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TILL NOW...

Microarray Classification

Various approaches: last lecture

Linear/Quadratic Discriminant Analysis.

Maximum Likelihood Discriminant Rules

Bayesian linear classifiers; Linear models for Differential expression

Today: Nonlinear Methods

Regression Methods: Generalized (Non)-linear Models (GLMs)

Splines; SVM; Kernel methods

Theory motivated in a Bayesian framework but estimation can be
any method.
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GENERALIZED LINEAR MODELS

The Generalized Linear Model

The class of generalized linear models is a natural generalization

of the classical linear model. Generalized linear models include

as special cases, linear regression and analysis of variance

models, logit and probit models for quantal response data,

log-linear models and multinomial response models for counts,

some commonly used models for survival data.

To simplify the transition from the classical normal linear model,

i.e. Y = Xβ + ε, ε ∼ Nn(0,σ2I) to generalized linear models,

it will be important to characterize specific aspects of the linear

model

Bayesian Analysis of the Generalized Linear Model – p.2/77
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GENERALIZED LINEAR MODELS

The Generalized Linear Model
1. Random component: Y ∼ Nn(µ,σ2I), where µ = Xβ.

Note that the linear model has constant variance.

2. Systematic component: The covariate comprises the

systematic component of the model. For the ith observation,

we let

ηi = x′
iβ, i = 1, ..., n.

We call ηi the linear predictor.

Bayesian Analysis of the Generalized Linear Model – p.3/77

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008



LOGO

GENERALIZED LINEAR MODELS

The Generalized Linear Model

Thus yi ∼ N(x′
iβ,σ2) = N(ηi,σ2), i = 1, ..., n and the yi’s are

independent, given the xi’s and β. Note here that for the usual

normal linear model, the relationship between themean of yi

and ηi is given by

µi ≡ E(yi|xi, β) = x′
iβ = ηi, i = 1, ..., n.

Thus

µi = ηi, i = 1, ..., n.

Generalized linear models involve 2 extensions of the normal lin-

ear model.

Bayesian Analysis of the Generalized Linear Model – p.4/77
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GENERALIZED LINEAR MODELS

The Generalized Linear Model
1. The distribution of y is from the exponential family

2. The relationship between µi = E(yi|xi, β) can be made

more general, so that

g(µi) = ηi ≡ x′
iβ

g(µi) is called the µ-link function and relates themean of yi

(i.e., µi) to the linear predictor ηi. y has a distribution in the

exponential family with canonical parameter θ and dispersion

φ

p(y|θ,φ) = exp {[yθ − b(θ)] /a(φ) + c(y,φ)}

Bayesian Analysis of the Generalized Linear Model – p.5/77
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GENERALIZED LINEAR MODELS

The Generalized Linear Model

Without loss of generality, we assume a(φ) = φ, so that

p(y|θ,φ) = exp {[yθ − b(θ)] /φ + c(y,φ)} .

Here
∫

y

exp {[yθ − b(θ)] /φ + c(y,φ)} dy = 1,

so that

exp

{

b(θ)

φ

}

=

∫

y

exp

{

yθ

φ
+ c(y,φ)

}

dy.

Bayesian Analysis of the Generalized Linear Model – p.6/77
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GENERALIZED LINEAR MODELS
The Generalized Linear Model
Here b(·) and c(·) are known functions. If φ is unknown, then

the above may or may not be an exponential family. θ is called

the canonical parameter. An excellent book on generalized

linear models is McCullagh & Nelder ( Chapman Hall).

The class of generalize linear models has many uses in

biostatistics. Binomial models are often used to model dose

response. Gamma models are often used to model survival or

time-to-event data. Poisson models are used to model count data,

such as yearly pollen counts, number of cancerous nodes, etc.

Distributions included in the exponential family are the normal,

binomial, gamma, poisson, beta, multinomial, and inverse gaus-

sian distributions.

Bayesian Analysis of the Generalized Linear Model – p.7/77
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GENERALIZED LINEAR MODELS

The Generalized Linear Model

To see how the normal distribution, for example, fits into the

framework above, suppose,

y ∼ N(µ,σ2).

Then

p(y|µ,σ2) = (2πσ2)−
1
2 exp

{

−
(y − µ)2

2σ2

}

= exp

{

(

yµ − µ2/2
)

/σ2 −
1

2

(

y2

σ2
+ log(2πσ2)

)}

,

Bayesian Analysis of the Generalized Linear Model – p.8/77
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GENERALIZED LINEAR MODELS

The Generalized Linear Model

so that in this case,

θ = µ

a(φ) ≡ φ = σ2

b(θ) =
θ2

2

c(y,φ) = −
1

2

[

y2

σ2
+ log(2πσ2)

]

.

Bayesian Analysis of the Generalized Linear Model – p.9/77
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GENERALIZED LINEAR MODELS

Similar representations exist for Binomial, Poisson, Gamma etc.

For Binomial it turns out that b(θ) = log(1 + eθ) and hence the
transformation log( p

1−p ) is called the logit transformation.

One can prove that in general

E(y |θ, φ) = b′(θ)

V (y |θ, φ) = φb′′(θ)

Thus once we know the b(.) function, we can get the mean and variance
of the exponential family model.
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GENERALIZED LINEAR MODELS
The Generalized Linear Model

Now suppose we have n independent observations y1, ..., yn from

an exponential family. Then the density for the ith observation

can be written as

p(yi|θi,φ) = exp
{

φ−1(yiθi − b(θi)) + c(yi,φ)
}

.

The density based on n observations is

p(y|θ,φ) =
n

∏

i=1

p(yi|θi,φ),

where y = (y1, ..., yn), θ = (θ1, ..., θn).

Bayesian Analysis of the Generalized Linear Model – p.16/77
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GENERALIZED LINEAR MODELS
The Generalized Linear Model

To construct the regression model, (i.e., the generalized linear

model), we let the θi’s depend on the linear predictor ηi = x′
iβ

through the equation

θi = θ(ηi), for i = 1, ..., n,

i.e., the link function θ(·), where x′
i = (xi1, ..., xip), and β =

(β1, ..., βp)′. The link function is called the θ-link and is often

more convenient to use than the µ-link. The θ-link is a one-to-one

function of the µ-link. Once θi = θ(ηi) is given, one can write

the likelihood function as a function in (β,φ). When θi = ηi, we

say that we have a canonical link. The function θi = θ(ηi) can

be any monotonic function.
Bayesian Analysis of the Generalized Linear Model – p.17/77

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

GENERALIZED LINEAR MODELS

The Generalized Linear Model
Example

Suppose yi ∼ Binomial(1,pi), the yi’s are independent,

i = 1, ..., n. We have

p(yi|pi) = exp

{

yilog

(

pi

1 − pi

)

− log

(

1

1 − pi

)}

= exp
{

yiθi − log
(

1 + eθi
)}

.

If a canonical link is used, the we set θi = ηi = x′
iβ. Substituting

θi = x′
iβ into p(yi|pi) above, we get

p(yi|β) = exp
{

yix
′
iβ − log

(

1 + ex′

iβ
)}

.

Bayesian Analysis of the Generalized Linear Model – p.18/77
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GENERALIZED LINEAR MODELS

The Generalized Linear Model

Thus, the likelihood function of β based on all n observations is

given by

p(y|β) =
n

∏

i=1

p(yi|β)

=
n

∏

i=1

exp
{

yix
′
iβ − log

(

1 + ex′

iβ
)}

.

= exp
[

∑

{

yix
′
iβ − log

(

1 + ex′

iβ
)}]

Bayesian Analysis of the Generalized Linear Model – p.19/77
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GENERALIZED LINEAR MODELS

The Generalized Linear Model
For this model, the relation between θi and µi is

θi = log(
µi

1−µi
), where µi = E(yi|pi) ≡ pi.

Thus µi = eθi

1+eθi
. Suppose, we consider a probit model. The

µ-link for the probit model is given by

Φ−1(µi) = ηi

µi = Φ(ηi)

ηi = x′
iβ,

Φ(ηi) =
eθi

1 + eθi
.

Bayesian Analysis of the Generalized Linear Model – p.20/77
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GENERALIZED LINEAR MODELS

The Generalized Linear Model

Any model that satisfies

p(yi|θi,φ) = exp
{

φ−1(yiθi − b(θi)) + c(yi,φ)
}

and θi = θ(ηi), ηi = x′
iβ, is called a generalized linear model

(GLM). Below we give some distributions with their canonical

links.

Distribution Canonical µ-link

Normal η = µ

Poisson η =log(µ)

Binomial η = log( µ
1+µ)

Gamma η = µ−1

Bayesian Analysis of the Generalized Linear Model – p.23/77
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ESTIMATION IN GLM’S

Frequentist inference

MLE of β does not have closed form; Newton-Raphson or Fisher
Scoring used
The resulting equations are non-linear functions of β
The likelihood equations are of β are independent of φ
Often use Large Sample theory for Hypothesis testing

Bayesian inference

Put prior on β
No conjugate priors exist; posteriors not of closed form
However in most cases they are log-concave: attractive methods
exist to sample from them: Adaptive Rejection sampling (Gilks and
Wild (1992, Applied Statistics)
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BAYESIAN MODEL SELECTION IN GLM’SBayesian Model Comparison
and Selection for GLM’s
The computation of Bayes factor, HPD intervals, or

posteriormodelprobabilities will require MCMC techniques

since the posterior distributions are not available in closed form.

It turns out that some novel MCMC algorithms can be developed

for computing posterior model probabilities, in cases in which

noninformative priors or informative priors are used. We now

discuss some of these methods.

A popular method for computing posterior model probabilities us-

ing non-informative (but proper) priors was developed by George

and McCulloch (1993, JASA), and George, McCulloch and Tsay

(1996).

Bayesian Analysis of the Generalized Linear Model – p.58/77
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BAYESIAN MODEL SELECTION IN GLM’SBayesian Model Comparison
and Selection for GLM’s
Consider the model

Y = Xβ + ε, ε ∼ Nn(0,σ2I).

George, McCulloch and Tsay consider a prior for each βi,

β = (β1, ..., βp)′ to be a mixture of two normal densities, and

thus

βi|γi ∼ (1 − γi)N(0, τ 2
i ) + γiN(0, c2

i τ
2
i ),

where γi is a binary random variable with

p(γi = 1) = 1 − p(γi = 0) = pi.

Bayesian Analysis of the Generalized Linear Model – p.59/77
VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008



LOGO

BAYESIAN MODEL SELECTION IN GLM’SBayesian Model Comparison
and Selection for GLM’s
Note that when γi = 0, βi ∼ N(0, τ 2

i ) and when γi = 1, βi ∼

N(0, c2
i τ

2
i ). The interpretation of this is as follows. Set τi(τi > 0)

small so that is γi = 0, then βi would probably be so small that

it could “safely” be estimated by 0. Second, if ci(ci > 1 always)

is set large so that if γi = 1, then a non-zero estimate of βi would

probably be included in the model. Thus, the user must specify

(τi, ci), for i = 1, ..., p. Note here, that a priori, the βi’s are not

necessarily independent.

Bayesian Analysis of the Generalized Linear Model – p.60/77
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BAYESIAN MODEL SELECTION IN GLM’SBayesian Model Comparison
and Selection for GLM’s
Based on this interpretation, pi may not be thought of as the prior

probability tha βi is not zero, or equivilantly that Xi should be

included in the mode, where Xi denotes the ith covariate. The

mixture prior for βi|γi can be written in vector form as

β ∼ γ ∼ Np(0, DγRDγ),

where γ = (γ1, ..., γp), R is the prior correlation matrix and

Dγ = diag(a1, τ1, ..., apτp),

where ai = 1 if γi = 0 and ai = ci if γi = 1. ThusDγ determines

the scaling of the prior covariance matrix.

Bayesian Analysis of the Generalized Linear Model – p.61/77
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BACK TO MICROARRAYS

Now back to Microarrays....
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BAYESIAN PROBIT CLASSIFICATION
Classification

Consider C-classes with class labels yi ∈ {1, 2, . . . , C}, for

i = 1, . . . , n individuals with associated p covariate

measurements xi = (xi1, . . . , xip). The idea is to fit classifier

model that can predict the class (label) well given the p

measurements.

Binary or multinomial regression using GLMS is popular, al-

though inference using Bayesian GLMs is not trivial in practice,

as conjugate priors do not exist.

Bayesian Non-Linear Classification – p.2/31
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BAYESIAN PROBIT REGRESSIONBayesian Probit Regression

For binary classification, y ∈ {0, 1} we write,

f(y|β) = [π(β)]y[1 − π(β)]1−y

π(β) = Φ(η), η = β0 +
p

∑

j=1

βjxj. (probit)

Other choices are logit and log-log link functions. There are no

conjugate priors & computation can be difficult.

Albert and Chib (1993) demonstrated an auxillary variable ap-

proach to simplify binary probit regression.

Bayesian Non-Linear Classification – p.3/31
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BAYESIAN PROBIT REGRESSION

Bayesian Probit Regression

Auxillary variables method

Define z = η + ε, where ε ∼ N(0, 1). Then

y =







1 if z > 0

0 if z < 0

and the marginal distributions of y is

p(y = 1|β)

= p(y = 1|z > 0, β)p(z > 0|β) + p(y = 1|z < 0, β)p(z < 0|β)

= 1 · p(z > 0|β) + 0 · p(z < 0|β)

= p(z − η > −η|β) = Φ(η).

Conditional upon the auxillary variable z, β is updated.
Bayesian Non-Linear Classification – p.4/31
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BAYESIAN PROBIT REGRESSION

Bayesian Probit Regression

We have D = {yi,xi}n
1 and z = (z1, . . . , zn). The hierarchical

model is

yi|zi, β ∼ I(z > 0)δ1

zi ∼ N(x′
iβ,σ2)

· · · · · ·

β ∼ N(µ,σ2V )

σ2 ∼ IG(a, d)

Bayesian Non-Linear Classification – p.5/31
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BAYESIAN PROBIT REGRESSIONBayesian Probit Regression

Sample proceeds by sampling all of the parameters conditional

on z and then sampling z conditional upon y from a truncated

normal distribution:

p(zi|yi = 1, β) ∝ p(yi = 1|zi, β)p(zi|β)

= I(z > 0) · N(x′
iβ,σ2),

and

p(zi|yi = 0, β) ∝ p(yi = 0|zi, β)p(zi|β)

= I(z < 0) · N(x′
iβ,σ2).

Bayesian Non-Linear Classification – p.6/31
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BAYESIAN PROBIT REGRESSION

Bayesian Probit Regression

Suppose you want to sample z ∼ N(µ,σ2) · I(a < z < b). This

can be accomplished by

1. Setting u1 = Φ(a; µ,σ2) and u2 = Φ(b; µ,σ2)

2. Sampling u ∼ U(u1, u2)

3. Setting z = Φ−1(u; µ,σ2)

Bayesian Non-Linear Classification – p.7/31
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BAYESIAN PROBIT REGRESSION

Bayesian Probit Regression

How do we classify?

Suppose we have xi from i = 1, ...,m individuals (think of the

binary responses zi as missing). Given xi, i = m + 1, . . . , n, we

want to assign class labels to the remaining individuals.

Given the sampled parameters from the posterior distributions

based on the firstm individuals, we sample zi, i = m + 1, . . . , n.

If the estimated ẑi > 0, then ŷi = 1 and 0 otherwise.

Bayesian Non-Linear Classification – p.8/31
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BAYESIAN PROBIT REGRESSION

Bayesian Probit Regression

Example: Feature Selection (Lee et al. 1993 Bioinformatics)

The probit model was used

P (Yi = 1) = Φ(X ′
iβ)

where Xi are measured gene expression values for the ith

individual. The variable γ is introduced, such that γj = 0 if

βj = 0 and γj = 1 if βj != 0. Conditional upon γ, the prior for β

is

βγ ∼ N(0, c(XT
γ Xγ)

−1)

for some positive scaler constant c.

Bayesian Non-Linear Classification – p.9/31
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BAYESIAN PROBIT REGRESSION

Bayesian Probit Regression

The γj’s are tacken to be a priori independent with

p(γj) = πj

for πj small.

Sampling

1. Initialize [γ(0), Z(0), β(0)]

2. Draw γ(1) from p(γ|Z(0))

3. Draw Z(1) from p(Z|γ(1), β(0))

4. Draw β(1) from p(β|γ(1), Z(1))

5. Repeate 2-4 for b = 2, ..., B iterations.

Bayesian Non-Linear Classification – p.10/31
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BAYESIAN PROBIT REGRESSION

Bayesian Probit Regression

The MC estimateif the P (Ynew = 1|X) is

p̂(Ynew|X) =
1

m

B
∑

b=1

p(Ynew = 1|X,Z(b), β(b), γ(b))

Model Comparison by Cross Validation

1. Model 1 : Use all strongly significant genes

2. Model 2 : Use genes with selected more than 5%

3. Model 3 : Use genes with selected more than 6%

4. Model 4 : Use genes with selected more than 7%

Bayesian Non-Linear Classification – p.11/31
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BAYESIAN PROBIT REGRESSION

Bayesian approach to gene selection

Table 1. Breast cancer data: strongly significant genes for the classification

of BRCA1 versus BRCA2 or sporadic

Frequency* Image clone Gene

(%) ID description

8.6 897781 keratin 8

8.4 823940 TOB1

7.8 26184 ‘phosphofructokinase, platelet’

7.5 840702 SELENOPHOSPHATE SYNTHETASE;

Human selenium donor protein

7.1 376516 cell division cycle 4-like

6.9 47542 small nuclear ribonucleoprotein D1

polypeptide (16 kD)

6.6 366647 butyrate response factor 1 (EGF-response

factor 1)

6.6 293104 phytanoyl-CoA hydroxylase (Refsum disease)

6.2 28012 O-linked N -acetylglucosamine (GlcNAc)

transferase

6.1 212198 ‘tumor protein p53-binding protein, 2’

5.9 247818 ESTs

5.5 26082 very low density lipoprotein receptor

5.4 667598 PC4 and SFRS1 interacting protein 1

5.2 30093 RAN binding protein 1

5.1 73531 nitrogen fixation cluster-like

5 950682 ‘phosphofructokinase, platelet’

5 47681 ‘splicing factor, arginine/serine-rich

(transformer 2 Drosophila homolog)’

4.9 46019 minichromosome maintenance deficient (S.

cerevisiae) 7

4.9 307843 ESTs

4.8 548957 ‘general transcription factor II, i, pseudogene

1’

4.7 788721 KIAA0090 protein

4.7 843076 signal transducing adaptor molecule (SH3

domain and ITAM motif)

4.7 204897 ‘phospholipase C, gamma 2

(phosphatidylinositol-specific)’

4.7 812227 ‘solute carrier family 9 (sodium/hydrogen

exchanger), isoform 1’

4.6 566887 heterochromatin-like protein 1

4.6 563598 ‘gamma-aminobutyric acid (GABA) A

receptor, pi’

4.5 324210 sigma receptor (SR31747 binding protein 1)

* Percentage of times the genes appeared in the posterior samples.

to show the feasibility of using differences in global

gene expression profiles to separate BRCA1 and BRCA2

mutation-positive breast cancers. They examined 22 breast

tumor samples from 21 breast cancer patients, and all

patients except one were women. Fifteen women had

hereditary breast cancer, 7 tumors with BRCA1 and 8

tumors with BRCA2. 3226 genes were used for each

breast tumor sample. We use our method to classify

BRCA1 versus the others (BRCA2 and sporadic).

We used a two-sample t-statistics to identify the starting

values, say the 5 most significant genes. We then ran

the MCMC sampler, in particular, the Gibbs sampling

approach fixing πi = 0.005 for all i = 1, 2, . . . , p.

The chain moved quite frequently and we used 50 000

iterations after a 10 000 burn-in period. Table 1 lists

the most significant genes as those with the largest

frequencies.

We note that the three leading genes in Table 1 appear

among the six strongest genes in an analogous list in

Kim et al. (2002). This has occurred even though the

rating in the latter paper is based upon the ability of a

gene to contribute to a linear classifier, which is quite

different than the criterion here. The leading gene in

Table 1 is keratin 8 (KRT8), which also leads the list

of strong genes in Kim et al. (2002). It is a member

of the cytokeratin family of genes. Cytokeratins are

frequently used to identify breast cancer metastases by

immunohistochemistry, and cytokeratin 8 abundance has

been shown to correlate well with node-positive disease

(Brotherick et al., 1998). The gene TOB1 is second in

Table 1, and appeared fifth in Kim et al. (2002). It interacts

with the oncogene receptor ERBB2, and is found to be

more highly expressed in BRCA2 and sporadic cancers,

which are likewise more likely to harbor ERBB2 gene

amplifications. TOB1 has an anti-proliferative activity that

is apparently antagonized by ERBB2 (Matsuda et al.,

1996). We note that the gene for the receptor was not

on the arrays, so that the gene-selection algorithm was

blinded to its input. Lastly, the third gene in Table 1

appears as the sixth gene in the list of Kim et al. (2002).

We check the model adequacy in two ways. (i) Cross

validation approach: we excluded a single data point

(leave-one-out cross validation) and predicted the prob-

ability of Y = 1 for that point using Equation (1). We

compared this with the observed response and most

of the cases obtained almost perfect fitting: 0 classi-

fication errors (number of misclassified observations).

(ii) Deviance: Deviance calculation is a criterion-based

method measuring the goodness of fit (McCullagh and

Nelder, 1989). Lower deviance means better fit. We

calculated the probabilities and the deviance measures

for the different models in Table 2, showing their

adequacy:

Model 1 : Using all strong significant genes.

Model 2 : Using genes with frequencies more than 5%.

Model 3 : Using genes with frequencies more than 6%.

Model 4 : Using genes with frequencies more than 7%.

We compared our cross validation results with other

popular classification algorithms including feed forward

neural networks, k-nearest neighbors, support vector

machines (SVM). Results are in Table 3. All other

methods have used 51 genes (which we think is too many

with respect to a sample size of 22) which may produce

instability in the classification process. Our procedure has

used a much less number of genes though the results are

competitive to any other method.
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BAYESIAN PROBIT REGRESSION

Bayesian Probit Regression

Breast Cancer: Hedenfalk et al. (2001)

Table 2. Crossvalidated classification probabilities and deviances of the 4 models for the breast cancer data set

Y Model 1 Model 2 Model 3 Model 4

Pr(Y = 1|X) Pr(Y = 1|X) Pr(Y = 1|X) Pr(Y = 1|X)

1 1 1 0.9993 0.9998

1 1 1 1 0.9969

1 1 1 0.9999 1

1 1 1 0.9999 0.8605

1 1 1 0.9999 0.7766

1 1 1 0.9998 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0.0002

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0.0002

0 0 0 0.0018 0.0867

0 0 0 0.0005 0.007

0 0 0 0 0

0 0 0 0 0.2864

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Deviance 1.2683e − 12 3.1464e − 7 0.0071 1.6843

Number of misclassifications 0 0 0 1

Bayesian Non-Linear Classification – p.12/31
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BAYESIAN PROBIT REGRESSION

Bayesian Probit Regression

Breast Cancer: Hedenfalk et al. (2001)

Table 3. Cross-validation errors of different models for the breast cancer

data set

Model Cross-validation error∗

1 Feed-forward neural networks (3 hidden

neurons, 1 hidden layer)

1.5 (Average error)

2 Gaussian kernel 1

3 Epanechnikov kernel 1

4 Moving window kernel 2

5 Probabilistic neural network (r = 0.01) 3

6 kNN (k = 1) 4

7 SVM linear 4

8 Perceptron 5

9 SVM Nonlinear 6

∗ Number of misclassified samples.

Feature Selection: 51 Features used in the paper ‘Gene-expression profiles

in hereditary breast cancer’ (Hedenfalk et al., 2001).

Bayesian Non-Linear Classification – p.13/31
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BAYESIAN PROBIT REGRESSION

Bayesian Probit Regression

Leukemia: Golub et al. (1999)

Table 6. Leukemia data: prediction on the test set using genes with

frequencies higher than 2.5%.

Y Pr(Y |Xtest ) Y Pr(Y |Xtest )

1 1.0000 1 0.2503

1 1.0000 1 1.0000

1 1.0000 1 1.0000

1 0.9972 1 0.9999

1 1.0000 1 1.0000

1 1.0000 1 1.0000

1 1.0000

1 1.0000

1 1.0000

1 1.0000

1 1.0000

0 0.0000

0 0.0000

0 0.0000

0 0.0000

0 0.0000

1 0.9963

1 1.0000

0 0.0000

0 0.0000

1 1.0000

0 0.0000

0 0.1143

0 0.0000

0 0.0000

0 0.0000

0 0.0000

0 0.0612

Bayesian Non-Linear Classification – p.14/31
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MULTICLASS CLASSIFICATION

Multiclass Classification

In the auxillary variable approach, all the regression tools

(MARS, NNs, etc) fit easily in the classification paradigm.

Multiclass classification is just an extension of the Albert & Chib

(1993) approach.

Define yi = (yi1, yi2, . . . , yiC) such that yij = 1 if the ith data

point falls in class j. Assume a set of coefficients, β1, . . . , βC ,

one for each class and

p(yi|β) =
C

∏

j=1

π(βi)
yij

Bayesian Non-Linear Classification – p.15/31
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MULTICLASS CLASSIFICATION

Multiclass Classification

Also define auxillary variables, zij = x′
iβj + εij for each yij with

εij ∼ N(0,σ2). Then define the response as

p(yij = 1|z, β) =







1, if zij > zil, l "= j

0, otherwise.

Conditional on the current model, zij ∼ N(x′
iβj,σ

2) subject to

zij > zil for all l "= j, if the ith data point is from the jth

category. Ynew is predicted to be in class j if

P (Ynew,j = 1|X) > P (Ynew,l = 1|X)

for all l "= j; based on the predictive distribution of Ynew, inte-

grating out the parameters.
Bayesian Non-Linear Classification – p.16/31
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MULTICLASS CLASSIFICATION

Multiclass Classification
Example:Finney Data (Alber & Chib, 1993)

The probit model in Finney (1947) is

πi = Φ(β0 + β1xi1 + β2xi2), i = 1, . . . , 39

where xi1 - volume of air inspired, xi2 - rate of air inspired & the

binary outcome is the occurrence or non-occurrence on a

transient vasorestriction on the skin of the digits. A uniform prior

is placed on β.

The posterior distn of β1, β2 are plotted for simulated samples of

size 200 and 800, against the exact posterior distn in solid line.

Bayesian Non-Linear Classification – p.17/31
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MULTICLASS CLASSIFICATION

Multiclass Classification

Bayesian Non-Linear Classification – p.18/31
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NONLINEAR CLASSIFICATION

Probit model:

Pr(Yi = 1|β) = φ(X′β)

Nonlinear Probit model:

Pr(Yi = 1|β) = φ{f(X)}

How to model f as X is very high dimension.

Kernel Methods

Spline based methods

Both closely related
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SUPPORT VECTOR MACHINES

Excellent performance without lot of tweaking (on par with neural
networks)

Based on simple and elegant principles with nice theoretical
properties; used a lot in computer science, machine learning
literature

Construction based on two principles

Maximum margin hyperplanes
Kernelization
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KERNEL METHODS
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KERNEL METHODS
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KERNEL METHODS
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SUPPORT VECTOR MACHINES

Minimize distance of points from this margin subject to penalty
constraints

N∑

i=1

ξi ! C
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KERNEL METHODS
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SUPPORT VECTOR MACHINES

Minimize distance of points from this margin subject to penalty
constraints

N∑

i=1

ξi ! C

C is some version of smoothing parameter
If the points cant be separated by a straight line: transform axis

Kernelization: the transformation can be written generally as a
Kernel matrix: K

Works very well in high dimensional data problems: microarrays
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KERNEL METHODS

Kernels

Kij = K(xi, xj |θ): Kernel Matrix.

Gaussian Kernel: K(xi,xj) = Exp{−||xi − xj ||
2/θ}

(Corrsponding to Radial basis function)

Polynomial Kernel:K(xi,xj) = (xi · xj + 1)θ

(Corresponding to Polynomial Basis function)

. 3/57
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KERNEL METHOD: FUNDAMENTAL THEOREM
(MALLICK ET AL., JRSSB,2005)

Kernel Method

Theorem: If K is a reproducing kernel for the function
space (Hilbert Space) then the family of functions
K(·.t), t ∈ x span the space.
So with a choice of a kernel function K, f can be presented
as

f(x) =
n

∑

k=1

βkK(x,xk|θ)

This is now a n dimensional problem rather than p.

. 4/57
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SUPPORT VECTOR MACHINE
Hierarchical nonlinear probit model

p(yi|pi) ∼ Binary(pi);

pi|β,θ,
ind
= Φ[K′

iβ]; (1)

β, Σ ∼ Nn+1(β|0, Σ)IG(Σ|γ1, γ2), (2)

θ ∼ Πp
q=1U(aq1, aq2)

(3)

This is also known as Relevance Vector Machine (RVM).

. 5/57
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NONLINEAR PROBIT MODEL

Also a Kernel based method

Difference is the likelihood function

Based on optimizing the loss function L

Convert Loss to Likelihood

Likelihood ∝ exp[−L]
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LIKELIHOOD

SVM Likelihood

We code the class as Yi = 1 or Yi = −1. Cristianini and
Shawe-Taylor (2000), Schölkopf and Smola (2002) and
Herbrich (2002). The idea behind support vector
machines is to find a linear hyperplane that separates
the observations with y = 1 from those with y = −1 that
has the largest minimal distance from any of the training
examples. This largest minimal distance is known as
the margin.

Shown by Wahba (1999) or Pontil et al. (2000), the
optimization problem of SVM amounts to finding β

which minimizes 1
2
‖β‖2 + C

∑n
i=1{1 − yif(xi)}+, where

[a]+ = a if a > 0 and is 0 otherwise, C ≥ 0 is a penalty
term.

. 7/57
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BAYESIAN HIERARCHICAL SVM
Bayesian Hierarchical SVM

In a Bayesian formulation, the optimization problem is
equivalent to finding the posterior mode of β, where the

likelihood is given by exp[−
∑n

i=1{1 − yif(xi)}+], while β

has the N(0, Cn+1) prior.

p(y|f) ∼ exp[−
n

∑

i=1

{1 − yif(xi)}+];

fi|β,θ = K′

iβ;

β, Σ ∼ Nn+1(β|0, Σ)IG(Σ|γ1, γ2),

θ ∼ Πp
q=1U(aq1, aq2)

(4)

. 8/57
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BAYESIAN NORMALIZED SVM
Bayesian Normalized SVM

The SVM likelihood does not contain the normalizing
constant which may contain f .

If you do complete normalization then the density
comes out to be

p(yi|fi) =

{

{1 + exp(−2yifi)}−1 for |fi| ≤ 1,

[1 + exp{−yi(fi + sgn(fi))}]−1 otherwise,

where sgn(u) = 1, 0 or −1 according as u is greater than,
equal or less than 0.

Using this distribution to develop the likelihood we obtain

Bayesian Normalized SVM (BNSVM).

. 9/57
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BAYESIAN SVM
Bayesian SVM

We can extend this model using multiple smoothing

parameters so that the prior for (β,σ2) is

β, Σ ∼ Nn+1(β|0, ΣD−1)IG(Σ|γ1, γ2),

where D is a diagonal matrix with diagonal elements

λ1, . . . ,λn+1. Once again λ1 is fixed at a small value, but all

other λ’s are unknown. We assign independent Gamma(m, c)

priors to them. Let λ = (λ1, . . . ,λn+1)′.

. 10/57
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BAYESIAN SVM
Bayesian SVM

To avoid the problem of specifying the hyperparameters m

and c of λ, we can use Jeffreys’ independence prior p(λ) ∝

Πn+1
i=1 λ−1

i . This is a limiting form of the gamma prior when both

m and c go to 0. Figueirdo (2002) observed that this type of

prior promoted sparseness, thus reducing the effective num-

ber of parameters in the posterior. Sparse models are prefer-

able as they predict accurately using fewer parameters.

. 11/57
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HIERARCHICAL MODEL

!"#$%$&'"&%()*+,#(

! - .

/"

0

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

LATENT VARIABLE SCHEME
Latent variable

The hierarchical model will be

p(yi|zi) ∝ exp{−l(yi, zi)}, i = 1, . . . , n,

where the y1, y2, · · · , yn are conditionally independent given
z1, z2, · · · , zn and l is any specific choice of the loss function
as explained in the previous section.
We relate zi to f(xi) by zi = f(xi) + εi, where the εi are
residual random effects.
The random latent variable zi is thus modeled as

zi = β0 +
n

∑

j=1

βjK(xi,xj |θ) + εi = K′

iβ + εi, (1)

where the εi are independent and identically distributed
N(0, Σ) variables

. 1/1
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BAYESIAN ANALYSIS
Bayesian Analysis

Introduction of the latent variables zi simplify computation

(Holmes and Held, 2003), as we now show.

From the Bayes Theorem,

p(β, θ, z, Σ,λ|y) ∝ p(y|z, β, θ, Σ,λ)p(β, z, θ,λ, Σ).

This distribution is complex, and implementation of the

Bayesian procedure requires MCMC sampling techniques,

and in particular, Gibbs sampling (Gelfand and Smith, 1990)

and Metropolis−Hastings algorithms (Metropolis et al., 1953).

The Gibbs sampler generates posterior samples using condi-

tional densities of the model parameters which we describe

below. . 12/57
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BAYESIAN ANALYSIS
Bayesian Analysis

β and Σ, whose posterior density conditional on z, θ,λ is

Normal-Inverse-Gamma,

p(β, Σ|z, θ,λ) = Nn+1(β|m̃, ΣṼ)IG(Σ|γ̃1, γ̃2),

where m̃ = (K0
′K0 + D)−1(K0

′z), Ṽ = (K0
′K0 + D)−1, γ̃1 =

γ1 + n/2, and γ̃2 = γ2 + 1
2(z

′z − m̃′Ṽm̃).

. 13/57

Bayesian Analysis

The conditional distribution for the precision parameter λi

given the coefficient βi is Gamma and is given by

p(λi|βi) = Gamma

(

m +
1

2
, c +

1

2σ2
βi

2

)

, i = 2, . . . , n + 1.

. 14/57

Bayesian Analysis

Finally, the full conditional density for zi is

p(zi|z−i, β,σ2, θ,λ)

∝ exp

[

−l(yi, zi) −
1

2σ2
{zi −

n
∑

j=1

βjK(xi,xj)}
2

]

.

. 15/57
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MCMC SAMPLING

Bayesian Analysis

We make use of a Gibbs sampler that iterates through the

following steps:

(i) update z;

(ii) update K, β, Σ;

(iii) update λ.

We update zi|z−i,y,K, Σ, β (i = 1, . . . , n), where z−i indicates

the z vector with the ith element removed.

. 16/57
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LEUKEMIA DATA

Leukemia Data

Bone marrow or peripheral blood samples are taken
from 72 patients with either myeloid leukemia (AML) or
acute lymphoblastic leukemia (ALL).

Training data contains 38 samples, of which 27 are ALL
and 11 are AML; Test Data consists of 34 samples, 20
ALL and 14 AML. Gene expression for 7000 genes.

. 19/57
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LEUKEMIA DATA

Results

Model modal misclassification error error bound

RVM 2 (1,4)

BSVM 1 (0,3)

BNSVM 2 (1,6)

Probit 7

SVM* 3

RVM 3

. 20/57
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GENE SELECTION: GHOSH ET AL (2005, JASA)
Bayesian Variable Selection

Gene selection is needed to improve the performance of

the classifier.

Introduce γ, a p × 1 vector of indicator.

Where γi =







0 the gene is not selected

1 the gene is selected

Prior: γi
iid
∼ Bernoulli(ω).

Value of ω is chosen to be small to restrict the number of

genes in the model.

Kγ is the kernel matrix computed using only those genes

whose corresponding elements of γ is 1 or using the Xγ

matrix.

. 35/57
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HIERARCHICAL MODEL
Graphical Model

. 36/57
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PREDICTION
Classification of Future Cases and Gene Selection

The classification rule :

φ(xnew) = arg max
j

P (Ynew = j|xnew, Yold)

P (Ynew = j|xnew,Y old)

=

∫

γ

∫

Θ

P (Ynew = j|xnew,Y old, Θ, γ)Π (Θ, γ| data)dΘdγ

Is the posterior predictive probability that the tumor belongs to

the jth class.

. 37/57
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GLIOMA CANCER
Glioma Cancer

Gliomas are most common primary brain tumors.

It occurs at a rate of 12.8 per 100,000 people, and the

problem is most common in children ages 3 to 12.

In the United States, approximately 2,200 children

younger than age 20 are diagnosed annually with brain

tumors.

4 different types of Gliomas depending on the location of

their origin.

The classification of malignant gliomas remains

controversial and effective therapies have been elusive.
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GLIOMA CANCER
Glioma Cancer

All primary glioma tissues were acquired from the Brain

Tumor Center tissue bank of the University of Texas M.D.

Anderson Cancer Center.

cDNA microarray with 597 genes.

4 types of gliomas GM (glioblastoma multiforme), OL

(oligodendroglioma), AO (anaplastic oligodendroglioma),

AA (anaplastic astrocytoma).

A set of 25 patients available. No separate test set so

performance is checked by leave one out crossvalidation.
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GLIOMA CANCER
Glioma Data

Table 1: Crossvalidation Error

Top Genes NN SVM Wahba RF Model 1 Model 2 Model 3 Model 4

20 5 1 2 5 1 1 0 1

50 4 5 3 6 1 1

100 7 5 4 8 3 2

597 - 14 9 10 5 4

Model 1: Bayesian Logit model with gene selection under BWSS.

Model 2: Bayesian SVM with gene selection under BWSS.

Model 3: Bayesian Logit model with Bayesian gene selection.

Model 4: Bayesian SVM with Bayesian gene selection.

On average around 20 genes are selected in the Model 3 and Model 4.

. 40/57
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SUMMARY
Concluding Remarks

RKHS based Bayesian multinomial logit model and

Bayesian SVM are strong contenders in predicting the

phenotype of a cancer based on its gene expression

measurements.

In both the examples our proposed 2 methods

outperforms 3 other methods discussed methods.

Dimension reduction is built in automatically, no additional

projection required.

. 41/57
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COMPARISON OF CLASSIFIERS

characteristic CART MARS k-NN Neur. Net. SVM

Natural handling data • • • • •
of mixed type

Handling of missing values • • • • •
Robustness to outliers in • • • • •
feature space

Insensitive to monotone • • • • •
transformations of features

Computational scalability • • • • •
(large training sample size)

Ability to deal with irrel- • • • • •
evant features

Ability to extract linear • • • • •
combinations of features

Interpretability • • • • •
Predictive power • • • • •

Green = Good; Yellow = Fair; Red: Poor

Courtesy: Matt Wand and Hastie, Tibshirani and Friedman (2001)
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SPLINE BASED APPROACHES

MARS models for microarrays
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SPLINES AND BASIS FUNCTIONS

Given data (Xi , Yi), i = 1, . . . , n we wish to estimate

Y = f (X) + ε

Splines are one-way to model f flexibly by writing f (X) = B(X)β
where B(.) are called basis functions.
Basis functions: there a lot choices available like truncated power
basis, B-splines, thin plate splines etc; rich literature.
Capture non-linear relationships between variables.
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SPLINES AND BASIS FUNCTIONS

Truncated power basis of order p

f (X) = β0 + β1X + . . . + βpX p +
K∑

k=1

βk+p(X − κk )p
+

β’s are the regression coefficients
κ are the knots
K is the number of knots.

If p = 1, then basically join linear pieces at the knots

Linear regression is just a special case

Construction of splines involves specifying knots: both number and
location.

Conditional on K , this is just a linear model. Various methods to
estimate β. Easiest: least squares (not optimal)
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SCIENTIFIC QUESTIONS

Predict tumor type from gene expression profile

Treat gene expression measurements as predictors, tissue type as
response

Gene selection

Select most influential genes for the biological question under
investigation

More importantly gene-gene interactions

How different genes interact with each other; scale?

Provides valuable insights into gene-gene associations and their
effect on cancer ontology.

One unified model!
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STATISTICAL GOALS

Develop full probabilistic model-based approach to nonlinear
classification

Smooth classification/decision boundaries; might suggest some
biology

Use Bayesian model mixing for prediction or classification rather
than a single model

Advantage:

Model averaging: accuracy

By-product: Uncertainty (credible) intervals
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PROBABILISTIC MODEL BASED CLASSIFIERS

We consider rule based classifiers that use primitives such as

IF A THEN B

A relates to the conditions on the value of a set of
predictors(genes) X

B relates to change in Pr(Y|X) (log-odds ratio)

Provides explicit representation of classification scheme

Interpretable models unlike black box techniques (e.g. neural
networks)

Alternatives: CART (Breimen et al., 1984); graphical order of rules

Combine scientific interpretation with accurate prediction
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MODEL

Assuming Yi , i = 1, . . . , n are independent Bernoulli with,

Pr(Yi = 1|Xi) = H(ηi)

H(a) = 1/[1 + exp(−a)] (logistic link function)
Xi = i th row of gene expression matrix X

Linear model (naive)

Pr(Yi = 1|Xi) = H(X′
iβ)

Non-linear model

Pr(Yi = 1|Xi) = H(f(Xi))

Key: Model f as X is high dimensional
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CHOICES FOR f

Kernel methods: Kij = K (xi , xj |θ) : Kernel matrix

Gaussian/Polynomial Kernels; RKHS; SVM’s

See Mallick, Ghosh and Ghosh (2005, JRSSB)

We will use basis function approach as,

f(Xi) =
k∑

j=1

βjB(Xi, θj)

k = number of basis; β = regression coefficients; θ=basis parameters

Choices: wavelets, regression splines, artificial neural networks,
radial bases, MARS

Note: both Kernal and Basis function approaches are closely
connected
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MARS BACKGROUND

MARS: Multivariate Adaptive Regression Splines (Friedman,
1991)

Flexible regression modeling of high dimensional data

Particularly suited to non-linear data sets

Originally designed for continuous responses

Extended to deal with classification(categorical) problems
(Kooperberg et al,. 1997)

Extended in the Bayesian framework (BMARS, Denison et al.,
1998)

We extend it to deal with categorical data within a logistic
regression framework
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BAYESIAN MARS MODEL FOR GENE INTERACTION

MARS basis function,

f (Xi) = β0 +
k∑

j=1

βj

zj∏

l=1

(Xidjl − θjl)qjl ,

β’s are spline coefficients
zj is the interaction level: 1 = main effect, 2 = bivariate interaction
djl indices of which of the p genes enter the interaction
k is the number of spline bases
qjl ∈ {+, −} is the orientation of the spline
θjl are knot locations
All random!
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ILLUSTRATION

Simplified model with k = 2 bases and interaction order
z = {1, 2},

f̂ = 2.5 + 3.2(x20 − 2.5)+ + 4.1(x10 − 1.2)−(x30 + 3.4)+

Genes either enter the model as main effect or bivariate
interaction

Gene 20 enters the model as a linear term (main effect)

Genes 10 and 30: bivariate interaction

Easy to generalize to higher order interactions

Incorporation of prior biological knowledge
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MODEL

Assuming Yi , i = 1, . . . , n are independent Bernoulli with,

Pr(Yi = 1|Xi) = H(ηi)

H(a) = 1/[1 + exp(−a)] (logistic link function)
Xi = i th row of gene expression matrix X

ηi (latent variables) is modeled as (Holmes and Mallick, 2003;
JASA),

ηi = f(Xi) + εi

We model the unknown function f nonparametrically using basis
functions as,

f(Xi) =
k∑

j=1

βjB(Xi, θj)
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MODEL

MODEL

Pr(Yi = 1|Xi) = H(ηi),

ηi =
∑k

j=1 βjB(Xi , θj) + εi , εi ∼ N(0, σ2
ε)

ηi : Latent variables used to obtain conditional independence

Conditional on ηi ’s all parameters are independent of Y

Holmes and Mallick (2003, JASA)

Eases computations considerably

Efficient sampling and good MCMC mixing

Calculations of marginal probabilities

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

BAYESIAN FORMULATION

MODEL: Matrix Notation

Pr(Y = 1|X) = H(η),

η = Θ(X ; M)β + ε, ε ∼ MVN(0, σ2
ε I)

where
Θ(X ; M) is the MARS design matrix
M = {θ, q, d, z, k} the spline parameters

Conditionally,

p(η, M, β, σ2|Y ) = p(Y |η, M, β, σ2)p(η, M, β, σ2)

= p(Y |η, M, β, σ2)p(η|M, β, σ2)π(M)π(β)π(σ2)
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PRIORS

Prior on regression coefficients

β|λ = Normal(0, σ2D−1); D = Diag(λ1, λ2, . . . , λn+1)

λi = Gamma(τ1i, τ2i);

λi ’s are also smoothing parameters in the spline context

Prior on spline parameters M = {θ, q, d, z, k}
Proper uniform priors on (θ, q, d)

π(k) = Uniform(1, . . . , ∞),
(improper: no apriori knowledge of number of splines (k))

Inverse-Gamma prior on σ2
ε
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MCMC COMPUTATION

Posteriors are not in explicit form

Conventional fixed-dimension MCMC algorithms (Gibbs,
Metropolis - Hastings) not applicable

We use Reversible Jump MCMC (Green, 1995) since our model
space is variable: we do not know the number of genes (splines)
apriori

Birth: addition of spline
Move: change knot location
Death: delete a spline

MCMC visits numerous models

Efficient sampling using latent variables
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PREDICTION AND MODEL CHOICE

Given xnew , marginal posterior distribution of the new disease
state ynew is,

Pr(ynew = 1|xnew ) =
∞∑

k=1

∫
P(ynew = 1|xnew ,Mk )P(Mk |Y )dMk

Approximated by its Monte Carlo estimate,

Pr(ynew = 1|xnew ) =
1
m

m∑

j=1

P(ynew = 1|xnew ,M(j))

m = number of MCMC samples

Use misclassification error on to choose among models

Test and training data
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EXAMPLE: BREAST CANCER DATA

22 samples from breast cancer patients carrying mutations of
BRCA1 or BRCA2 gene (Hedenfalk,2001); filtered a bit in Simon
et al (2003):

http://linus.nci.nih.gov/BRB-ArrayTools.html

3226 genes for each sample

Classify BRCA1 vs. BRCA2 and sporadic

Consider only main effects and bivariate interactions

We identify sets of candidate genes which have most bearing on
the tumor: MARS automatically ignores genes that have little
effect on the response
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BREAST CANCER DATA: TOP INTERACTING GENES

Top interacting genes entering MARS model

Gene 1 description Gene 2 description Frequency
glycogenin ornithine decarboxylase 36.28
glycine cleavage system protein H dishevelled 2 25.92
ring finger protein 14 ESTs 24.64
D123 gene product polymyositis/scleroderma 23.92
fragile X mental retardation ataxia-telangiectasia n 23.12
mitochondrial translational ESTs 22.08
guanylate binding protein 2 ubiquitin-conjugating enzyme 2 21.64
transducin-like enhancer hypothetical protein 19.40
...

...
...
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NONLINEAR GENE INTERACTIONS

Posterior mean interaction function between two pairs of interacting
genes

X and Y axis are the expression levels of interacting genes and vertical axis is the probability of

disease
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INTERACTIONS

Interaction functions of top 2 gene pairs along with the actual biological
pathways
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BREAST CANCER DATA: TOP MAIN EFFECT GENES

Top main effect genes entering MARS model

Image Clone ID Gene description Frequency
767817 polymerase (RNA) II (DNA directed) polypeptide F 71.92
307843 ESTs (*) 57.40
81331 ”FATTY ACID-BINDING PROTEIN, EPIDERMAL” 49.20
843076 signal transducing adaptor molecule 1 47.92
825478 zinc finger protein 146 46.08
28012 O-linked N-acetylglucosamine 43.40
566887 heterochromatin-like protein 1 (*) 38.92
841617 ornithine decarboxylase antizyme 1 (*) 37.88
...

...
...
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MAIN EFFECTS

Posterior mean main effect functions of significant genes
X-axis = Gene expression; Y-axis: Probability of disease

Advantage of using a non-linear model : unearth a threshold
expression level and its corresponding effect on the odds of
having cancer

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

MISSCLASSIFICATION ERRORS

Model Leave-one-out misclassification errors

Data Bayesian MARS SVM
Leukemia (Golub) 3 4
Colon Cancer (Alon) 4 7
Breast Cancer (Hedenfalk) 0 4

SVM: Classical Support Vector Machine
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NUMBER OF GENES

VEERA BALADANDAYUTHAPANI, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2008

LOGO

CLASSIFICATION BOUNDARIES: LEUKEMIA DATA

Advantage of using a non-linear model : unearth a threshold expression level
and its corresponding effect on the odds of having cancer
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SUMMARY

Nonlinear approach to model gene-gene interactions using
Bayesian MARS

Advantage: capture non-linear dependencies between genes

Use MCMC based stochastic search algorithms to obtain models

Identify significant genes of interest

Potential extensions

Multicategory classification

Other forms of non-gaussian data

Gene regulatory networks
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