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Individual Imaging Analysis 
Imaging Construction Image Segmentation 

Multimodal Analysis 

DTI FLAIR 

Marc 
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Group Imaging Analysis 

Longitudinal/Family Brain Group Differences 

Prediction 

Imaging Genetics 

NC/Diseased 

Registration 

Hibar, Dinggang, Martin 
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Key Features 

•  Spatial Smoothness 

•  Spatial Correlation 

•  Spatial Heterogeneity 

Noisy Imaging Data 

•  Infinite Dimension 
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Image is the point or set of points in the range corresponding  
       to a designated point in the domain of a given function. 

€ 

f :Ω→M ⊆ Rm

€ 

˜ x ∈Ω⊆ Rk

€ 

f ( ˜ x )∈M ⊆ Rm

€ 

Ω is a compact set. 

|| f (x)||k d x  
Ω∫ <∞  for some k>0

Mathematics. 

Infinite Dimensional Image 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Spatial Smoothness 

  

Cartoon Model 
θk (d)

•  Disjoint Partition 

•  Piecewise Smoothness: Lipschitz condition 

•  Smoothed Boundary 

•  Local Patch  

•  Degree of Jumps 

φ=∩∪= = '1  and  lll
L
l DDDD

θ (d )∈ RK
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ˆ F = T[ f ]
FDA: Functional Data Analysis 
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Smoothing Effect 

•  Smoothing method is independent of data 
•  Degree of smoothness is arbitrary  
•  Effect of smoothness is profound  
•  The relationship between smoothing method  
and study design is unknown 

Jones et al. (2006),  
Yue et al. (2010) 
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Prediction Accuracy: ADNI PET Data 
Prediction results-Cont’d

(a) (b) (c) 

Figure : rtMSPE maps for prediction of ADNI PET images at month 12
for 79 test subjects. Selected slices are shown for (a) Semi-parametric
model; (b) Semi-parametric model+FPCA; (c) Semi-parametric
model+FPCA+Spatial-temporal model.
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FSEM: Functional Structural Equation 

Models for Twin Functional Data 
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Twin Neuroimaging Data 

www.guysandstthomas.nhs.uk/.../T/Twins400.jpg  

MZ twins share 
same genetic 

material 

DZ twins share 
average 50% of 

their genes 
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FSEM (I) 

yij (d) = xij
Tβ(d)+ aij (d)+ dij (d)+ ci (d)+ eij (d)

Additive and Dominance  
Genetic 

Common 
Environmental  
 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

      Two Strategies 
Yi = {Yi (d) : d ∈ D}Data 

Strategy 1: Individual Approach 

Strategy 2: Global Approach 

{(Yi, xi ) : i =1,!,n}

Yi = {Yi (d) : d ∈ D} Ywi = {Ywi (d) : d ∈ D} =Wi (Yi )
Wi (.)

p(Yi |θ = {θ(d) : d ∈ D})
i
∏ p(Ywi |θ = {θ(d) : d ∈ D})

i
∏

W ( p(Yi |θ = {θ(d) : d ∈ D})
i
∏ )p(Yi |θ = {θ(d) : d ∈ D})

i
∏

W (.)
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Key Conditions: 
•  Relative high SNR in individual image 
•  Consistency:  

Hierarchical Smoothing Model  
Strategy 1: Individual Approach (Hierarchical Smoothing Model) 

Yi (d) =Ywi (d)+εwi (d),
εwi ~ p(εwi | 0,σ

2 = {σ 2 (d) : d ∈ D})
Ywi ~ p(Ywi | !θ = { !θ (d) : d ∈ D})

Yi ~ p(Yi |θ = {θ(d) : d ∈ D})

θ(d) = !θ (d)  for  d ∈ D
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Problem 1: Smoothing 
Yi ~ p(Yi |θ = {θ(d) : d ∈ D})

•   Parameters are not associated with the mean structure 

Yi (d) = xi
Tβ(d)+ ai (d)+ ci (d)+ ei (d),

ai (d) ~ (0,σ a
2 (d)),  ci (d) ~ (0,σ c

2 (d)),  ei (d) ~ (0,σ e
2 (d))

Twin Models 
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Consequence 

Chiang et al. (2009) 

•  Moderate Smoothing: 
Single large cluster 
•  Excessive Smoothing: 
Effects disappeared 
•  No smooth: 
Small clusters 
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Twin-MARM 
There are two sets of parameters: 

mean structure 
variance structure 

Questions of interest:  
•      Mean and variance images may have different patterns. 
•      Problematic Practice: Directly smooth imaging data 
 

{β(d) : d ∈D}
{(σ a

2 (d),σ c
2 (d),σ e

2 (d)) : d ∈D}
Cartoon Model 
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Multiscale Adaptive Models  
Strategy 2: Global Approach 

W (ℓ(θ |Yi ))

Yi ~ ℓ(θ = {θ(d) : d ∈ D} |Yi )
      = log p(Yi |θ = {θ(d) : d ∈ D})

θ(d)∈Θ

Parametric Space 
Θ
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Twin-MARM 
Two-stage Approach 

•  Mean structure 

•  Variance structure    

 

Yij (d) = xij
Tβ(d)+εij (d)⇒ {β̂(d;h) : d ∈ D}

{Yij (d)− xij
T β̂(d;h)}2 = zij

Tρ(d)+δij (d)⇒ {ρ̂(d;h) : d ∈ D}

}:);(ˆ{)/);',(()/||'(||);',( 21 DdhdChddDKhddKhdd nstloc ∈⇒−= βω β

}:);(ˆ{)/);',(()/||'(||);',( 22 DdhdChddDKhddKhdd nstloc ∈⇒−= ρω ρ

Theorem 2: Substituting                            into the second stage has 
negligible effect.        

}:);(ˆ{ Ddhd ∈β
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Simulation Study 

ACE Model:  

We set:  

across 5 regions of interest 

: are independently normally distributed 

with mean 0 and variance:   

equals  for MZ twins,  
for DZ twins  
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It is dangerous to use Gaussian-kernel to smooth 
imaging data and then carry out twin analysis. 

Simulation Study 
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FSEM (I) 

yij (d) = xij
Tβ(d)+ aij (d)+ dij (d)+ ci (d)+ eij (d)

•  Marginal Modeling 
•  Not capture covariance structure 
How to define stochastic processes 
 for DZ? 
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FSEM (II) 

yij (d) = xij
Tβ(d)+ 0.51(DZ)aij (d)+ [1(MZ)+ 0.51(DZ)]ai (d)+ ci (d)+ eij (d)

aij (d) ~GP(0,Σa )
ai (d) ~GP(0,Σa )
ci (d) ~GP(0,Σc )
eij (d) ~GP(0,Σe )

ΣY (d,d ') =
Σa + Σc + Σe Σa + Σc

Σa + Σc Σa + Σc + Σe

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
(d,d ')

ΣY (d,d ') =
Σa + Σc + Σe 0.5Σa + Σc

0.5Σa + Σc Σa + Σc + Σe

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
(d,d ')
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FSEM (II) 
Three-stage Approach 

•  Mean structure 

•  Variance structure (Weighted likelihood)   

 
•  Estimate covariance operators 

Yij (d) = xij
Tβ(d)+εij (d)⇒ {β̂(d;h) : d ∈ D}

{Yij (d)− xij
T β̂(d;h)}2 = zij

Tρ(d)+δij (d)⇒ {ρ̂(d;h) : d ∈ D}

Σa (d,d ') and Σc (d,d ')



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

FSEM (II) 
Two Key Test Procedures 

 
•  Test marginal genetic and environmental effects 

•  Test global genetic and environmental effects 

H0A(d) :Σa (d,d) = 0 versus H1A(d) :Σa (d,d) > 0
H0C (d) :Σc(d,d) = 0 versus H1C (d) :Σc(d,d) > 0

H0A : Σa (d,d)m(d)∫ = 0 versus H1A (d) : Σa (d,d)m(d)∫ > 0

H0C : Σc (d,d)m(d)∫ = 0 versus H1C (d) : Σc (d,d)m(d)∫ > 0
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Simulations 

Simulation studies: Estimation results
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Figure: n = 300 Estimation Performance: [(a), (b), (c)] are true

coe�cient functions, genetic and common environmental covariance

functions; [(d), (e), (f)] are mean of 100 corresponding estimators.
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Simulations 

Simulation studies: practical reason
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Figure: n = 150 [(a),(b)] are histograms of genetic variance estimates at

tract T20 for likelihood and weighted likelihood approaches when c = 0;

[(c),(d)] are histograms of genetic variance estimates at same tract for

likelihood and weighted likelihood approaches when c = 0.5.
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No Genetic Effect  Genetic Variance=0.09  
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Simulations 

Simulation studies: Inference results, pointwise

0 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
n = 150, −log10 of p values along fiber tract without genetic effect c=0

(a)

 

 

LRT
WLRT

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
n = 150, rejection rates along fiber tract when c=0.5

(b)

 

 

LRT
WLRT

0 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
n = 300, −log10 of p values along fiber tract without genetic effect c=0

(c)

 

 

LRT
WLRT

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n = 300, rejection rates along fiber tract when c=0.5

(d)

 

 

LRT
WLRT

Figure: Inference Performance: [(a),(c)] are rejection rates (type I error)

of the two test statistics along fiber tract without genetic e↵ect when

n = 150 and n = 300; [(b),(d)] are rejection rates (power) of the two

test statistics along fiber tract when n = 150 and c = 0.5 and n = 300.
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Simulation studies: Inference results, tractwise
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Figure: Inference Performance: [(a),(c)] are histograms of p values of

tractwise test statistics without genetic e↵ect c = 0 when n = 150 and

n = 300; [(b),(d)] are histograms of p values of tractwise test statistics

with genetic e↵ect c = 0.5 when n = 150 and c = 0.5 and n = 300.
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Type I Power 
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UNC Early Brain Development Studies 

•  Singletons, twins, high risk 
•  A longitudinal prospective study  
•  900 young children aged 0 to 6 years  
•  Recruited prenatally 

– Exclusion: ultrasound abnormality, significant fetal/  
       maternal medical problem, substance abuse  
•  3TMRI (Seimens Allegra)  
    – T1, T2, DTI, resting state fMRI  
•  Scanned during normal sleep(no meds)  
•  Ear protection, head in vac-fix device  
•  Success rate: 87% @ 2 weeks, 71% @ 1 year, 62% at 2 years  
 

PIs: Drs. John H. Gilmore and Weili Lin 
To track changes in behavior with brain structure, connectivity, and function,  
in order to characterize the progression from primary changes to  
subsequent clinical presentation, and to identify predictors of divergence 
 from the typical trajectory. 
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•  The data set consists of 356 healthy twin neonates with 190 males and 166 females  
from the neonatal project as part of the UNC Early Brain Development Studies.  
•  There are 129 twin pairs (48 MZ twin pairs and 81 DZ twin pairs) and 98 unrelated  
”singleton” twins - a single unpaired twin subject in which a usable scan was not  
obtained from the co-twin.  
•  The gestational ages of these infants range from 257 to 401 days, and their mean  
gestational age is 289 days with standard deviation 18 days. 
 
Question of interest: 
comprehensive heritability data on white matter  
microstructure fractional anisotropy (FA), radial  
diffusion (RD), and axial diffusion (AD) along 47 fiber tracts. 
   
 

Quantitative tract-based white matter 
heritability in twin neonates  

67 

Fiber tracts in Atlas Space 

67 

fornix and uncinate 

uncinate 

genu, splenium, motor 

Neonate (n=270) 

Macaque (n=52) 
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Twin Functional Data Introduction
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Figure: Representative functional neuroimaging data: [(a), (b)] are FA

and MD along the splenium tract of the corpus callosum from 40

randomly selected infants; and [(c),(d)] are FA measures of two randomly

selected MZ twin pairs and two randomly selected DZ twin pairs.

3 / 23

MZ DZ 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Coefficient Functions 

Real data: coe�cient functions
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Figure: Plot of estimated e↵ects of intercept [(a),(d)], gender [(b),(e)]

and age [(c),(f)] and their pointwise 95% confidence bands. The first

three panels [(a),(b),(c)] are for FA and the last three panels [(d),(e),(f)]

are for MD. The blue solid curves are the estimated coe�cient functions,

and the red dashed curves are the confidence bands.
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Genetic and Environmental COs 

Real data: covariance kernel

(a)

FA: Estimated Genetic Covariance
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FA: Estimated Common Environmental Covariance
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MD: Estimated Genetic Covariance
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MD: Estimated Common Environmental Covariance
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Figure: Plot of estimated covariance structure for genetic e↵ect [(a),(c)]

and common environmental e↵ect [(b),(d)]. The first two panels [(a),(b)]

are for FA and the last two [(c),(d)] are for MD.
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Genetic Effects 

Real data: pvalues
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the corresponding p values of tests for genetic variance existence. Panels

[(a),(c)] are for FA and panels [(b),(d)] are for MD.
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Prediction Accuracy 

30 Luo, Song, Styner, Gilmore, and Zhu
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four randomly selected subjects.
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Heritability 
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HPRM:  Hierarchical  Principal Regression 
Model of Diffusion Tensor Bundle Statistics 
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Reading Materials 
1.  Zhang, J. W., Ibrahim, J. G., J. Gilmore., M. Styner and Zhu, H.T. HPRM:  Hierarchical  Principal Regression Model of 

Diffusion Tensor Bundle Statistics. 2016. In Submission.  
2.   Luo, X. C., Zhu, L. X., Kong, L., Zhu, H.T. Functional Nonlinear Mixed Effects Models For Longitudinal Image Data. 

Information Processing in Medical Imaging (IPMI) 2015.  
3.  Luo. X. C., Zhu, L.X., and Zhu, H.T. (2016). Single-index Varying Coefficient Model for Functional Responses. Biometrics, 

in revision.  
4.   Liang, J. L., Huang, C., and Zhu, H.T. (2014). Functional single-index varying coefficient models. In submission.  
5.  Hua, Z.W., Dunson, D., Gilmore, J.H., Styner, M., and Zhu, HT.  (2012). Semiparametric  Bayesian local functional models 

for diffusion tensor tract statistics.  NeuroImage, 63, 460-674.    
6.  Zhu, HT., Kong, L.,  Li, R., Styner, M.,  Gerig, G., Lin, W. and  Gilmore, J. H. (2011).  FADTTS: Functional Analysis of 

Diffusion Tensor Tract Statistics, NeuroImage, 56, 1412-1425.  
7.   Zhu, H.T., Styner, M., Tang, N.S., Liu, Z.X., Lin, W.L., Gilmore, J.H. (2010).  FRATS: functional regression analysis of DTI 

tract statistics. IEEE  Transactions on Medical Imaging, 29, 1039-1049. 

Video 
http://www.birs.ca/events/2016/5-day-workshops/16w5036/videos/watch/
201602021312-Zhang.html 
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White Matter Fiber Bundles 
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http://en.wikipedia.org/wiki/DNA_sequence 

Scalar-on-Functional Models 

  G 

   I   E 

  D  
Selection 

E: environmental factors 

G: genetic/genomics 
D: disease  

I: imaging/device 
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Inter-correlation and 
interpretation 

Functional spatial 
feature of imaging 

data 

DTI Study 

Single Tract 
Analysis 

Results 
Combined 

Multiple Tract 
Analysis 

Summary 
Statistics 

Point-wise 
Analysis 

•  Current Efforts 

Existing Methods 
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Multivariate 
Gaussian Process 

Model  

Extract 
Functional 
Principal 

Components* 

Individual 
tract analysis 

Multiple 
tracts 

analysis 

PCA based 
Factor 

Analysis  

Global Factors 

Tract residual 

Mean 
profile  

Low  
frequency signal 

High 
 frequency noise 

Estimation:  
Linear Regression Model 
 
Test Statistics: 
Summation of Wald/LRT statistics 

1st 
fPC 

2nd fPC 3rd fPC 4th fPC 5th fPC 

Correlation Matrix of 5 fPCs from 44 fiber tract in real data  Path Diagram 
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•  472 twin subjects  
♦  236 DZ pairs, 32 MZ pairs and 260 Singletons 

•  Neonatal MRI (around one month old ) 
♦  3T Siemens Allegra head-only scanner  or 3T  Siemens TIM Trio 
♦  DTIPrep (Quality Control), Slicer[1] (Visual QC, DTI atlas creation, Fiber tract 

segmentation, Registration)  
♦  DTI Data: FA measure of 44 Fiber Tracts 
♦  TBSS Data: FA measure of 21 bundles 

•  Genetic markers 
♦  ~ 800k genetic marker 
♦  Imputation with MACH-Admix, template 1000G Phase I v3 
♦  ~ 6 million SNPs and indels with MAF>0.05 

•  Fit ACE model in regression 
•  Covariates 

♦  Gestational age at birth, family income, DTI direction, Scanner Type, 3 genetic 
PC scores 

 

GWAS of early brain development: DTI Tracts 
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5 fPcs to 
include >70% 

variation 

Factor 
Analysis 

GWAS of early brain development: DTI Tracts 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Plot of Loading 
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ALK gene plays an important role in the 
development of the brain and exerts its effects on 
specific neurons in the nervous system                                  

 ---NCBI Gene Database 

GWAS Result of global factor 
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Factor 
Analysis 
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GWAS Result of global factor: TBSS 
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Global Factors 
Residual of Global Factors 

Adjusted for Covariates  

TBSS TBSS 

Tr
ac

t 

The global factors of DTI tracts and 
TBSS are highly correlated ! 

Global factors: Tracts versus TBSS 
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GWAS Result of global factor: TBSS 
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Top	  20	  SNPs	  and	  corresponding/proximal	  Genes	  
snpname	   chr	  Rank	  in	  DTI	   Pval	  in	  DTI	   Rank	  in	  TBSS	  Pval	  in	  TBSS	   gene	   Gene	  funcAon	  
rs66556850	   2	   1	   5.67E-‐09	   2	   1.44E-08	  

ALK	   Brain	  development	  
rs62131138	   2	   2	   7.32E-‐09	   17	   6.89E-08	  
rs34328925	   2	   3	   2.71E-‐08	   8	   4.53E-08	  
rs34938026	   2	   4	   2.81E-‐08	   10	   4.81E-08	  
rs10167952	   2	   6	   2.88E-‐08	   15	   6.49E-08	  
rs6878826	   5	   5	   2.81E-‐08	   1	   1.30E-08	   	  	  
rs6866769	   5	   7	   3.23E-‐08	   18	   	  	  
rs6878602	   5	   8	   3.65E-‐08	   3	   1.58E-08	   	  	  
rs6883230	   5	   9	   4.03E-‐08	   4	   1.93E-08	   	  	  

5:115008755:A_AGT	   5	   10	   5.55E-‐08	   5	   2.71E-08	   LOC102467217	  	  

5:115008760:G_GTG	   5	   11	   7.61E-‐08	   6	   3.39E-08	   TMED7	  	  

rs7705506	   5	   12	   7.94E-‐08	   7	   3.61E-08	   LOC10927100	  	  

rs6594898	   5	   13	   9.03E-‐08	   9	   4.73E-08	   TICAM2 Progressive Multifocal 

5:115009046:CA_C	   5	   14	   9.85E-‐08	   11	   5.03E-08	   Leukoencephalopathy 

rs7732489	   5	   15	   1.06E-‐07	   12	   5.11E-08	  
rs7712289	   5	   16	   1.07E-‐07	   13	   5.59E-08	  
rs6594897	   5	   17	   1.20E-‐07	   14	   6.43E-08	   	  	  
rs6594896	   5	   18	   1.22E-‐07	   16	   6.67E-08	   	  	  
rs73116519	   3	   19	   7.09E-‐07	   55	   3.15E-06	   	  	  

rs72734794	   15	   20	   8.66E-‐07	   23	   6.91E-07	   UNC13C	   infantile epileptic 
encephalopathy 

GWAS Result of global factor 
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Risk Score 
Common	  factor	  extracted	  from…	   Tract	   TBSS	   TBSS	  -‐	  avrFA	  

P<1e-‐04	   0.186767379	   0.149947354	   0.151419505	  
P<1e-‐03	   0.223172509	   0.183620164	   0.18614227	  
P<1e-‐02	   0.802213498	   0.831979203	   0.826575438	  
P<0.05	   0.7030879	   0.653264153	   0.655184678	  
P<0.1	   0.488391459	   0.41296802	   0.414686436	  
P<0.2	   0.405096436	   0.373412981	   0.373995957	  
P<0.3	   0.555212245	   0.533781039	   0.534005301	  
P<0.4	   0.454465118	   0.418048888	   0.418313965	  
P<0.5	   0.537275523	   0.472857816	   0.472769655	  
P<1	   0.61317957	   0.523945656	   0.523566001	  
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•  http://www.nitrc.org/projects/fadtts 
•  FMPM GUI is a MATLAB graphical user interface  

FADTTS 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

 
 FFGWAS: Fast Functional Genome Wide 

Association AnalysiS of Surface-based Imaging 
Genetics 
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http://en.wikipedia.org/wiki/DNA_sequence 

Imaging Genetics 

  G 

  B   E 

  D  
Selection 

E: environmental factors 

G: genetic markers 
D: disease  
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Reading Materials 
 
1.  Lin, J., Zhu, H.T., Knickmeyer, R., Styner, M., Gilmore, J. H. and Ibrahim, J.G. (2012). Projection Regression Models for 

Multivariate Imaging Phenotype. Genetic Epidemiology, 36, 631-641. 
2.  Lin, J., Zhu, H.T., , Mihye, A., and Ibrahim, J.G. (2014).  Functional Mixed Effects Models for Candidate  Genetic Mapping in 

Imaging Genetic Studies. Genetic Epidemiology, 38(8):680-91. 
3.  Zhu, H.T., Khondker, Z. S., Lu, Z.H., and Ibrahim, J. G. (2014). Bayesian generalized low rank regression models for 

neuroimaging phenotypes and genetic markers. Journal of American Statistical Association, 507, 977-990.  
4.  Zhu, HT, Fan, J., and Kong, L. (2014). Spatial varying coefficient model and its  applications in neuroimaging data with jump 

discontinuity. Journal of American Statistical Association, 109, 1084-1098.   
5.  Sun, Q., Zhu, H.T., Liu, Y. F., and Ibrahim, J.G. SPReM: Sparse Projection Regression Model for High-dimensional Linear 

Regression.  Journal of American Statistical Association, in press, 2015. 
6.  Huang, M., Nichols, T., Huang, C., Yu, Y., Lu, Z., Knickmeyer, R. C., Feng, Q., and Zhu, H. T.  (2015). FVGWAS:  Fast Voxelwise 

Genome Wide   Association Analysis of Large-scale Imaging  Genetic Data, NeuroImage, in press.  

Video 
http://www.birs.ca/events/2016/5-day-workshops/16w5036/videos/watch/
201602021521-Huang.html 
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Statistical Methods 

Hibar, et al. HBM 2012 
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Data Structure 

Low Dimensional Representations

! A low dimensional representation is necessary for statistical inference 

! Whole brain tractography is complicated

(1) Connectivity matrix (2) Fiber bundles

versions of the tract. The second row shows the different candidates for
this tract in the same test subject, based on using each atlas to decide
which fibers it should contain (Distance-based clustering section). The
final result for this tract was obtained by applying the label fusion
scheme in Fiber label fusion section. It is not hard to see that the label
fusion process can help to eliminate outliers, and it can also addmissing
fibers to a single candidate labeling of the tract. A manually edited
segmentation result is also included for comparison (see the right
bottom panel).

Figs. 6 and 7 show the label fusion results for the 17 segmented
tracts in four randomly selected subjects. Despite individual variations,
the overall tract shapes are consistent across the population. Fig. 8
shows the combined WM fiber clustering results for the four test sub-
jects. The types of tracts and their colors are as in Fig. 2. The average
fiber number in our full set of clustering results is ~40,000 per subject,
or roughly 1/10th of the fibers from the initial tractography. There are
three factors that affect howmanyfibers are included in thefinal results.
First, in this work, we mainly focused on 17 major anatomically well-
known white matter tracts. Therefore, only those tracts are shown in
Fig. 8. Many other less-known tracts are not shown and could be
added in future work, although it might be more challenging to reliably
find smaller tracts in the mix of all the other major pathways. Second,
streamline whole-brain tractography generates large numbers of false
positive fibers and those need to be removed for our ultimate goal –
population studies. Last, fiber clusteringmay show enormous individual
variation when applied across a population. However, to perform an

effective population study, we only included fibers whose shape shares
the most common characteristics throughout the population for each
tract. This was our intent when we built our manually constructed
atlases. Clearly we would need to admit that some clinically interesting
variation is missed by focusing on a set of standard tracts. But finding
additional consistent tracts across subjects is challenging and runs the
risk of including false positives.

Quantitative validation

To quantitatively evaluate the proposed framework, we converted
each of the fiber tracts to a binary image, where voxels that the tracts
cross were marked as 1, and 0 otherwise. Then we used the Dice
coefficient to assessing the overlap or agreement between two tracts,
defined as:

D a; bð Þ ¼ 2 $ V að Þ∩V bð Þð Þ
V að Þ þ V bð Þ ð6Þ

where V() is the volume of the region that the tract penetrates.
Due to thewide variability between different tracts, we need to tune

the parameters of our algorithm to optimize its performance. We have
two key parameters to adjust. One is the Hausdorff distance threshold
used to select fibers for each tract per atlas (dcutoff in Eq. (4)), and the
other is the percentage of fibers included in the final label fusion stage
described in Fiber label fusion section.

Fig. 8. Back, left side, and bottom views of the same four subjects' (in Figs. 6 and 7) compositional fiber clustering results are shown. The original whole-brain tractography (the leftmost
column) is included for comparison, clearly showing the utility of the data reduction.

Table 1
The values of the clustering distance threshold and the fusion percentage for each tract described in Tract atlas construction section that were used to cluster the 198 subjects in our data set.

Tract name L/R-ATR L/R-CGC L/R-CST L/R-IFO L/R-ILF L-ARC CC-FRN CC-PRC CC-POC CC-PAR CC-TEM CC-OCC

d cutoff
mmð Þ

12 12 12 12 12 12 12 12 12 12 12 12

Fusion pct. (%) 100 85 95 95 70 95 90 95 100 95 45 100

82 Y. Jin et al. / NeuroImage 100 (2014) 75–90
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Sub-Cortical Structure Models

courtesy of P. Aljabar

Thalamus

Brainstem

Hippocampus

Amygdala

Caudate

Pallidum

Putamen

Accumbens

• Incorporate prior anatomical information via explicit shape models
• Have 15 different sub-cortical structures (left/right separately)
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      High Dimensional Regression Model 

{Xi (g) :g∈G0}
Data 

Yi = {yi (v) :v∈V}

Y

n × py

X

n × px

B

px × py

E

n × py

Phenotype Genotype Error 
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Hibar, et al. HBM 2012 

Challenges 

106 107
1013 px

py

n
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 Functional 
Models 

Global Sure 
Independence 

Screening  
Procedure 
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Voxel-locus 

Cluster-locus 
Detection 

  

Fast Functional GWAS 
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Imaging Genetics for ADNI 

•  A longitudinal prospective study with 1700 aged between 55 to 90 years  
•  Clinical Data including Clinical and Cognitive Assessments 
•  Genetic Data including Ilumina SNP genotyping and WGS 
•  MRI (fMRI, DTI, T1, T2) 
•  PET (PIB, Florbetapir PET and FDG-PET)  
•  Chemical Biomarker 

 

PI: Dr. Michael W. Weiner  
 •  detecting AD at the earliest stage and marking its progress through biomarkers;  

•  developing new diagnostic methods for AD intervention, prevention, and treatment. 
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ADNI Data Analysis: Dataset Description 
•  708 MRI scans of AD (186), MCI (388), and healthy controls (224) from 

ADNI-1.  
•  These scans on 462 males and 336 females are performed on a 1.5 T MRI 

scanners.  
•  The typical protocol includes the following parameters:  
     (i)    repetition time (TR) = 2400 ms; 
     (ii)   inversion time (TI) = 1000 ms;  
     (iii)  flip angle = 8o;  
    (iv) field of view (FOV) = 24 cm with a 256 x 256 x 170 acquisition matrix in 

the x−, y−, and z−dimensions,  
     (v)   voxel size: 1.25 x 1.26 x 1.2 mm3. 
 
•  Covariates: gender, age, APOE ε4, and the top 5 PC scores in SNPs 
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Imaging Data Preprocessing 
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ADNI Data Analysis 
 

Top 10 SNPs (Right Hippocampus) Top 10 SNPs (Left Hippocampus) 
SNP	   CHR	   BP	   -LOG 10(p)	  

rs657132	   18	   2.20533e+07	   7.579767	  

rs604345	   18	   2.20033e+07	   6.729377	  

rs582110	   18	   2.19954e+07	   6.672876	  

rs546000	   18	   2.20031e+07	   6.672876	  

rs489631	   18	   2.1989e+07	   6.620395	  

rs16837577	   1	   1.94871e+08	   6.016773	  

rs3812872	   13	   6.19869e+07	   5.468391	  

rs6826085	   4	   7.68702e+07	   5.459163	  

rs929714	   7	   1.3263e+08	   5.314317	  

rs2042067	   7	   1.32651e+08	   5.306583	  

SNP	   CHR	   BP	   -LOG 10(p)	  

rs4681527	   3	   1.44e+08	   6.764886	  

rs3108514	   2	   1.51279e+08	   6.274511	  

rs12264728	   10	   1.3214e+08	   5.961976	  

rs652911	   10	   1.3214e+08	   5.739661	  

rs10801705	   1	   8.95004e+07	   5.622668	  

rs366346	   10	   1.32141e+08	   5.617185	  

rs7312068	   12	   2.94352e+07	   5.604041	  

rs7617465	   3	   1.43999e+08	   5.522112	  

rs17605251	   7	   1.02746e+08	   5.486603	  

rs749788	   2	   2.84618e+06	   5.474675	  

Our computational time 
About 92,000 s 
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ADNI Data Analysis 
 

(Right Hippocampus) (Left Hippocampus) 
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ADNI Data Analysis: Left Hippocampus 
 Significant Loci Zoom 

(Left Hippocampus) (Right Hippocampus) 
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ADNI Data Analysis: Left Hippocampus 
 

(Left Hippocampus) 

(Right Hippocampus) 

Top 1 SNP: rs657132 
Closed Gene: HRH4 
 
HRH4 (Histamine Receptor H4) is a Protein Coding gene. 
Diseases associated with HRH4: cerebellar degeneration 
An important paralog of this gene: CHRM4 

Top 1 SNP: rs4681527 
Closed Gene: C3orf58 
 
C3orf58 (Chromosome 3 Open Reading Frame 58) is a Protein Coding gene.  
Diseases associated with C3orf58: hypoxia 
 
 

 Mirshafiey & Naddafi,  Am J Alzheimers Dis Other Demen. 2013 
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ADNI Data Analysis 
 

0 

12 

–log10(p) values on Hippocampus (L & R) corresponding to Top 2 SNPs 

Left 

Right 

rs657132 rs604345 

rs4681527 rs3108514 
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ADNI Data Analysis 

–log10(p) values of significant clusters on Hippocampus (L & R) corresponding to 
Top 2 SNPs 

0 

1.5 
Left 

rs657132	   rs604345	  

rs4681527	   rs3108514	  

Right 
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A Software for FFGWAS 
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SAMSI  
     2013 Neuroimaging Data Analysis  
     2015-2016 Challenges in Computational Neuroscience 
 
2016 Banff Birds Neuroimaging Data Analysis 
 

Thank  
You!! 


