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Summary. In phase I trials, effectively treating patients and minimizing the chance of expos-

ing them to subtherapeutic and overly toxic doses are clinician’s top priority. Motived by this

practical consideration, we propose Bayesian optimal interval (BOIN) designs to find the maxi-

mum tolerated dose (MTD) and minimize the probability of inappropriate dose assignments for

patients. We show, both theoretically and numerically, that the BOIN design not only has su-

perior finite- and large-sample properties, but also can be easily implemented in a simple way

similar to the traditional “3+3” design. Compared to the well-known continual reassessment

method, the BOIN design yields comparable average performance to select the MTD, but has

a substantially lower risk of assigning patients to subtherapeutic and overly toxic doses. We

apply the BOIN design to two cancer clinical trials.
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1. Introduction

Numerous phase I trial designs have been proposed to identify the maximum tolerated
dose (MTD) of a new drug, which is typically defined as the dose with a dose-limiting
toxicity probability that is closest to the target toxicity rate. Examples include the standard
“3+3” design (Storer, 1989; Korn et al., 1994), the continual reassessment method (CRM;
O’Quigley, Pepe and Fisher, 1990), the biased coin design (Durham and Flournoy, 1994),
the decision-theoretic approach (Whitehead and Brunier, 1995), isotonic designs (Leung
and Wang, 2001), and “A+B” designs (Lin and Shih, 2001), among others. Chevret (2006),
Ting (2006) and Gerke and Siedentop (2008) provided comprehensive reviews of dose-finding
methods for phase I clinical trials.

The interval design is a relatively new class of phase I trial designs, for which the dose
transition is defined by the relative location of the observed toxicity rate (i.e., the number
of patients who experienced toxicity divided by the total number of patients treated) at
the current dose with respect to a prespecified toxicity tolerance interval (Oron, Azriel and
Hoff, 2011). If the observed toxicity rate is located within the interval, we retain the current
dose; if the observed toxicity rate is greater than the upper boundary of the interval, we
deescalate the dose; and if the observed toxicity rate is smaller than the lower boundary of
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the interval, we escalate the dose. Yuan and Chappell (2004) suggested using a (tolerance)
interval to determine dose escalation and deescalation. Ivanova, Flournoy and Chung (2007)
developed a more formal interval design, called the cumulative cohort design. That design
was further extended to ordinal and continuous outcomes based on a t-statistic (Ivanova
and Kim, 2009). Neuenschwander, Branson and Gsponer (2008) proposed a practical and
flexible Bayesian dose-finding method that divides the posterior distribution of the toxicity
probability into four intervals (i.e., under-dosing, targeted toxicity, excessive toxicity and
unacceptable toxicity) for decision making based on a two-parameter model. A similar
posterior-interval approach was also adopted in the modified toxicity probability interval
design (Ji et al., 2010).

One advantage of interval designs is that they are simple to implement in practice.
Because the interval is prespecified, during trial conduct, the decision of which dose to ad-
minister to the next cohort of patients does not require complicated computations, but only
a simple comparison of the observed toxicity rate at the current dose with the prespecified
interval boundaries. Compared to other similarly easy-to-implement designs, e.g., the stan-
dard “3+3” design, the interval design is more efficient because it uses all the information
from the cumulative data at the current dose to determine the next dose assignment. Re-
cently, Oron, Azriel and Hoff (2011) showed that the interval design provides a convergence
property similar to that of the CRM. The interval design converges almost surely, at a

√
n

rate, to exclusive allocations at a dose level for which the true toxicity rate is within the
interval. Under the interval design, the selection of an appropriate tolerance interval is
critical for the performance of the design because the dose transition and assignment are
entirely determined by this prespecified interval. Ivanova, Flournoy and Chung (2007) sug-
gested selecting the interval by an exhaustive numerical search over the group up-and-down
designs based on its large-sample property. However, sample sizes for phase I trials are
small, typically less than 40.

In this article, we propose a flexible, finite-sample–based approach to selecting the in-
terval boundaries, and use it to develop two Bayesian optimal interval (BOIN) designs.
Our approach is motivated by top priority and concern of clinicians, which is to effectively
treat patients and minimize the chance of exposing them to subtherapeutic and overly toxic
doses.

The idea behind the BOIN designs is straightforward. The conduct of a phase I trial
can be viewed as a sequence of decision-making steps of dose assignment for patients who
are sequentially enrolled into the trial. At each moment of decision making, based on the
observed data, we take one of three actions: escalate, deescalate or retain the current dose.
Under the standard assumption that efficacy monotonically increases with toxicity, an ideal
trial design would escalate the dose when the current dose is below the MTD in order to
avoid treating a patient at subtherapeutic dose levels; deescalate the dose when the current
dose is above the MTD in order to avoid exposing a patient to overly toxic doses; and retain
the same dose level when the current dose is equal (or close) to the MTD. However, such an
ideal design is not available in practice because we do not know whether the current dose
is actually below, above or equal (or close) to the MTD, and need to infer that information
and make decisions based on the data collected from patients who have been enrolled in
the trial. Given the randomness of the observed data and small sample sizes of phase I
trials, the decisions of dose assignment we make are often incorrect, e.g., we may escalate
(or deescalate) the dose when it is actually higher (or lower) than the MTD, which results
in overly aggressive (or conservative) dose escalation and treating excessive numbers of
patients at dose levels above (or below) the MTD. From a practical and ethical viewpoint,
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it is highly desirable to minimize such decision errors so that the actual design behaves
as closely as possible to the ideal (error-free) design. The BOIN designs are developed to
achieve this goal.

We consider two motivating cancer clinical trials. The first one is a phase I dose-finding
clinical trial protocol recently initiated at MD Anderson Cancer Center. The goal of the trial
is to identify the MTD of an aurora kinase inhibitor (AKI) as monotherapy, in combination
with docetaxel in patients with advanced solid tumors, with a target toxicity rate of 25%.
In this trial, docetaxel will be administered via intravenous infusion at a fixed dosage of
75mg/m2. A total of six dose levels (i.e., 20, 40, 80, 150, 250, 350 mg) of AKI will be
investigated and administered on days 1, 8 and 15 of a 28-day treatment cycle. Severity of
adverse event or toxicity will be scored according to the National Cancer Institute Common
Terminology Criteria for Adverse Events (NCI CTCAE) Version 4.0. The dose-limiting
toxicities (DLTs) include all grade 3 or 4 adverse events, grade ≥ 3 hematologic toxicities,
grade ≥ 3 asthenia/fatigue, grade ≥ 3 proteinuria, and grade ≥ 2 neurotoxicity. A total of
36 patients will be treated in cohort sizes of 3.

The second motivating example is a pediatric phase I clinical trial (Jakacki et al., 2008),
which aimed to determine the MTD of erlotinib for children with refractory solid tumors.
Erlotinib is an oral inhibitor of the epidermal growth factor receptor signal pathway and
has been approved by the Food and Drug Administration for adults with recurrent non-
small-cell lung cancer and advanced pancreatic cancer. The trial studied five dose levels of
erlotinib: 35, 50, 65, 85 and 110 mg. A total of 19 assessable patients were used for dose
escalation. Determinations of DLTs included any grade 3 or 4 thrombocytopenia or grade
4 neutropenia, or any grade 3 or 4 nonhematologic toxicity. The target toxicity rate was
25%.

The remainder of this article is organized as follows. In Section 2, we formulate dose
finding as a sequential decision-making problem and propose designs to minimize the de-
cision errors of dose assignment during trial conduct. In Section 3, we present simulation
studies to compare the operating characteristics of the new designs with those of some
available designs, and apply the new method to two cancer clinical trials in Section 4. We
conclude with a brief discussion in Section 5.

2. Method

2.1. Interval design

Assume that a total of J prespecified doses are under investigation, and let φ denote the
target toxicity rate specified by physicians. We assume that patients are treated in cohorts
but allow the cohort size to vary from one cohort to another. Interval designs can be
generally described as follows:

(a) Patients in the first cohort are treated at the lowest dose level.
(b) At the current dose level j, assume that a total (or the cumulative number) of nj

patients have been treated, and mj of them have experienced toxicity. Let p̂j = mj/nj

denote the observed toxicity rate at dose level j, and λ1j(nj , φ) and λ2j(nj , φ) denote
the prespecified lower and upper (or dose escalation and deescalation) boundaries of
the interval, respectively, with 0 ≤ λ1j(nj , φ) < λ2j(nj , φ) ≤ 1. To assign a dose to
the next cohort of patients,

• if p̂j ≤ λ1j(nj , φ), we escalate the dose level to j + 1;
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• if p̂j ≥ λ2j(nj , φ), we deescalate the dose level to j − 1;

• otherwise, i.e., λ1j(nj , φ) < p̂j < λ2j(nj , φ), we retain the same dose level, j.

To ensure that the dose levels of the treatment always remain within the prespecified
dose range, the dose escalation/deescalation rule requires some adjustments when j
is at the lowest or highest level. That is, if j = 1 and p̂j ≥ λ2j(nj , φ) or j = J and
p̂j ≤ λ1j(nj , φ), the dose remains at the same level, j.

(c) This process is continued until the maximum sample size is reached or the trial is
terminated due to excessive toxicity, as described below.

This design is more general than the existing interval designs (e.g., Ivanova, Flournoy
and Chung, 2007; Oron, Azriel and Hoff, 2011) because it allows the interval boundaries
λ1j(nj , φ) and λ2j(nj , φ) to depend on both dose level j and nj (i.e., the number of patients
that have been treated at dose level j), whereas the existing interval designs assume that
the interval boundaries are independent of j and nj .

2.2. Local BOIN design

In the interval design, the selection of the interval boundaries λ1j(nj , φ) and λ2j(nj , φ) is
critical because these two parameters essentially determine the operating characteristics of
the design. To simplify the notations, we suppress the arguments nj and φ in λ1j(nj , φ)
and λ2j(nj , φ). In the following subsection, we describe a method to select λ1j and λ2j to
minimize incorrect decisions of dose escalation and deescalation during the trial conduct.
For convenience, we call the resulting design the local BOIN design because the optimization
is anchored to three point (or local) hypotheses.

2.2.1. Minimizing the local decision error

In order to minimize incorrect decisions of dose assignment, we first formally define the
correct and incorrect decisions. Letting pj denote the true toxicity probability of dose level
j for j = 1, . . . , J , we formulate three point hypotheses:

H0j : pj = φ

H1j : pj = φ1 (1)

H2j : pj = φ2,

where φ1 denotes the highest toxicity probability that is deemed subtherapeutic (i.e., below
the MTD) such that dose escalation should be made, and φ2 denotes the lowest toxicity
probability that is deemed overly toxic such that dose deescalation is required. For sim-
plicity, we will alter the notation slightly by dropping subscript j from H0j , H1j and H2j

wherever such alterations do not cause confusion.
Specifically, H0 indicates that the current dose dj is the MTD and we should retain

the current dose to treat the next cohort of patients; H1 indicates that the current dose
is subtherapeutic (or below the MTD) and we should escalate the dose; and H2 indicates
that the current dose is overly toxic (or above the MTD) and we need to deescalate the
dose. Therefore, the correct decisions under H0, H1 and H2 are retainment, escalation and
deescalation (each based on the current dose level), denoted as R, E and D, respectively.
Correspondingly, the incorrect decisions under H0, H1 and H2 are R̄, Ē and D̄, respectively,
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where R̄ denotes the decisions complementary to R (i.e., R̄ includes E and D), and D̄ and
R̄ denote the decisions complementary to D and R, respectively.

We note that the purpose herein of specifying three hypotheses, H0, H1 and H2, is not to
represent the truth and conduct hypothesis testing, but just to indicate the cases of special
interest under which we optimize the performance of our design. In particular, H1 and H2,
or more precisely δ1 = φ− φ1 and δ2 = φ2 − φ, represent the minimal differences (or effect
sizes) of practical interest to be distinguished from the target toxicity rate φ (or H0), under
which we want to minimize the average decision error rate for the trial conduct. A difference
smaller than δ1 and δ2 may not be of practical importance, and a larger difference will lead
to a smaller error rate because it is more easily distinguished from φ than φ1 and φ2.
This approach is analogous to sample size determination, for which we first specify a point
alternative hypothesis to represent the minimal effect size of interest and then determine
the sample size to ensure a desirable power under that hypothesis.

Under the Bayesian paradigm, we assign each of the hypotheses a prior probability of
being true, denoted as πkj = pr(Hkj), k = 0, 1, 2. Then under the dose assignment rule
described in Section 2.1, the probability of making an incorrect decision (the decision error
rate), denoted as α(λ1j , λ2j), at each of the dose assignments is given by

α(λ1j , λ2j) = pr(H0j)pr(R̄|H0j) + pr(H1j)pr(Ē |H1j) + pr(H2j)pr(D̄|H2j) (2)

= pr(H0j)pr(mj ≤ njλ1j ormj ≥ njλ2j |H0j) + pr(H1j)pr(mj > njλ1j |H1j)

+pr(H2j)pr(mj < njλ2j |H2j)

= π0j{Bin(njλ1j ;nj , φ) + 1−Bin(njλ2j − 1;nj, φ)}+ π1j{1−Bin(njλ1j ;nj, φ1)}
+π2jBin(njλ2j − 1;nj, φ2),

where Bin(b;n, φ) is the cumulative density function of the binomial distribution, with
size and probability parameters n and φ evaluated at the value b. It can be shown that the
decision error rate α(λ1j , λ2j) is minimized when

λ1j =

log

(

1− φ1

1− φ

)

+ n−1
j log

(

π1j

π0j

)

log

(

φ(1 − φ1)

φ1(1− φ)

) (3)

λ2j =

log

(

1− φ

1− φ2

)

+ n−1
j log

(

π0j

π2j

)

log

(

φ2(1− φ)

φ(1 − φ2)

) . (4)

The derivation of this result (see the Web Appendix) reveals that λ1j and λ2j have the
following interpretation.

Theorem 1. The values of λ1j and λ2j that minimize the local decision error rate (2)
are the boundaries at which the posterior probabilities of H1 and H2, respectively, become
more likely than that of the H0, i.e., λ1j = argmaxp̂j

(pr(H1|nj ,mj) > pr(H0|nj ,mj)) and
λ2j = argminp̂j

(pr(H2|nj ,mj) > pr(H0|nj ,mj)).

This intuitive interpretation of λ1j and λ2j provides a natural justification for our dose
assignment rule. That is, we should escalate the dose if p̂j ≤ λ1j because the observed data



6

support that H1 is more likely than H0 (i.e., the current dose j is below the MTD); and we
should deescalate the dose if p̂j ≥ λ2j because the observed data support that H2 is more
likely than H0 (i.e., the current dose j is above the MTD).

In addition, if we assign equal prior probabilities to three hypotheses (i.e., π0j = π1j =
π2j = 1/3), the values of λ1j and λ2j simply become the likelihood-ratio hypothesis-testing
boundaries. In this case, the value of λ1j is always located between φ1 and φ and the value
of λ2j is always located between φ and φ2 (i.e., φ1 < λ1j < φ and φ < λ2j < φ2). Figure 1
shows how λ1j and λ2j change with respect to φ1 and φ2 when φ = 0.25. We can see that
when φ1 and φ2 are symmetric around φ (i.e., δ1 = δ2), the resulting λ1j and λ2j are also
close to, although not exactly symmetric around φ. Interestingly, based on equations (3)
and (4), it is easy to see that when π0j = π1j = π2j , λ1j and λ2j are invariant to both dose
level j and the accumulative sample size nj. This property is appealing in practice because
in this case the same pair of interval boundaries can be conveniently used throughout the
trial, regardless of the dose level and the number of patients treated in the trial, which thus
greatly simplifies the trial conduct.

2.2.2. Design properties

Cheung (2005) introduced the concept of coherence for trial design and defined it as the
design property by which dose escalation (or deescalation) is prohibited when the observed
toxicity rate in the most recently treated cohort is more (or less) than the target toxicity
rate. Because that definition is based on the response from only the most recently treated
cohort, ignoring the responses from cohorts previously enrolled and treated, herein we re-
fer to it as short-term memory coherence. As an extension, we define long-term memory
coherence as the design property by which dose escalation (or deescalation) is prohibited
when the observed toxicity rate in the accumulative cohorts at the current dose is more
(or less) than the target toxicity rate. From a practical view point, long-term memory
coherence is a more relevant design property for conducting clinical trials than short-term
memory coherence. This is because when clinicians determine whether a dose escalation (or
deescalation) is practically plausible, they almost always base their decision on the toxicity
data from all patients, rather than the most recently treated cohort (i.e., rarely more than
3 patients), treated at that dose. As shown in the Web Appendix, the local BOIN design
has the finite-sample property given in Theorem 2.

Theorem 2. When setting π0j = π1j = π2j , the local BOIN design is long-term memory
coherent in the sense that the probability of dose escalation (or deescalation) is zero when
the observed toxicity rate p̂j at the current dose is higher (or lower) than the target toxicity
rate φ.

This finite-sample property makes the local BOIN design very appealing in practice
because it automatically satisfies the following (ad hoc) safety requirement often imposed
by clinicians: dose escalation is not allowed if the observed toxicity rate at the current dose
is higher than the MTD. Because the local BOIN design uses the toxicity information from
previously treated patients to make the decision of dose transition, it is not short-term
memory coherent. We note that the commonly used version of the CRM, which does not
allow a dose to be skipped, is not short-term memory coherent either, especially at the
beginning of the trial and when using an informative prior.
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We now turn to the large-sample property of the design. Under the proposed opti-
mal dose assignment, we tend to treat patients at (or close to) the MTD, which facilitates
the MTD selection at the end of the trial because most data and statistical power are

concentrated around the MTD. Since limnj→∞ λ1j = log(1−φ1

1−φ
)/log(φ(1−φ1)

φ1(1−φ) ) ≡ λ̃1 and

limnj→∞ λ2j = log( 1−φ

1−φ2

)/log(φ2(1−φ)
φ(1−φ2)

) ≡ λ̃2, it can be shown that the proposed design has

the asymptotic dose-selection property described in Theorem 3.

Theorem 3. Dose allocation in the local BOIN design converges almost surely to dose
level j∗ if pj∗ ∈ (λ̃1, λ̃2) and dose level j∗ is the only dose satisfying pj∗ ∈ [λ̃1, λ̃2]. If no

dose level satisfies pj ∈ (λ̃1, λ̃2) but φ ∈ [p1, pJ ], the local BOIN design would eventually
oscillate almost surely between the two dose levels at which the associated toxicity proba-
bilities straddle the target interval. If there are multiple dose levels satisfying pj ∈ (λ̃1, λ̃2),
the local BOIN design will converge almost surely to one of these levels.

The proof of this result is similar to that of Oron, Azriel and Hoff (2011), noting that
λ1j and λ2j converge to constants λ̃1 and λ̃2.

2.2.3. Practical implementation

To use the local BOIN designs in practice, we need to specify the values of φ1 and φ2. In
general, we should avoid setting the values of φ1 and φ2 very close to φ. This is because
the small sample sizes of typical phase I trials prevent us from differentiating the target
toxicity rate from the rates close to it. In addition, in most clinical applications, the target
toxicity rate is often a rough guess, and finding a dose level with a toxicity rate reasonably
close to the target rate will still prove to be of interest to the investigator. Based on our
experience with phase I oncology trials and the operating characteristics of the proposed
design, we find that φ1 ∈ [0.5φ, 0.7φ] and φ2 ∈ [1.3φ, 1.5φ] are reasonable values for most
clinical applications. As default values, we recommend φ1 = 0.6φ and φ2 = 1.4φ (i.e., 40%
deviation from the target) for general use. For example, if the target toxicity is 0.25, we
may set φ1 = 0.15 and φ2 = 0.35.

The other parameters we need to specify for the trial design are πkj , the prior probability
of the hypothesis Hkj , k = 0, 1, 2. As the πkj ’s represent the prior probabilities that dose
level j is below, equal to or above the MTD, their values can be directly elicited from
physicians by asking them how likely it is that each of J doses is below, equal to or above
the MTD. When such prior information is not available, as is often the case in practice,
we can take a “noninformative” approach by assuming that the current dose has equal
prior probabilities of being below, equal to or above the MTD. Since the interval design
examines the dose levels one at a time (i.e., the current dose level) without borrowing
information from other dose levels, and the current dose level can be at any level from 1
to J , this noninformative approach effectively results in the noninformative prior π0j =
π1j = π2j = 1/3. One advantage of using such a noninformative prior is that the resulting
interval boundaries λ1j and λ2j are invariant to dose level j and the number of patients nj .
Therefore, the same pair of boundaries can be conveniently used throughout the trial for
dose assignment, regardless of the dose level and the number of enrolled patients. Table
1 provides the interval boundaries for some commonly encountered target toxicity rates in
oncology under the noninformative prior π0j = π1j = π2j = 1/3. It seems appealing to
specify increasing prior probabilities for π2j (i.e., π21 < π22 < . . . , < π2J) to reflect that
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toxicity monotonically increases with dose levels. However, based on numerical studies, we
found that such an approach did not improve the performance of the design (results are not
shown). This may be because the monotonicity of the dose-toxicity relationship has been
(implicitly) incorporated into the design through the dose escalation rule (i.e., we escalate
the dose because we assume that the next higher dose level is more toxic), and thus using
ordered priors will not bring enough extra information to improve the design performance.

The local BOIN design is very easy to implement in practice. Once we specify the design
parameters as described above, the interval boundaries λ1j and λ2j can be easily calculated
at the trial design phase based on equations (3) and (4). Then during the trial conduct,
clinicians can simply count the number of patients who experience toxicity and compare the
observed toxicity rate p̂j with the prespecified interval boundaries λ1j and λ2j to determine
dose assignment until the trial is completed.

After the trial is completed, we need to select a dose level as the MTD. We propose to
select the MTD based on {p̃j}, the isotonically transformed values of the observed toxicity
rates {p̂j}. Specifically, we select as the MTD dose j∗, for which the isotonic estimate of
toxicity rate p̃j∗ is closest to φ; if there are ties for p̃j∗ , we select from the ties the highest
dose level when p̃j∗ < φ or the lowest dose level when p̃j∗ > φ. The isotonic estimates
{p̃j} can be obtained by applying the pooled–adjacent-violators algorithm (PAVA) (Barlow
et al., 1972) to {p̂j}. Operatively, the PAVA replaces any adjacent p̂j ’s that violate the
nondecreasing order by their (weighted) average so that the resulting estimates p̃j ’s become
monotonic. In the case in which the observed toxicity rates are monotonic, p̃j and p̂j are
equivalent. We note that besides the above method, any other reasonable dose selection
procedure can be used to select the MTD for the local optimal design, as the MTD selection
and dose transition rules are two relatively independent components of the trial design, both
conceptually and operatively.

One practical issue largely ignored in the previously proposed interval designs involves
the risk of assigning too many patients to an overly toxic dose. Because interval designs do
not “look” ahead, but instead use only the toxicity information at the current dose level
to determine the dose escalation decision, the dose assignment will bounce back and forth
between two adjacent doses when one of them is much lower than the MTD and the other is
much higher than the MTD. To avoid this result of assigning too many patients to the overly
toxic dose, we propose to impose the following dose elimination rule when implementing
the local BOIN design.

If pr(pj > φ|mj , nj) > 0.95 and nj ≥ 3, dose levels j and higher are eliminated

from the trial, and the trial is terminated if the first dose level is eliminated,

where pr(pj > φ|mj , nj) > 0.95 can be evaluated based on a beta-binomial model, assuming
that mj follows a binomial distribution (with size and probability parameters nj and pj)
and pj follows a vague beta prior, e.g., pj ∼ beta(1, 1). Based on our experience, rather
than repeatedly evaluating the above dose elimination rule in real time during the trial
conduct, medical researchers often prefer to enumerate the dose elimination boundaries for
each possible value of nj before the initiation of the trial and include these boundaries in the
trial protocol. Therefore, when conducting the trial, they can determine dose elimination
by simply examining whether the number of patients experiencing toxicity at the current
dose, i.e., mj , exceeds the elimination boundaries. Table 2 (in the bottom row) provides
the elimination boundaries for φ = 0.25. For example, when the number of patients treated
at the current dose nj = 4, we need to eliminate that dose and higher doses if 3 or more
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patients experience toxicity.

To facilitate practitioners applying the proposed designs, we have prepared easy-to-
use software (written in R with detailed instructions) to calculate the interval and dose
elimination boundaries and select the MTD. The software is available for free download at
http://odin.mdacc.tmc.edu/∼yyuan/.

2.3. Global BOIN design

We have discussed the local BOIN design, which minimizes the decision error under the three
point hypotheses given by equation (1). In this section, we discuss a global BOIN design,
which accounts for all possible values of pj by specifying three composite hypotheses. In
the global BOIN design, values of λ1j and λ2j are chosen to minimize the average decision
error over the whole support of pj , i.e., pj ∈ [0, 1]. The contrast between the local and
global optimal interval designs is somewhat analogous to the uniformly most powerful tests
for simple hypotheses versus composite hypotheses in the frequentist testing framework.
Specifically, we define three composite hypotheses,

H0j : φ1 < pj < φ2

H1j : 0 ≤ pj ≤ φ1

H2j : φ2 ≤ pj ≤ 1,

where H1j indicates that dose level j is subtherapeutic and we should escalate the dose;
H2j indicates that dose level j is overly toxic and we should deescalate the dose; and H0j

indicates that dose level j is close to the MTD and we should retain the same dose level.

Under each hypothesis, we assign the toxicity probabilities pj a noninformative uniform
prior: f(pj |H0j) = Unif(φ1, φ2), f(pj |H1j) = Unif(0, φ1), and f(pj|H2j) = Unif(φ2, 1).
Then the global decision error rate is given by

αg(λ1j , λ2j) = pr(H0j)

∫

f(pj |H0j)pr(R̄|pj, H0j) dpj + pr(H1j)

∫

f(pj |H1j)pr(Ē |pj , H1j) dpj

+pr(H2j)

∫

f(pj |H2j)pr(D̄|pj , H2j) dpj (5)

= π0j + π1j +

b1j
∑

y=0

[

π0j{Beta(φ2; y + 1, nj − y + 1)−Beta(φ1; y + 1, nj − y + 1)}
(φ2 − φ1)(nj + 1)

−π1jBeta(φ1; y + 1, nj − y + 1)

φ1(nj + 1)

]

+

b2j−1
∑

y=0

{

π2jBeta(φ2; y + 1, nj − y + 1)

(1− φ2)(nj + 1)

−π0j{Beta(φ2; y + 1, nj − y + 1)−Beta(φ1; y + 1, nj − y + 1)}
(φ2 − φ1)(nj + 1)

}

,

where b1j = floor(njλ1j), b2j = floor(njλ2j) and Beta(c; a, b) is the cumulative distribution
function of a beta distribution with the shape and scale parameters a and b, evaluated at
the value c. Although without closed forms, the following theorem can be shown to hold.

Theorem 4. The values of λ1j and λ2j that minimize the global decision error rate (5)
are the boundaries at which the posterior probabilities of H1 and H2, respectively, become
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more likely than that of H0.

The proof of this result appears in the Web Appendix. In practice, the values of λ1j and
λ2j that minimize the global decision error rate can be easily determined by a numerical
search, as b1j and b2j are integers between 0 and nj .

Compared to the local BOIN design, the interval length (i.e., λ2j−λ1j) under the global
BOIN design is wider (see Figure 2). In addition, as shown in Figure 2, unlike the local
BOIN design, for which λ1j and λ2j are invariant to nj , for the global BOIN design, λ1j and
λ2j depend on nj even when the three hypotheses have equal prior probabilities. Despite
these differences, we note that the global BOIN design is also long-term memory coherent
because λ1j < φ and λ2j > φ.

Theorem 5. When setting π0j = π1j = π2j , the global BOIN design is long-term memory
coherent in the sense that the probability of dose escalation (or deescalation) is zero when
the observed toxicity rate p̂j at the current dose is higher (or lower) than the target toxicity
rate φ.

In addition, as shown in the Web Appendix, the global BOIN design has the convergence
property described in Theorem 6.

Theorem 6. Dose allocation in the global BOIN design converges almost surely to dose
level j∗ if pj∗ ∈ (φ1, φ2) and dose level j∗ is the only dose satisfying pj∗ ∈ [φ1, φ2]. If no
dose level satisfies pj ∈ (φ1, φ2) but φ ∈ [p1, pJ ], the global BOIN design would eventually
oscillate almost surely between the two dose levels at which the associated toxicity proba-
bilities straddle the target interval. If there are multiple dose levels satisfying pj ∈ (φ1, φ2),
the global BOIN design will converge almost surely to one of these levels.

As for the practical implementation of this design, the same principle described in the
previous section can be used to specify the design parameters φ1, φ2 and πkj for the global
BOIN design. The interval boundaries for the global BOIN design do not have a closed
form (but can be easily determined using a numerical search) and depend on nj even when
we set π0j = π1j = π2j . This makes the implementation of the global BOIN design slightly
more complicated than that of the local optimal design. That is, we need to find λ1j and
λ2j for each possible value of nj before the initiation of the trial. Once these boundaries are
determined, the global BOIN design can be conducted by comparing the observed toxicity
rate with the interval boundaries. Table 2 displays the interval boundaries of the global
BOIN design when the target toxicity rate is 0.25 up to nj = 15. Thus for practical reasons,
we may prefer to use the local BOIN design. The finite sample simulation described in the
next section also suggests that the local BOIN design has better operating characteristics.

3. Simulation

We used simulation studies to compare the operating characteristics of the BOIN designs
with those of three available designs: the cumulative cohort design (CCD), the modified
toxicity probability interval (mTPI) design, and the CRM. We assumed a total of J = 6
dose levels with a maximum sample size of n = 36 patients in 12 cohorts of size 3. The
target toxicity rate was φ = 0.25. In the proposed designs, we set φ1 = 0.15, φ2 = 0.35
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and assigned equal prior probabilities to three hypotheses with π0j = π1j = π2j = 1/3.
The same values of φ1 and φ2 were also used for the mTPI design. For the CCD, following
Ivanova et al. (2007), we set the tolerance interval as φ ± 0.09. The CRM was based

on the model pj = a
exp(α)
j where the “skeleton” aj = (0.01, 0.08, 0.25, 0.46, 0.65, 0.79) was

chosen based on the model calibration method of Lee and Cheung (2009). We assigned the
unknown parameter α the least-informative prior α ∼ N(0, 1.242) as proposed by Lee and
Cheung (2011), under which each dose level has an (approximately) equal prior probability
of being the MTD. Skipping a dose level was not allowed in the CRM. To make the designs
more comparable, we applied the dose elimination rule and isotonic dose selection rule,
as described in Section 2.2.3, to all designs except the CRM because that design has its
own model-based safety and dose selection rules. We simulated 10,000 trials. To avoid
cherry-picking scenarios that are better suited to specific methods, for each simulated trial,
the toxicity scenario (i.e., the true toxicity probabilities of the six doses) was randomly
generated based on the approach of Paoletti, O’Quigley and Maccario (2004) as follows:

(a) Randomly select, with equal probabilities, one of the J dose levels as the MTD and
denote this selected dose level by j.

(b) Generate the toxicity probability of the MTD, pj = Φ(ǫj), where the random error
ǫj ∼ N(z(φ), σ2

0), with Φ(·) and z(·) denoting the cumulative density function (CDF)
and the inverse CDF of the standard normal distribution, respectively. Here we allow
the true toxicity probability of the MTD to deviate from φ, as is often the case in
practice.

(c) Generate pj−1 and pj+1 (i.e., the toxicity probabilities of two doses adjacent to the
MTD) under the constraint that pj is closest to φ. This can be done by generating
pj−1 = Φ[z(pj) − {z(pj) − z(2φ − pj)}I(z(pj) > z(φ)) − ǫ2j−1] and pj+1 = Φ[z(pj) +

{z(2φ−pj)−z(pj)}I(z(pj) < z(φ))+ǫ2j+1] where ǫj−1 ∼ N(µ1, σ
2
1), ǫj+1 ∼ N(µ2, σ

2
2),

and I(·) is an indicator function with I(z(pj) > z(φ)) = 1 if z(pj) > z(φ) and 0
otherwise.

(d) Successively generate the toxicity probabilities for the remaining levels according to
pj−2 = Φ[z(pj−1)− ǫ2j−2] and pj+2 = Φ[z(pj+1) + ǫ2j+2], and pj−3 = Φ[z(pj−2)− ǫ2j−3]

and pj+3 = Φ[z(pj+2)+ǫ2j+3], and so on, where ǫj−2, ǫj−3 ∼ N(µ1, σ
2
1) and ǫj+2, ǫj+3 ∼

N(µ2, σ
2
2).

In our simulation, we set σ0 = 0.05, σ1 = σ2 = 0.35, and we controlled the average
probability difference around the target to be 0.07, 0.1 and 0.15 by varying the values of µ1

and µ2. For illustration, Figure 3 shows 10 (out of 10,000) randomly generated dose-toxicity
curves when the average probability difference around the target was 0.1. We can see that
these curves demonstrate various shapes and locations of the MTD.

Table 3 shows the simulation results, including the selection percentage of the MTD,
the average percentage of patients treated at the MTD, the average toxicity rate, and the
average sample size. In addition, we reported two risk measures for the designs: (1) the
risk of poor allocation, defined as the percentage of simulation runs in which the number
of patients allocated to the MTD (say n

MTD
) is less than that of a standard non-sequential

design, which assigns the equal number of patients to each dose, i.e., Pr(n
MTD

< n/J);
and (2) the risk of high toxicity, defined as the percentage of simulation runs in which the
total number of toxicities is greater than nφ. These risk measures are of great practical
importance because they gauge the likelihood of a trial turning out to be a “bad” trial (e.g.,
performing worse than a standard non-sequential trial) under a specific design. In other
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words, they measure the reliability (or variation) of the design. This important aspect of
trial design has been largely overlooked by the existing literature, which typically focuses
only on the mean or average performance of a design.

The simulation results show that all the designs generally have a similar “average”
level of performance regarding several factors, including the MTD selection percentage, the
average percentage of patients treated at the MTD, and the average toxicity rate. However,
in terms of the risk of poor allocation decisions, the local BOIN design stands out and
outperforms the other competing designs. For example, under the local BOIN design, the
risk of poor allocation is about 14% to 16% lower than that under the CRM, and is about
11% lower than those under the CCD and mTPI when the average probability difference
around the target is 0.1 and 0.07. For the risk of high toxicity, the proposed local BOIN
design also performs better than the other designs. These results suggest that the local
BOIN design has better reliability, and the use of the local BOIN design decreases the
likelihood of conducting a poorly performing trial compared to the use of the other designs.
Interestingly, compared to the local BOIN design, the proposed global BOIN design had
a higher risk of poor allocation and high toxicity. This is because by its construction,
the global BOIN design “wastes” its power to accommodate the cases that are (virtually)
practically irrelevant, for example, to minimize the decision error between φ1 + ν (i.e., H0

is true) and φ1 − ν (i.e, H1 is true), and between φ2 + ν (i.e., H2 is true) and φ2 − ν (i.e,
H0 is true), where ν is a very small number.

4. Application

We applied the BOIN designs to the aforementioned solid tumor trial. We elicited from
physicians four representative dose-toxicity scenarios that we may encounter in practice.
These scenarios had different locations for the MTD. Under each scenario, we simulated
10,000 trials to evaluate the operating characteristics of the BOIN design for the purpose
of trial protocol preparation.

Table 4 shows the operating characteristics of the BOIN designs. For comparison, we also
report the results for the CCD, mTPI and CRM designs. The design parameters of these
designs were the same as described previously. Compared to these designs, the local BOIN
design yielded roughly comparable “average” performance levels (i.e., the MTD selection
percentage and the average number of patients allocated to the MTD), but generally had
substantially lower risks of poor allocation decisions or high toxicity. For example, in
scenario 1, the first dose was the MTD, and the local BOIN design yielded the highest
selection percentage of 63%. The risk of poor allocation for the local BOIN design was only
about 1/3 or 1/4 of those of the other designs. Scenario 2 had the second dose as the MTD,
and the local BOIN design selected the target dose 66.3% of the time, which was similar
to the target selection percentages of the CCD and mTPI designs. However, the risk of
poor allocation under the local BOIN design was less than half of those under the CCD and
mTPI designs, and the risk of high toxicity under the local BOIN design was also about
6-9% lower. We note that the relative performance of the CRM depended on how much
the assumed model structure (e.g., skeleton) deviated from the truth. The CRM performed
better than the other designs if the target dose was close to its prior estimate of the MTD
(e.g., under scenarios 2 and 3), but performed worse than the other designs if the target
dose deviated from its prior estimate (e.g., under scenarios 1 and 4).

As a second application, we retrospectively applied the local BOIN design to the pedi-
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atric phase I clinical trial (Jakacki et al., 2008). Given the target toxicity rate φ = 0.25, the
dose escalation and deescalation boundaries were λ1j = 0.197 and λ2j = 0.298 (see Table
1). The trial started with treating the first cohort of three patients at the lowest dose, 35
mg, and no DLT was observed. As the observed toxicity rate was p̂1 = 0, lower than the
escalation boundary λ1j , we escalated the dose to 50 mg for the second cohort. Again, no
DLT was observed with p̂2 = 0, so the dose was escalated to 65 mg, at which still no DLT
occurred. The dose was continuously escalated to 85 mg, at which one out of six patients
experienced DLT. At that moment, p̂4 was equal to 1/6, but was still smaller than the
escalation boundary λ1j = 0.197, and thus the dose was escalated to 110 mg. The trial
ended by treating the last cohort of patients at a dose of 110 mg, at which two out of four
patients experienced DLTs. Based on the observed data and applying the PAVA algorithm,
the isotonic estimates of the toxicity probabilities of the five doses were 0.002, 0.002, 0.002,
0.167 and 0.500, respectively. As a result, dose level 4 was selected as the MTD.

5. Conclusion

We have proposed a flexible framework for constructing interval designs by treating phase
I dose finding as a decision-making problem. We proposed local and global BOIN designs
that minimize the decision error of dose assignment based on either point or composite
hypotheses. We showed that the BOIN designs have sound theoretical properties and good
numerical performance. Among two proposed designs, we recommend the local BOIN design
for practical use because of its simplicity and better finite-sample performance.

We have considered the local and global optimal designs, but the proposed decision-
making framework is very flexible. These designs can be easily modified to accommodate
different design objectives by specifying an appropriate object function to be minimized.
For example, noting that the local and global decision errors given in equations (2) and
(5) actually consist of different types of decision errors, we can propose minimax designs to
prevent the rate of any individual type of decision error from being too high.

In some cases, for safety reasons, we may be more concerned with incorrect dose escala-
tion than with incorrect dose deescalation. In these cases, we can classify the decision error,
such as equation (2), into errors of making incorrect decisions of escalation, deescalation
and dose level retainment. We then assign the appropriate weight to each type of error to
reflect its relative importance, and minimize the resulting objective function.

ACKNOWLEDGEMENTS

The authors would like to thank the editor, associate editor and reviewers for insightful and
constructive comments. Yuan’s research was supported by Award Number R01 CA154591
and P50 CA098258 from the National Cancer Institute.



14

References

Barlow, R.E., Bartholomew, D.J., Bremner, J.M., and Brunk, H.D. (1972) Statistical In-
ference under Order Restrictions, London, New York: John Wiley & Sons.

Cheung, Y. (2005) Coherence principles in dose-finding studies. Biometrika, 92, 863-873.

Chevret, S. (2006) Statistical Methods for Dose-Finding Experiments, London: John Wiley
& Sons.

Durham, S.D. and Flournoy, N. (1994) Random walks for quantile estimation. In Statistical
Decision Theory and Related Topics (eds., J.O. Berger, S. S. Gupta), pp. 467-476. New
York: Springer.

Gerke, O. and Siedentop, H. (2008) Optimal phase I dose-escalation trial designs in
oncology—a simulation study. Stat. Med., 27, 5329-5344.

Ivanova, A., Flournoy, N., and Chung, Y. (2007) Cumulative cohort design for dosefinding.
J. Stat. Plan. Inference, 137, 2316-2317.

Ivanova, A. and Kim, S. (2009) Dose-finding for binary ordinal and continuous outcomes
with monotone objective function: a unified approach. Biometrics, 65, 307-315.

Jakacki, R. I., Hamilton, M., Gilbertson, J. R., Blaney, S. M., Tersak, J., Krailo, M. D.,
Ingle, A. M., Voss, S. D., Dancey, J. E., and Adamson, P. C. (2008), Pediatric phase
I and pharmacokinetic study of erlotinib followed by the combination of erlotinib and
temozolomide: a Childrens Oncology Group Phase I Consortium Study, J. Clin. Oncol.,
26, 4921- 4927.

Ji, Y., Liu, P., Li, Y., and Bekele, B. N. (2010) A modified toxicity probability interval
method for dose-finding trials. Clin. Trials, 7, 653-663.

Korn, E.L., Midthune, D., Chen, T.T., Rubinstein, L.V., Christian, M.C., and Simon, R.M.
(1994) A comparison of two phase I trial designs. Stat. Med., 13, 1799-1806.

Lee, S. and Cheung, Y. (2009) Model calibration in the continual reassessment method.
Clin. Trials, 6, 227-238.

Lee, S. and Cheung, Y. (2011) Calibration of prior variance in the Bayesian continual
reassessment method. Stat. Med., 30, 2081-2089.

Leung, D. and Wang, Y.G. (2001) Isotonic designs for phase I trials. Control. Clin. Trials,
22, 126-138.

Lin, Y. and Shih, W.J. (2001) Statistical properties of the traditional algorithm-based
designs for phase I cancer clinical trials. Biostatistics, 2, 203-215.

Neuenschwander B., Branson M. and Gsponer T. (2008) Critical aspects of the Bayesian
approach to phase I cancer trials. Stat. Med., 27, 2420-2439.

Oron, A., Azriel, D. and Hoff, P. (2011) Dose-finding designs: the role of convergence
properties. Int. J. Biostat., 7, Article 39.



Bayesian Optimal Interval Designs for Phase I Clinical Trials 15

O’Quigley, J., Pepe, M., and Fisher, L. (1990) Continual reassessment method: a practical
design for phase 1 clinical trials in cancer. Biometrics, 46, 33-48.

Paoletti, X. , O’Quigley, J. and Maccario, J. (2004) Design efficiency in dose finding studies.
Comput. Stat. Data Anal., 45, 197-214.

Storer, B. E. (1989) Design and analysis of phase I clinical trials. Biometrics, 45, 925-937.

Ting, N. (2006) Dose Finding in Drug Development, Cambridge: Springer.

Walker, S.G. and Hjort, N.L. (2001) On Bayesian consistency. J. R. Stat. Soc. Series B
Stat. Methodol., 63, 811-821.

Whitehead, J. and Brunier, H. (1995) Bayesian decision procedures for dose determining
experiments. Stat. Med., 14, 885-893.

Yuan, Z. and Chappell, R. (2004) Isotonic designs for phase I cancer clinical trials with
multiple risk groups. Clin. Trials, 1, 499-508.



16

0.05 0.10 0.15 0.20

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

δ1 = δ2

φ2

φ1

φ

λ1j

λ2j
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φ2 when the target toxicity rate φ = 0.25 and π0j = π1j = π2j .
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Table 1. Values of λ1j and λ2j under the local BOIN design for

different target toxicity rates with φ1 = 0.6φ and φ2 = 1.4φ.

Interval Target toxicity rate φ

boundaries 0.15 0.2 0.25 0.3 0.35 0.4

λ1j 0.118 0.157 0.197 0.236 0.276 0.316
λ2j 0.179 0.238 0.298 0.358 0.419 0.479

Table 2. Interval boundaries and dose elimination boundaries for the global BOIN design when the target toxicity rate

φ = 0.25 with φ1 = 0.15 and φ2 = 0.35.

Number of cumulative patients treated at the current dose (nj)
Boundary 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

λ1j 0/1 0/2 0/3 0/4 0/5 0/6 0/7 1/8 1/9 1/10 1/11 1/12 1/13 1/14 2/15
λ2j 1/1 2/2 2/3 2/4 3/5 3/6 4/7 4/8 5/9 5/10 5/11 6/12 6/13 7/14 7/15
Elimination NA NA 3/3 3/4 3/5 4/6 4/7 4/8 5/9 5/10 6/11 6/12 6/13 7/14 7/15

Table 3. Simulation results when the dose-toxicity scenarios are randomly generated.

Selection % % of patients Average Risk of Risk of Sample
Design of MTD at MTD toxicity rate poor allocation high toxicity size

Average probability difference around the target = 0.1

CCD 46.0 35.2 19.8 39.1 16.2 35.3
mTPI 44.8 35.3 19.8 40.2 17.3 35.2
CRM 44.7 35.4 19.3 43.0 16.9 35.2
Global BOIN 45.4 35.5 19.9 41.7 17.6 35.2
Local BOIN 46.2 33.0 19.2 28.7 14.8 35.3

Average probability difference around the target = 0.07

CCD 36.2 29.6 20.0 49.4 16.5 35.1
mTPI 36.1 29.8 20.0 50.7 17.6 35.1
CRM 33.3 28.6 19.5 54.7 17.5 35.1
Global BOIN 36.6 29.6 20.1 51.5 18.0 35.1
Local BOIN 37.0 28.5 19.5 38.6 15.5 35.1

Average probability difference around the target = 0.15

CCD 57.7 43.4 19.8 26.0 16.8 35.4
mTPI 57.6 44.0 20.1 27.1 18.1 35.4
CRM 59.8 44.7 19.6 26.6 17.9 35.4
Global BOIN 57.5 44.1 20.1 27.7 18.1 35.4
Local BOIN 57.6 43.4 19.0 18.0 15.5 35.3



20

Table 4. Operating characteristics of the BOIN designs under four prespecified dose-toxicity scenarios for the

solid tumor trial. The target toxicity rate of 0.25 is underlined.

Dose level Risk of Risk of
Design 1 2 3 4 5 6 poor allocation high toxicity

Scenario 1 Pr(toxicity) 0.25 0.35 0.5 0.6 0.7 0.8
CCD Selection (%) 60.8 23.0 1.5 0.0 0.0 0.0 14.7 52.8

# patients 22.4 8.8 1.4 0.1 0.0 0.0
mTPI Selection (%) 58.2 25.3 1.8 0.1 0.0 0.0 19.6 53.7

# patients 21.8 9.3 1.5 0.1 0.0 0.0
CRM Selection (%) 55.6 26.2 1.1 0.0 0.0 0.0 15.9 52.9

# patients 21.9 9.3 1.4 0.1 0.0 0.0
Global BOIN Selection (%) 59.4 24.5 1.6 0.0 0.0 0.0 19.7 54.1

# patients 21.5 9.5 1.5 0.1 0.0 0.0
Local BOIN Selection (%) 63.0 20.6 1.6 0.1 0.0 0.0 5.9 53.4

# patients 22.6 8.3 1.7 0.2 0.0 0.0

Scenario 2 Pr(toxicity) 0.1 0.25 0.4 0.6 0.7 0.8
CCD Selection (%) 17.7 65.7 15.7 0.6 0.0 0.0 14.1 31.8

# patients 10.4 18.4 6.3 0.7 0.0 0.0
mTPI Selection (%) 16.9 64.0 18.1 0.7 0.0 0.0 18.3 34.8

# patients 9.9 18.4 6.7 0.7 0.0 0.0
CRM Selection (%) 10.9 74.1 14.6 0.1 0.0 0.0 12.0 35.2

# patients 9.6 19.5 6.4 0.4 0.0 0.0
Global BOIN Selection (%) 18.0 63.8 17.3 0.6 0.0 0.0 19.1 36.5

# patients 9.7 18.5 6.9 0.8 0.0 0.0
Local BOIN Selection (%) 18.4 66.3 14.4 0.5 0.0 0.0 5.7 25.8

# patients 12.4 16.4 6.1 0.9 0.1 0.0

Scenario 3 Pr(toxicity) 0.05 0.1 0.25 0.32 0.5 0.6
CCD Selection (%) 0.5 18.8 50.4 27.4 2.8 0.2 26.9 13.2

# patients 4.5 9.5 14.0 6.5 1.4 0.1
mTPI Selection (%) 0.5 18.0 49.1 29.0 3.1 0.2 30.5 15.6

# patients 4.5 9.1 14.1 6.7 1.4 0.1
CRM Selection (%) 0.1 18.1 61.1 19.5 1.1 0.0 25.8 14.2

# patients 4.4 9.7 15.7 5.2 0.8 0.1
Global BOIN Selection (%) 0.7 18.3 49.0 28.8 3.0 0.2 31.7 16.8

# patients 4.5 9.0 14.1 6.9 1.5 0.1
Local BOIN Selection (%) 0.4 19.0 53.0 24.7 2.8 0.1 14.5 9.8

# patients 5.1 10.9 12.4 6.0 1.6 0.2

Scenario 4 Pr(toxicity) 0.01 0.02 0.03 0.04 0.05 0.25
CCD Selection (%) 0.0 0.0 0.1 0.5 15.2 84.2 7.1 0.0

# patients 3.2 3.4 3.7 3.9 6.2 15.6
mTPI Selection (%) 0.0 0.0 0.1 0.5 14.3 85.0 7.3 0.0

# patients 3.2 3.4 3.7 3.9 6.0 15.8
CRM Selection (%) 0.0 0.1 2.1 9.8 18.1 69.9 27.2 0.0

# patients 3.2 3.5 4.7 5.1 7.0 12.5
Global BOIN Selection (%) 0.0 0.0 0.2 0.5 14.5 84.8 7.1 0.0

# patients 3.2 3.4 3.7 3.9 5.8 16.0
Local BOIN Selection (%) 0.0 0.0 0.1 0.7 16.8 82.4 7.4 0.0

# patients 3.3 3.5 3.8 4.0 8.0 13.4


