We call η_{i} the linear predictor

Generalized Linear Models

Thus $y_{i} \sim N\left(x_{i}^{\prime}, \beta, \sigma^{2}\right)=N\left(\eta_{i}, \sigma^{2}\right), i=1, \ldots, n$ and the $y_{\text {' }}$'s a independent, given the x_{i} 's and β. Note here that for the usual normal linear model, the relationship between the mean of y_{i} and η_{i} is given by

$$
\mu_{i} \equiv E\left(y_{i} \mid x_{i}, \beta\right)=x_{i}^{\prime} \beta=\eta_{i}, \quad i=1, \ldots, n .
$$

Thus

$$
\mu_{i}=\eta_{i}, i=1, \ldots, n .
$$

Generalized linear models involve 2 extensions of the normal linear model.

1. The distribution of y is from the exponential family
2. The relationship between $\mu_{i}=E\left(y_{i} \mid x_{i}, \beta\right)$ can be made more general, so that

$$
g\left(\mu_{i}\right)=\eta_{i} \equiv x_{i}^{\prime} \beta
$$

$g\left(\mu_{i}\right)$ is called the μ-link function and relates the mean of y (i.e., μ_{i}) to the linear predictor $\eta_{i} . y$ has a distribution in the exponential family with canonical parameter θ and dispersion ϕ
$p(y \mid \theta, \phi)=\exp \{[y \theta-b(\theta)] / a(\phi)+c(y, \phi)\}$


```
Generalized Linear Models
    Without loss of generality, we assume }a(\phi)=\phi\mathrm{ , so that
    p(y|0,\phi)=\operatorname{exp}{[y0-b(0)]/\phi+c(y,\phi)}
Here
    \int}\operatorname{exp}{[y0-b(0)]/\phi+c(y,\phi)}dy=1
so that
    exp}{\frac{b(0)}{\phi}}=\mp@subsup{\int}{y}{}\operatorname{exp}{\frac{y0}{\phi}+c(y,\phi)}dy
```


Generalized Linear Models

Here $b(\cdot)$ and $\phi(\cdot)$ are known functions. If ϕ is unknown, then
the above may or may not be an exponential family. θ is called
he canonical parameter. An excellent book on generalize
The class of generalize linear models has many uses in
biostatistics. Binomial models are often used to model dos
biostatistics. Binomial models are often used to model dose
response. Gamma models are often used to model survival or
time-to-event data. Poisson models are used to model count data,
such as yearly pollen counts, number of cancerous nodes, etc.
Distributions included in the exponential family are the normal,
binomial, gamma, poisson, beta, multinomial, and inverse gaus-
sian distributions.
Generalized Linear Models
To see how the normal distribution, for example, fits into the
framework above, suppose,

$$
y \sim N\left(\mu, \sigma^{2}\right) .
$$

Then

$p\left(y \mid \mu, \sigma^{2}\right)=$	$\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\}$
$=$	$\exp \left\{\left(y \mu-\mu^{2} / 2\right) / \sigma^{2}-\frac{1}{2}\left(\frac{y^{2}}{\sigma^{2}}+\log \left(2 \pi \sigma^{2}\right)\right)\right\}$,

Generalized Linear Models
so that in this case,

$$
\begin{aligned}
\theta & =\mu \\
a(\phi) & \equiv \phi=\sigma^{2} \\
b(\theta) & =\frac{\theta^{2}}{2} \\
c(y, \phi) & =-\frac{1}{2}\left[\frac{y^{2}}{\sigma^{2}}+\log \left(2 \pi \sigma^{2}\right)\right] .
\end{aligned}
$$

Generalized Linear Models

- Similar representations exist for Binomial, Poisson, Gamma etc.
- For Binomial it turns out that $b(\theta)=\log \left(1+e^{\theta}\right)$ and hence the
transtormation $\log \left(\frac{p}{-}+\right)$ is called the logit transiormation.
transformation $\log \left(\frac{p}{1-p}\right)$ is called the logit transtormation.
- One can prove that in general
$E(y \mid \theta, \phi)=b^{\prime}(\theta)$
$V(y \mid \theta, \phi)=\phi b^{\prime \prime}(\theta)$
- Thus once we know the b (.) function, we can get the mean and variance
of the exponential family model.

Generalized Linear Models
Now suppose we have n independent observations y_{1}, \ldots, y_{n} from an exponential family. Then the density for the $i^{\text {th }}$ observation can be written as
$p\left(y_{i} \mid \theta_{i}, \phi\right)=\exp \left\{\phi^{-1}\left(y_{i} \theta_{i}-b\left(\theta_{i}\right)\right)+c\left(y_{i}, \phi\right)\right\}$
The density based on n observations is
$p(y \mid \theta, \phi)=\prod_{i=1}^{n} p\left(\left.y_{i}\right|_{i, \phi}\right.$,
where $y=\left(y_{1}, \ldots, y_{n}\right), \theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$.

Generalized Linear Models

To construct the regression model, (i.e., the generalized linear
model), we let the θ_{i} 's depend on the linear predictor $\eta_{i}=x_{i *}^{\prime}$
through the equation

$$
\theta_{i}=\theta\left(\eta_{i}\right) \text {, for } \quad i=1, \ldots, n,
$$

i.e., the link function $\theta(\cdot)$, where $x_{i}^{\prime}=\left(x_{i 1}, \ldots, x_{i p}\right)$, and $\beta=$
$\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$. The link function is called the θ-link and is often
more convenient to use than the μ-link. The θ-link is a one-to-one function of the μ-link. Once $\theta_{i}=\theta\left(\eta_{i}\right)$ is given, one can write the likelihood function as a function in (β, ϕ). When $\theta_{i}=\eta_{i}$, we say that we have a canonical link. The function $\theta_{i}=\theta\left(\eta_{i}\right)$ car tonic function

Generalized Linear Models

Thus, the likerood function of β based on all n observations is
given by

$$
\begin{aligned}
p(y \mid \beta) & =\prod_{i=1}^{n} p\left(y_{i} \mid \beta\right) \\
& =\prod_{i=1}^{\exp }\left\{y x_{\{ }^{\prime} ;-\log \left(1+e^{z_{i}^{\prime} \beta}\right)\right\} . \\
& \left.=\exp \left[\sum\left\{y x_{i}^{\prime} ; \beta-\log \left(1+e^{z ; \beta}\right)\right\}\right]\right]
\end{aligned}
$$

Fortis
$\theta_{i}=\log \left(\frac{\mu_{i}}{1-\mu_{i}}\right)$, where $\mu_{i}=E\left(y_{i} \mid p_{i}\right) \equiv p_{i}$
Thus $\mu_{i}=\frac{e^{i}}{1+e^{i}} \cdot$. Suppose, we consider a probit model. The
μ-link for the probit model is given by

$$
\begin{aligned}
\Phi^{-1}\left(\mu_{i}\right) & =\eta_{i} \\
\mu_{i} & \left.=\Phi \eta_{i}\right) \\
\eta_{i} & =x_{i}^{x_{i}^{\prime} \beta} \\
\Phi\left(\eta_{i}\right) & =\frac{e^{\theta_{i}}}{1+e^{\theta_{i}}}
\end{aligned}
$$

Generalized Linear Models	
Any model that satisfies	
$p\left(y_{i} \mid \theta_{i}, \phi\right)=\exp \left\{\phi^{-1}\left(y_{i} \theta_{i}-b\left(\theta_{i}\right)\right)+c\left(y_{i}, \phi\right)\right\}$	
and $\theta_{i}=\theta\left(\eta_{i}\right), \eta_{i}=x_{i}^{\prime} \beta$, is called a generalized linear model (GLM). Below we give some distributions with their canonical links.	
Distribution	Canonical μ-link
Normal	$\eta=\mu$
Poisson	$\eta=\log (\mu)$
Binomial	$\eta=\log \left(\frac{\mu}{1+\mu}\right)$
Gamma	$\eta=\mu^{-1}$

Estimation in glm's

- Frequentist inference

MLL of β does not have closed form; Newton-Raphson or Fisher
Scoring used - Ther resulting

The likelihood equaions are non-linear functions of β
Often use Large Sample theory tor Hypoothesis testing

- Bayesian inference
- Put prior on β
- No coniugate priors exist; posteriors not of closed form

However in most cases they are log-concave: attractive methods exist to samplef errom them: Adaptive Rejection sampling (Gilks and
Wild (1992 A Applied Statisticic) Wild (1992, Applied Statistics)

bayesian Model Selection in Glm's
Note that when $\gamma_{i}=0, \beta_{i} \sim N\left(0, \tau_{i}^{2}\right)$ and when $\gamma_{i}=1, \beta_{i} \sim$ $N\left(0, c_{i}^{2} \tau_{i}^{2}\right)$. The interpretation of this is as follows. Set $\tau_{i}\left(\tau_{i}>0\right)$ small so that is $\gamma_{i}=0$, then β_{i} would probably be so small that it could "safely" be estimated by 0 . Second, if $c_{i}\left(c_{i}>1\right.$ always) is set large so that if $\gamma_{i}=1$, then a non-zero estimate of β_{i} would probably be included in the model. Thus, the user must specify $\left(\tau_{i}, c_{i}\right)$, for $i=1, \ldots, p$. Note here, that a priori, the β_{i} 's are not necessarily independent.

Based on this interpetation, p_{i} may not be thought of as the pric probability tha β_{i} is not zero, or equivilantly that X_{i} should be included in the mode, where X_{i} denotes the $i^{\text {it }}$ covariate. The
mixture prior for $\beta_{i} \mid \gamma_{i}$ can be written in vector form

$$
\beta \sim \gamma \sim N_{p}\left(0, D_{\gamma} R D_{\gamma}\right),
$$

where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right), R$ is the prior correlation matrix and

$$
D_{\gamma}=\operatorname{diag}\left(a_{1}, \tau_{1}, \ldots, a_{p} \tau_{p}\right),
$$

where $a_{i}=1$ if $\gamma_{i}=0$ and $a_{i}=c_{i}$ if $\gamma_{i}=1$. Thus D_{γ} determines the scaling of the prior covariance matrix.

Back to Microarrays

Now back to Microarrays....

Bayesian Probit Classification

Consider C-classes with class labels $y_{i} \in\{1,2, \ldots, C\}$, for $i=1, \ldots, n$ individuals with associated p covariate measurements $x_{i}=\left(x_{i 1} \ldots \ldots, x_{i p}\right)$. The idea is to fit classifier model that can predict the class (label) well given the p
measurements.
Binary or multinomial regression using GLMS is popular, although inference using Bayesian GLMs is not trivial in practice, as conjugate priors do not exist.

Bayesian Probit Regression
For binary classification, $y \in\{0,1\}$ we write,
$f(y \mid \beta)=[\pi(\beta)]^{y}[1-\pi(\beta)]^{1-y}$

$$
\pi(\beta)=\Phi(\eta), \eta=\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{j} .(\text { probit })
$$

Other choices are logit and log-log link functions. There are no
conjugate priors \& computation can be difficult.
Albert and Chib (1993) demonstrated an auxillary variable approach to simplify binary probit regression.

Bayesian Probit Regression

We have $\mathcal{D}=\left\{y_{i}, \mathbf{x}_{i}\right\}_{1}^{n}$ and $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$. The hierarchical model is

$$
\begin{aligned}
y_{i} \mid z_{i}, \beta & \sim I(z>0) \delta_{1} \\
z_{i} & \sim N\left(\mathbf{x}_{i}^{\prime} \beta, \sigma^{2}\right) \\
\cdots & \cdots \\
\beta & \sim N\left(\mu, \sigma^{2} V\right) \\
\sigma^{2} & \sim I G(a, d)
\end{aligned}
$$

[^0]Bayesian Probit Regression

Suppose you want to sample $z \sim N\left(\mu, \sigma^{2}\right) \cdot I(a<z<b)$. This
can be accomplished by

1. Setting $u_{1}=\Phi\left(a ; \mu, \sigma^{2}\right)$ and $u_{2}=\Phi\left(b ; \mu, \sigma^{2}\right)$
2. Sampling $u \sim U\left(u_{1}, u_{2}\right)$
3. Setting $z=\Phi^{-1}\left(u ; \mu, \sigma^{2}\right)$

How do we classify?
Suppose we have \mathbf{x}_{i} from $i=1, \ldots, m$ individuals (think of the
binary responses z_{i} as missing). Given $\mathbf{x}_{i}, i=m+1, \ldots, n$, we want to assign class labels to the remaining individuals.
Given the sampled parameters from the posterior distributions based on the first m individuals, we sample $z_{i}, i=m+1, \ldots, n$. If the estimated $\hat{z}_{i}>0$, then $\hat{y}_{i}=1$ and 0 otherwise.

bayestan Probit Regression

The γ_{j} s are tacken to be a priori independent with
for π_{j} small.
Sampling

1. Initialize $\left[\gamma^{(0)}, Z^{(0)}, \beta^{(0)}\right]$
2. Draw $\gamma^{\left.()^{1}\right)}$ from $p\left(\backslash \mid Z^{(0)}\right)$
3. Draw $\beta^{(1)}$ from $p\left(Z \mid \gamma^{(1)}, \beta^{(1)} z^{(1)}\right)$
4. Repent $=Z^{(1)}$
5. Repeate $2-4$ for $b=2, \ldots, B$ iterations

The MC estimateif the $P\left(Y_{\text {new }}=1 \mid X\right)$ is
$\hat{p}\left(Y_{\text {new }} \mid X\right)=\frac{1}{m} \sum_{b=1}^{B} p\left(Y_{\text {new }}=1 \mid X, Z^{(b)}, \beta^{(b)}, \gamma^{(b)}\right)$
Model Comparison by Cross Validation

1. Model 1 : Use all strongly significant genes
2. Model 2 : Use genes with selected more than 5%
3. Model 3 : Use genes with selected more than 6% 4. Model 4 : Use genes with selected more than 7%

Bayesian Probit Regression

Breast Cancer: Hedenfalk et al. (2001)

bayesian Probit Regression
Breast Cancer: Hedenfalke et (2001)

[^1]Bayesian Probit Regression
Leukemia: Golub etal. (1999)

In the auxillary yariable approach, all the regression tools (MARS, NNs, etc) fit easily in the classification paradigm. Multiclass classification is just an extension of the Albert \& Chib (1993) approach.

Define $y_{i}=\left(y_{i}, y_{2}, \ldots, y_{c}\right)$ such that $y_{j j}=1$ if the ith data
point falls in class j. Assume a set of coefficients, $\beta_{1}, \ldots, \beta_{C}$ point falls in class j. A
one for each class and

$$
p\left(y_{i} \mid \beta\right)=\prod_{j=1}^{c} \pi\left(\beta_{i}\right)^{p_{i}}
$$

Multiclass Classification

Example:Finney Data (Alber \& Chib, 1993)
The probit model in Finney (1947) is
$\pi_{i}=\Phi\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}\right), i=1, \ldots, 39$
where x_{11} - volume of air inspired, $x_{i 2}$ - rate of air inspired $\&$ the binary outcome is the occurrence or non-occurrence on a
transient vasorestriction on the skin of the digits. A uniform prior is placed on ρ.
The posterior distr of β_{1}, β_{2} are ploted for simulated samples of
size 200 and 800 , against the exact posterior distn in solid line.

Multiclass Classification

Nonlinear Classification
Probit model:
$\operatorname{Pr}\left(\mathrm{Y}_{\mathrm{i}}=1 \mid \beta\right)=\phi\left(\mathrm{X}^{\prime} \beta\right)$
Nonlinear Probit model:
$\operatorname{Pr}\left(\mathrm{Y}_{\mathrm{i}}=\mathbf{1} \mid \beta\right)=\phi\{\mathrm{f}(\mathrm{X})\}$
How to model f as X is very high dimension.

- Kernel Methods
- Spline based methods
- Both closely related

Support Vector Machines

- Excellent performance without lot of tweaking (on par with neura
networks)
- Based on simple and elegant principles with nice theoretical properties; used a lot in computer science, machine learning
properties
literature
- Construction based on two principles

Maximum margin hyperplanes
Kernelization

Kernel Methods

Kernel Methods

Support Vector Machines

- Minimize distance of points from this margin subject to penalty constraints
$\sum_{i=1}^{N} \xi_{i} \leqslant C$

Support Vector Machines

- Minimize distance of points from this margin subject to penalty
constraints

$\sum_{i=1}^{N} \xi_{i} \leqslant c$

- \boldsymbol{C} is some version of smoothing parameter
- If the points cant be separated by a straight line: transform axis
- Kernelization: the transformation can be written generally as a Kernel matrix: \boldsymbol{K}
- Works very well in high dimensional data problems: microarrays

Kernel Method: Fundamental Theorem
MALLICK ET AL., JRSSB,2005

Theorem: If K is a reproducing kernel for the function
space (Hilbert Space) then the family of functions
So with a choice the space.
as

$$
f(\mathbf{x})=\sum_{k=1}^{n} \beta_{k} K\left(\mathbf{x}, \mathbf{x}_{k} \mid \boldsymbol{\theta}\right)
$$

This is now a n dimensional problem rather than p.
$K_{i j}=K\left(x_{i}, x_{j} \mid \theta\right)$: Kernel Matrix.

- Gaussian Kernel: $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\operatorname{Exp}\left\{-\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2} / \theta\right\}$ (Corrsponding to Radial basis function)
- Polynomial Kernel: $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left(\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}+1\right)^{\theta}$ (Corresponding to Polynomial Basis function)

This is also known as Relevance Vector Machine (RVM).

Nonlinear Probit Model

- Also a Kernel based method
- Difference is the likelihood function
- Based on optimizing the loss function L
- Convert Loss to Likelihood

Likelihood $\propto \exp [-\mathrm{L}]$

Likelihood

- We code the class as $Y_{i}=1$ or $Y_{i}=-1$. Cristianini and Shawe-Taylor (2000), Schölkopt and Smola (2002) an
Herbrich (2002) The idea behind support vector Herbrich (2002). The idea behind support vector
machines is to tind a linear hyperplane that separ the observations with $y=1$ trom those that separates
has the largest minimal distance from any of the trainit has the largest minimal distance from any of the training
examples. This largest minimal distance is known as
the examples.
the margin.
- Shown by Wahba (1999) or Pontil etal. (2000), the ophimization probele of SVM amounts to tining β
which minimizes $\frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{m}\left\{1-y_{i} f\left(x_{i}\right)\right\}+$, where which minimizes ${ }_{2}\|\beta\|^{2}+C \sum_{i=1}^{i=1}\left\{1-y_{i} f\left(x_{i}\right)\right\}+$, where
$[a \mid+=$ if $a>0$ and is 0 otherwise, $C \geq 0$ is a penalty term.

Bayesian Hierarchical SVM

- In a Bayesian formulation, the optimization problem is
equivalent to finding the posterior mode of β, where the equivalent to tinding the posterior mode of β, where the
likelihood is given by exp $\left[-\sum_{i=1}^{n}\left\{1-y_{i} f\left(x_{i}\right)\right\}+\right\}$, while β
has the $N\left(0, C_{n+1}\right)$ prior.

$$
\begin{array}{r}
p(\boldsymbol{y} \mid f) \sim \exp \left[-\sum_{i=1}^{n}\left\{1-y_{i} f\left(\boldsymbol{x}_{i}\right)\right\}+\right] ; \\
f_{i} \mid \boldsymbol{\beta}, \boldsymbol{\theta}=\mathbf{K}_{i}^{\prime} \boldsymbol{\beta} ; \\
\boldsymbol{\beta}, \Sigma \sim \mathrm{N}_{n+1}\left(\boldsymbol{\beta}|\mathbf{0}, \Sigma| \mathrm{E} \mid \mathrm{G}\left(\Sigma \mid \gamma_{1}, \gamma_{2}\right),\right. \\
\boldsymbol{\theta} \sim \Pi_{q=1}^{p} U\left(a_{q 1}, a_{q 2}\right)
\end{array}
$$

BAyEsian Normalized SVM

- The SVM likelihood does not contain the normalizing
constant which may contain f.
- If you do complete normalization then the density
comes out to be
- $10\left\{\begin{array}{l}11+ \\ 1\end{array}\right.$
$p\left(y_{i} \mid f_{i}\right)=\left\{\begin{array}{l}\left\{1+\exp \left(-2 y_{i} f_{i}\right)\right\}^{-1} \quad \text { for }\left|f_{i}\right| \leq 1 \\ {\left[1+\exp \left\{-y_{i}\left(f_{i}+\operatorname{sgn}\left(f_{i}\right)\right\}\right\}^{-1}\right.}\end{array}\right.$
where $\operatorname{sgn}(u)=1,0$ or -1 according as u is greater than,
equal or less than 0 .
Using this distribution to develop the likelihood we obtain
Bayesian Normalized SVM (BNSVM).

We can extend this model using multiple smoothing
parameters so that the prior for $\left(\beta, \sigma^{2}\right)$ is

$$
\beta, \Sigma \sim N_{n+1}\left(\beta \mid 0, \Sigma \mathbf{D}^{-1}\right) \mathrm{IG}\left(\Sigma \mid \gamma_{1}, \gamma_{2}\right),
$$

where D is a diagonal matrix with diagonal elements $\lambda_{1}, \ldots, \lambda_{n+1}$. Once again λ_{1} is fixed at a small value, but all other λ 's are unknown. We assign independent $\operatorname{Gamma}(m, c)$ priors to them. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$.

To avoid the problem of specifying the hyperparameters n and c of λ, we can use Jeffreys' independence prior $p(\lambda) \propto$ $\Pi_{i=1}^{n+1} \lambda_{i}^{-1}$. This is a limiting form of the gamma prior when both m and c go to 0 . Figueirdo (2002) observed that this type of prior promoted sparseness, thus reducing the effective num er of parameters in the posterior. Sparse models are preferable as they predict accurately using fewer parameters.

Hierarchical Model

Latent Variable Scheme

The hierarchical model will be
$p\left(y_{i} \mid z_{i}\right) \propto \exp \left\{-l\left(y_{i}, z_{i}\right)\right\}, i=1, \ldots, n$,
where the $y_{1}, y_{2}, \cdots, y_{n}$ are conditionally independent given $r_{1}, z_{2}, \cdots, z_{n}$ and l is any specificic choice of the loss function We relate z_{i} to $f\left(x_{i}\right)$ by $z_{i}=f\left(x_{i}\right)$.
esidual random effects.
residual random effects.
The random latent variable z_{i} is thus modeled as

$$
z_{i}=\beta_{0}+\sum_{j=1}^{n} \beta_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} \mid \boldsymbol{\theta}\right)+\epsilon_{i}=\mathbf{K}_{i}^{\prime} \boldsymbol{\beta}+\epsilon_{i},
$$

where the ϵ_{i} are independent and identically distributed
$V(0, \Sigma)$ variables $N(0, \Sigma)$ variables

BAyESIAN ANALYSIS

Introduction of the latent variables z_{i} simplify computation (Holmes and Held, 2003), as we now show.
From the Bayes Theorem

$$
p(\beta, \theta, \mathbf{z}, \Sigma, \lambda \mid \mathbf{y}) \propto p(\mathbf{y} \mid \mathbf{z}, \beta, \theta, \Sigma, \lambda) p(\beta, \mathbf{z}, \theta, \lambda, \Sigma)
$$

This distribution is complex, and implementation of the Bayesian procedure requires MCMC sampling techniques, and in particular, Gibbs sampling (Gelfand and Smith, 1990) and Metropolis-Hastings algorithms (Metropolis et al, 1953). The Gibbs sampler generates posterior samples using conditional densities of the model parameters which we describe
\qquad

Bayesian Analysis

Nand Σ, whose posterior density Conditional on $\bar{z}, \theta, \lambda i s$
mal-IVverse-Gamma,

here $\check{\mathrm{m}}=\left(\mathbf{K}_{0}{ }^{\prime} \mathrm{K}_{0}+\mathbf{D}\right)^{-1}\left(\mathbf{K}_{0}{ }^{\prime} z\right), \tilde{\mathrm{V}}=\left(\mathbf{K}_{0}{ }^{\prime} \mathbf{K}_{0}+\mathbf{D}\right)^{-1}, \tilde{\eta}_{\mathbf{1}}$

The conditional distribution tor the precision parameter
$p\left(\lambda_{1} \mid \beta_{i}\right)=\operatorname{Gamma}\left(m+\frac{1}{2}, c+\frac{1}{2 \sigma^{2}} \beta_{i}^{2}\right), i=2, \ldots, n+1$.
Finally, the full conditional density for z_{i} is
$p\left(z_{i} \mid z, z, \beta, \sigma^{2}, \theta, \lambda\right)$
$x \exp \left[-l\left(y_{i}, z_{i}\right)-\frac{1}{2 \sigma^{2}}\left\{z_{i}-\sum_{j=1}^{n} \beta_{i} K\left(x_{i j}, x_{j}\right)\right)^{2}\right]$.

MCMC SAMPLING

We make use of a Gibbs sampler that iterates through the
following steps:
following steps:
(i) update z ;
(ii) update $\mathrm{K}, \beta, \Sigma$;
(iii) update λ.

We update $z_{i} \mid \mathbf{z}_{-i}, \mathbf{y}, \mathbf{K}, \Sigma, \beta(i=1, \ldots, n)$, where \mathbf{z}_{-i} indicates
he z vector with the i th element removed

Leukemia Data

- Bone marrow or peripheral blood samples are taken
from 72 patients with either myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL).
- Training data contains 38 samples, of which 27 are AL and 11 are AML; Test Data consists of 34 samples, 20 ALL and 14 AML. Gene expression for 7000 genes.

Levkena dan

Gene Selection: Ghosh et al (2005, JASA)

- Gene selection is needed to improve the performance of
the classifier.
- Introduce $\gamma, \mathrm{a} p \times 1$ vector of indicator
- Where $\gamma_{i}= \begin{cases}0 & \text { the gene is not selected } \\ 1 & \text { the gene is selected }\end{cases}$
- Prior: $\gamma_{i} \stackrel{i d}{\sim}$ Bernoulli (ω).
- Value of ω is chosen to be small to restrict the number of genes in the model.
- K_{γ} is the kernel matrix computed using only those genes whose corresponding elements of γ is 1 or using the X_{γ}
matrix. \quad. $\quad . \quad . \quad=2$

Hierarchical Model

Prebiction

The classification rule
$\phi\left(\boldsymbol{x}_{\text {new }}\right)=\arg \max _{j} P\left(Y_{\text {new }}=j \mid \boldsymbol{x}_{\text {new }}, Y_{\text {old }}\right)$
P $\left.\quad Y_{\text {new }}=j \mid \boldsymbol{x}_{\text {new }}, \boldsymbol{Y}_{\text {old }}\right)$
$=\int_{\gamma} \int_{\Theta} P\left(Y_{\text {new }}=j \mid \boldsymbol{x}_{\text {new }}, \boldsymbol{Y}_{\text {old }}, \Theta, \gamma\right) \Pi(\Theta, \gamma \mid$ data $) d \Theta d \gamma$
Is the posterior predictive probability that the tumor belongs to
the j th class.

Glioma Cancer

- Gliomas are most common primary brain tumors.
- It occurs at a rate of 12.8 per 100,000 people, and the
problem is most common in children ages 3 to 12
- In the United States, approximately 2,200 children younger than age 20 are diagnosed annually with brain tumors.
- 4 different types of Gliomas depending on the location of their origin.
- The classification of malignant gliomas remains controversial and effective therapies have been elusive.

Glioma Cancer

- All primary glioma iissues were acquired from the Brain Tumor Center tissue bank of the University of Texas M.D. Anderson Cancer Center
- cDNA microarray with 597 genes

4 types of gliomas GM (glioblastoma multiforme), OL (oligodendroglioma), AO (anaplastic oligodendroglioma), AA (anaplastic astrocytoma).

- A set of 25 patients available. No separate test set so performance is checked by leave one out crossvalidation.

SUMMARY

- RKHS based Bayesian multinomial logit model and Bayesian SVM are strong contenders in predicting th phenotype of a cancer based on its gene expression measurement
- In both the examples our proposed 2 methods
outperforms 3 other methods discussed methods.
- Dimension reduction is built in automatically, no additiona projection required.

Green = Good; Yellow = Fair; Red: Poor

Splines and basis functions

- Given data $\left(X_{i}, Y_{i}\right), \quad i=1, \ldots, n$ we wish to estimate
$\boldsymbol{Y}=\boldsymbol{f}(\boldsymbol{X})+\boldsymbol{\epsilon}$
- Splines are one-way to model \boldsymbol{f} flexibly by writing $\boldsymbol{f}(\boldsymbol{X})=\boldsymbol{B}(\boldsymbol{X})$
where $\boldsymbol{B}($.$) are called basis functions.$
- Basis functions: there a lot choices available like truncated power
basis, B -splines, thin plate solines etca rich literature
plate splines etc; rich literature.
- Capture non-linear relationships between variables.

```
Scientific Questions
    - Predict tumor type from gene expression profile
        - Treat gene expression measurements as predictors, tissue type as
        - Treat gene
response
ene selection
    fituential genes for the biological question under
        investigation
    - More importantly gene-gene interaction
        - How different genes interact with each other; scale?
        Provides valuable insights into gene-gene associations and their
eftect on cancer ontology
        effect on cancer ontology.
    - One unified mode!!
```


Probabilistic Model based Classifiers

- We consider rule based classifiers that use primitives such as
if A THEN b
- A relates to the conditions on the value of a set of predictors(genes) \boldsymbol{X}
B relates to change in $\operatorname{Pr}(\mathbf{Y} \mid \mathbf{X})$ (log-odds ratio)
Provides explicit representation of classification scheme
Interpretable models unike black box techniques (e.g. neural
Alternatives: CART (Breimen et al., 1984); graphical order of rules
Combine scientific interpretation with accurate prediction

MODE

Assuming $Y_{i}, i=1, \ldots, n$ are independent Bernoulli with,
$\operatorname{Pr}\left(\mathbf{Y}_{\mathrm{i}}=1 \mid \mathrm{X}_{\mathrm{i}}\right)=\mathcal{H}\left(\eta_{\mathrm{i}}\right)$

- $\mathcal{H}(a)=1 /[1+\exp (-a)]$ (logistic link function
$\boldsymbol{X}_{1}=$ th row of gene expression matrix X
- Linear model (naive)
$\operatorname{Pr}\left(\mathrm{Y}_{\mathrm{i}}=1 \mid \mathrm{X}_{\mathrm{i}}\right)=\mathcal{H}\left(\mathrm{X}_{\mathrm{i}}^{\prime} \beta\right)$
- Non-linear model
$\operatorname{Pr}\left(\mathrm{Y}_{\mathrm{i}}=1 \mid \mathrm{X}_{\mathrm{i}}\right)=\mathcal{H}\left(\mathbf{f}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- Key: Model f as X is high dimensional

Develop full probabilistic model-based approach to noninear classification

- Smooth classficication/decision boundaries; might suggest some biology
- Use Bayesian model mixing for prediction or classification rather than a single model
- Advantage:
- Model averaging: accuracy
- By-product: Uncertainty (credibibe) intervals

Choices for f

Kernel methods: $\boldsymbol{K}_{i j}=\boldsymbol{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i} \mid \theta\right)$: Kernel matix

- Gaussian/Polynomial Kernels; RKHS; SVM's

See Mallick, Ghosh and Ghosh (2005, JRSSB)

- We will use basis function approach as,

$$
\mathrm{f}\left(\mathrm{X}_{\mathrm{i}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{k}} \beta_{\mathrm{i}} \mathbf{B}\left(\mathbf{x}_{\mathrm{i}}, \theta_{\mathrm{j}}\right)
$$

$k=$ number of basis; $\beta=$ regression coefficients; $\theta=$ basis parameters

- Choices: wavelets, regression splines, artificial neural networks, radial bases, MARS
Note: both Kernal and Basis function approaches are closely

MARS BACKGROUND

- MARS: Multivariate Adaptive Regression Splines (Friedman, 1991)
.exble regression modeling of high dimensional data
- Particularly suited to non-linear data sets
- Originally designed for continuous responses
- Extended to deal with classification(categorical) problems (Kooperberg et al,. 1997)
- Extended in the Bayesian framework (BMARS, Denison et al 1998)

We extend it to deal with categorical data within a logistic - We extend it to deal w
regression framework

Bayesian MARS Model for Gene Interaction

MARS basis function

$$
f\left(X_{i}\right)=\beta_{0}+\sum_{j=1}^{k} \beta_{j} \prod_{l=1}^{z_{j}}\left(X_{i d_{l}}-\theta_{j i}\right) q_{j,},
$$

- β 's are spline coefficients
$\circ z_{j}$ is the interaction level: $1=$ main effect, $2=$ bivariate interaction
- $\boldsymbol{d}_{\boldsymbol{j}}$ indices of which of the \boldsymbol{p} genes enter the interaction
$-k$ is the number of spline bases
- $q_{j i} \in\{+,-\}$ is the orientation of the spline
- $\theta_{j /}$ are knot locations
- All random!
simplified model with $\boldsymbol{k}=\mathbf{2}$ bases and interaction order
$z=\{1,2\}$,
$\hat{f}=2.5+3.2\left(x_{20}-2.5\right)_{+}+4.1\left(x_{10}-1.2\right)_{-}\left(x_{30}+3.4\right)_{+}$
- Genes either enter the model as main effect or bivariate
interaction
- Gene 20 enters the model as a linear term (main effect)
- Genes 10 and 30 : bivariate interaction
- Easy to generalize to higher order interactions
- Incorporation of prior biological knowledge

Model
Assuming $\boldsymbol{Y}_{\boldsymbol{i}}, \boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{n}$ are independent Bernoulli with, $\operatorname{Pr}\left(\mathrm{Y}_{\mathrm{i}}=\mathbf{1} \mid \mathbf{X}_{\mathrm{i}}\right)=\mathcal{H}\left(\eta_{\mathrm{i}}\right)$

- $\mathcal{H}(a)=1 /[1+\exp (-a)]$ (logistic link function)
- $\boldsymbol{X}_{i}=\boldsymbol{i t h}$ row of gene expression matrix X

Moner

MODBL
$\operatorname{Pr}\left(\mathbf{Y}_{i}=1 \mid \mathbf{X}_{\mathrm{i}}\right)=\mathcal{H}\left(\eta_{i}\right)$,
$\eta_{i}=\sum_{j=1}^{k} \beta_{j} \boldsymbol{B}\left(\mathbf{X}_{i}, \theta_{j}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$

- η_{i} : Latent variables used to obtain conditional independence - Conditional on η is all parameters are independent of Y
- Holmes and Mallick (2003, JASA
- Eases computations considerably

Efficient sampling and good MCMC mixing
Calculations of marginal probabilities

Model
Assuming $\boldsymbol{Y}_{\boldsymbol{i}}, \boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{n}$ are independent Bernoulli with, $\operatorname{Pr}\left(\mathbf{Y}_{\mathbf{i}}=\mathbf{1} \mid \mathbf{X}_{\mathbf{i}}\right)=\mathcal{H}\left(\eta_{\mathbf{i}}\right)$
- $\mathcal{H}(a)=1 /[1+\exp (-a)]$ (logistic link function) - $\boldsymbol{X}_{\boldsymbol{i}}=\boldsymbol{i t h}$ row of gene expression matrix \mathbf{X}
- η_{i} (latent variables) is modeled as (Holmes and Mallick, 2003; JASA),
$\eta_{i}=\mathrm{f}\left(\mathrm{X}_{\mathrm{i}}\right)+\epsilon_{\mathrm{i}}$
- We model the unknown function \boldsymbol{f} nonparametrically using basis functions as,
$\mathbf{f}\left(\mathbf{x}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{k}} \beta_{j} \mathbf{B} \mathbf{(\mathbf { x } _ { i } , \theta _ { j })}$

Mode
Assuming $Y_{i}, i=1, \ldots, n$ are independent Bernoulli with,
$\operatorname{Pr}\left(\mathrm{Y}_{\mathrm{i}}=1 \mid \mathrm{X}_{\mathrm{i}}\right)=\mathcal{H}\left(\eta_{\mathrm{i}}\right)$

- $\mathcal{H}(a)=1 /[1+\exp (-a)]$ (logistic link function
 - $\boldsymbol{X}_{i}=$ ith row of gene expression matrix X
 - η_{i} (latent variables) is modeled as (Holmes and Mallick, 2003
$\eta_{i}=\mathbf{f}\left(\mathrm{X}_{\mathrm{i}}\right)+\epsilon_{\mathrm{i}}$
$\mathrm{f}\left(\mathrm{X}_{\mathrm{i}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{k}} \beta_{\mathrm{j}} \mathbf{B} \mathbf{(\mathbf { x } _ { \mathrm { i } } , \theta _ { \mathrm { j } })}$
BAYESIAN FORMULATION
MODEL: Matrix Notation
$\operatorname{Pr}(\boldsymbol{Y}=1 \mid \boldsymbol{X})=\mathcal{H}(\eta)$,
$\eta=\Theta(X ; \mathcal{M}) \beta+\epsilon, \quad \epsilon \sim \operatorname{MVN}\left(0, \sigma_{\epsilon}^{2}\right)$

Priors

- Prior on regression coefficients
$\beta \mid \lambda=\operatorname{Normal}\left(0, \sigma^{2} \mathbf{D}^{-1}\right) ; \operatorname{D}=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}+1}\right)$
$\lambda_{i}=\operatorname{Gamma}\left(\tau_{\mathrm{i}}, \tau_{\mathrm{z}_{\mathrm{i}}}\right)$;
λ_{i} 's are also smoothing parameters in the spline context
- Prior on spline parameters $\mathcal{M}=\{\theta, \boldsymbol{q}, \boldsymbol{d}, \boldsymbol{z}, \boldsymbol{k}\}$
- Proper unitiorm priors on $(\theta, \boldsymbol{q}, \boldsymbol{d})$
$-\pi(\boldsymbol{k})=$ Uniform $(\mathbf{1}, \ldots, \infty)$,
(improper: no apriori knowledge of number of splines (k)) - Inverse-Gamma prior on σ_{ε}^{2}

Prediction and Model Choice
- Given $x_{\text {new }}$, marginal posterior distribution of the new disease state $y_{n e w}$ is.
state $y_{\text {new }}$ is,
$\operatorname{Pr}\left(y_{\text {now }}=1 \mid X_{\text {new }}\right)=\sum_{k=1}^{\infty} \int P\left(y_{\text {new }}=1| | X_{\text {new }}, \mathcal{M}_{k}\right) P\left(\mathcal{M}_{k} \mid Y\right) d \mathcal{M}_{k}$
Approximated by its Monte Carlo estimate,
$\operatorname{Pr}\left(y_{\text {new }}=1 \mid X_{\text {new }}\right)=\frac{1}{m} \sum_{j=1}^{m} P\left(y_{\text {new }}=1 \mid X_{\text {new }}, \mathcal{M}^{()}\right)$
$m=$ number of MCMC samples
- Use misclassification error on to choose among models
- Test and training data

- Posteriors are not in explicit form
- Conventional fixed-dimension MCMC algorithms (Gibbs,

Metropolis - Hastings) not applicable

- We use Reversible Jump MCMC (Green, 1995) since our model
space is variable: we do not know the number of genes (splines)
- Birth: addition of spline
- Move: change knot locatio
- MCMC visits numerous models
- Efficient sampling using latent variables

Example: Breast Cancer data

- 22 samples from breast cancer patients carrying mutations of et al (2003):
http://linus.nci.nih.gov/BRB-ArrayTools.html
- 3226 genes for each sample
- Classity BRCA1 vs. BRCA2 and sporadic
- Consider only main effects and bivariate interactions
- We identify sets of candidate genes which have most bearing on
the tumor: MARS automatically ignores genes that have little
the tumor: MARS automatically ignores genes that have little
effect on the response

Brast Cancer dan: top mitrecting genes

Top interacting genes entering MARS model

Nonlinear Gene interactions

Posterior mean interaction function between two pairs of interacting genes
X and Y axis are the expression levels of interacting genes and verical axis is the probability o disease

Interactions

Interaction
pathways

Breast Cancer data: Top main effect genes

Top main effect genes entering MARS model

One 10	eF	
307843	${ }_{\text {ESTs }}($ (1)	57.40
${ }_{883376}^{81331}$		
${ }_{\substack{825478}}^{848076}$	-	${ }_{46.08}^{4.98}$
${ }_{56888}^{28072}$		
${ }_{841617}^{56887}$	(hele	${ }_{\text {c }}^{38.92}$ 37.88

Main Effects

Posterior mean main effect functions of significant genes
X-xixs $=$ Gene expression; Y-axis: Probabiliy of disease

Advantage of using a non-linear model: unearth a threshold Advantage of Using a non-Iinear model: unearth a threshola
expression level and its corresponding effect on the odds of having cancer

Missclassification Errors

Model Leave-one-out misclassification errors

SVM: Classical Support Vector Machine

NUMber of Genes

CLASSification Boundaries: Leukemia data

- Nonlinear approach to model gene-gene interactions using Bayesian MARS
- Advantage: capture non-linear dependencies between genes
- Use MCMC based stochastic search algorithms to obtain models
- Identify significant genes of interest
- Potential extensions
- Multicategory classification
- Other forms of non-gaussian data

Gene regulatory network

[^0]: chan

[^1]:

