



# Functional Analysis of Large-scale Neuroimaging and Genetic Data

Hongtu Zhu, Ph.D Department of Biostatistics<sup>†</sup> and Biomedical Research Imaging Center<sup>‡</sup> The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## **BIAS: Biostatistics and Imaging Analysis Lab**



http://www.bios.unc.edu/research/bias/





# Statistical Challenges in Neuroimaging Data Analysis





# **Reading Materials**

- 1. <u>Zhu, H. T.</u>, Chen, K. H., Yuan, Y. and Wang, J. L. (2015). Functional Mixed Processes Models for Repeated Functional Data. In submission.
- 2. Zhu, HT., Fan, J., and Kong, L. (2014). Spatial varying coefficient model and its applications in neuroimaging data with jump discontinuity. *JASA*, 109, 977-990, 2014.
- 3. J. W. Hyun, Li, Y. M., Gilmore, J., Lu, Z.H., Styner, M., and <u>*Zhu, H.T.*</u> SGPP: Spatial Gaussian Predictive Process Models for Neuroimaging Data. *NeuroImage*, <u>89</u>, 70–80, 2014.
- 4. Yuan, Y., Gilmore, J., Geng, X. J., Styner, M., Chen, K. H., Wang, J. L., and <u>Zhu, H.T.</u> (2014). Fmem: Functional mixed effects modeling for the analysis of longitudinal white matter tract data. *NeuroImage* 84, 753–764.
- 7. Yuan, Y., Gilmore, J., Geng, X. J., Styner, M., Chen, K. H., Wang, J. L., and <u>*Zhu, H.T.*</u> (2013). A longitudinal functional analysis framework for analysis of white matter tract statistics. *NeuroImage*, 23:220-31, 2013.
- 8. Yuan, Y., <u>Zhu, H.T.</u>, Styner, M., J. H. Gilmore., and Marron, J. S. (2013). Varying coefficient model for modeling diffusion tensors along white matter bundles. *Annals of Applied Statistics*. 7(1):102-125..
- 9. Zhu, H.T., Li, R. Z., Kong, L.L. (2012). Multivariate varying coefficient models for functional responses. *Ann. Stat.* 40, 2634-2666.
- 10.Li, YM, *Zhu HT*, Shen DG, Lin WL, Gilmore J, and Ibrahim JG. (2011). Multiscale adaptive regression models for neuroimaging data. *JRSS, Series B*, 73, 559-578.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## **Data Analysis**





# **Individual Imaging Analysis**

## **Imaging Construction**

## **Image Segmentation**





#### Example: Airway Segmentation from CT





#### Multimodal Analysis





#### Marc



# **Group Imaging Analysis**

#### Registration

#### **Prediction**







#### **Group Differences**



## Longitudinal/Family Brain



## Hibar, Dinggang, Martin

#### **Imaging Genetics**





# **Noisy Imaging Data**

## **Key Features**

- Infinite Dimension
- Spatial Smoothness
- Spatial Correlation
- Spatial Heterogeneity





## **Infinite Dimensional Image**

Mathematics.





Image is the point or set of points in the range corresponding to a designated point in the domain of a given function.

 $\Omega$  is a compact set.  $\tilde{x} \in \Omega \subseteq R^k$ 

$$f(\tilde{x}) \in M \subseteq R^m f: \Omega \to M \subseteq R^m$$





# **Spatial Smoothness**

**Cartoon Model** 

$$\theta(d) \in R^{K}$$
  $\theta_{k}(d)$ 

- **Disjoint Partition**  $D = \bigcup_{l=1}^{L} D_l$  and  $D_l \cap D_{l'} = \phi$
- Piecewise Smoothness: Lipschitz condition
- Smoothed Boundary
- Local Patch
- Degree of Jumps







## **FDA: Functional Data Analysis**





## **Statistical Analysis**







# **Smoothing Effect**

- Smoothing method is independent of data
- Degree of smoothness is arbitrary
- Effect of smoothness is profound
- The relationship between smoothing method and study design is unknown



<u>Jones et al. (2006),</u> <u>Yue et al. (2010)</u>



## **Prediction Accuracy: ADNI PET Data**



Figure : rtMSPE maps for prediction of ADNI PET images at month 12 for 79 test subjects. Selected slices are shown for (a) Semi-parametric model; (b) Semi-parametric model+FPCA; (c) Semi-parametric model+FPCA+Spatial-temporal model.



# FSEM: Functional Structural Equation Models for Twin Functional Data



# **Reading Materials**

Li, YM, John Gilmore, JP Wang, M. Styner, Weili Lin, and *Zhu, HT.* (2012). Two-stage spatial adaptive analysis of twin neuroimaging data. *IEEE Transactions on Medical Imaging.* 31, 1100-12.

Li, YM, *Zhu HT*, Shen DG, Lin WL, Gilmore J, and Ibrahim JG. (2011). Multiscale adaptive regression models for neuroimaging data. *JRSS, Series B*, 73, 559-578.

Luo, S., R. Song., John Gilmore, M. Styner, and *Zhu, HT.* (2015). Functional Structural Equation Models for twin functional data. To be submitted.

S.J. Lee, R. J. Steiner, S. Luo, M. C. Neale, M. Styner, <u>H. Zhu</u>, J.H. Gilmore. (2015). Quantitative tract-based white matter heritability in twin neonates. *NeuroImage*, 111, 123–135.

#### Video:

http://www.birs.ca/events/2015/5-day-workshops/15w5096/videos/watch/201506301556-Zhu.html

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## **Twin Neuroimaging Data**







# FSEM (I)





## **Two Strategies**

Data 
$$\{(Y_i, x_i) : i = 1, \dots, n\}$$
  $Y_i = \{Y_i(d) : d \in D\}$ 

## **Strategy 1: Individual Approach**

$$W_{i}(.)$$

$$Y_{i} = \{Y_{i}(d) : d \in D\} \rightarrow Y_{wi} = \{Y_{wi}(d) : d \in D\} = W_{i}(Y_{i})$$

$$\prod_{i} p(Y_{i} | \theta = \{\theta(d) : d \in D\})$$

$$M(\prod_{i} p(Y_{i} | \theta = \{\theta(d) : d \in D\}) \rightarrow W(\prod_{i} p(Y_{i} | \theta = \{\theta(d) : d \in D\}))$$

$$W(.)$$



# **Hierarchical Smoothing Model**

**Strategy 1: Individual Approach (Hierarchical Smoothing Model)** 

• 
$$Y_i \sim p(Y_i | \theta = \{\theta(d) : d \in D\})$$
  
•  $Y_i(d) = Y_{wi}(d) + \varepsilon_{wi}(d),$   
 $\varepsilon_{wi} \sim p(\varepsilon_{wi} | 0, \sigma^2 = \{\sigma^2(d) : d \in D\})$   
 $Y_{wi} \sim p(Y_{wi} | \tilde{\theta} = \{\tilde{\theta}(d) : d \in D\})$ 

**Key Conditions:** 

- Relative high SNR in individual image
- **Consistency**:  $\theta(d) = \tilde{\theta}(d)$  for  $d \in D$

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



# **Problem 1: Smoothing**

$$Y_i \sim p(Y_i \mid \theta = \{\theta(d) : d \in D\})$$

• Parameters are not associated with the mean structure

#### **Twin Models**

$$Y_{i}(d) = x_{i}^{T}\beta(d) + a_{i}(d) + c_{i}(d) + e_{i}(d),$$
  
$$a_{i}(d) \sim (0, \sigma_{a}^{2}(d)), c_{i}(d) \sim (0, \sigma_{c}^{2}(d)), e_{i}(d) \sim (0, \sigma_{e}^{2}(d))$$

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## Consequence

Table 1. The effect of FA smoothing on the detection of FA-BDNF linkage

|                                      | FWHM (mm)                                                        |                         |       |   |    |
|--------------------------------------|------------------------------------------------------------------|-------------------------|-------|---|----|
|                                      | 0                                                                | 3                       | 6     | 9 | 12 |
| Number of FDR-<br>significant voxels | 142                                                              | 68                      | 44    | 0 | 0  |
| FDR-significant<br>clusters*         | 1(18), 2(9), 3(5), 4(4), 5(1), 10(1), 11(1), 13(1), 16(1), 20(1) | 1(1), 2(1), 7(1), 58(1) | 44(1) |   |    |

\*Listed based on their size in voxels (the number of clusters of each size is in parentheses).



**Chiang et al. (2009)** 

 <u>Moderate Smoothing:</u> Single large cluster
 <u>Excessive Smoothing:</u> Effects disappeared
 <u>No smooth:</u> Small clusters



## **Twin-MARM**

There are two sets of parameters: mean structure variance structure

 $\{\beta(d): d \in D\}$  $\{(\sigma_a^2(d), \sigma_c^2(d), \sigma_e^2(d)): d \in D\}$ 

**Cartoon Model** 

## **Questions of interest:**

- Mean and variance images may have different patterns.
- Problematic Practice: Directly smooth imaging data

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



# **Multiscale Adaptive Models**

**Strategy 2: Global Approach** 

• 
$$Y_i \sim \ell(\theta = \{\theta(d) : d \in D\} | Y_i)$$
  
=  $\log p(Y_i | \theta = \{\theta(d) : d \in D\})$ 







## Twin-MARM

## **Two-stage Approach**

Mean structure

$$Y_{ij}(d) = x_{ij}^T \beta(d) + \varepsilon_{ij}(d) \Longrightarrow \{\hat{\beta}(d;h) : d \in D\}$$

# • Variance structure $\{Y_{ij}(d) - x_{ij}^T \hat{\beta}(d;h)\}^2 = z_{ij}^T \rho(d) + \delta_{ij}(d) \Longrightarrow \{\hat{\rho}(d;h) : d \in D\}$

Theorem 2: Substituting $\{\hat{\beta}(d;h): d \in D\}$  into the second stage has negligible effect.

$$\omega_1(d,d';h) = K_{loc}(\|d-d'\|_2/h)K_{st}(D_\beta(d,d';h)/C_n) \Longrightarrow \{\hat{\beta}(d;h): d \in D\}$$

 $\omega_2(d,d';h) = K_{loc}(||d-d'||_2 / h)K_{st}(D_{\rho}(d,d';h) / C_n) \Longrightarrow \{\hat{\rho}(d;h) : d \in D\}$ 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



# **Simulation Study**

ACE Model:  $y_{ij}(v) = \mathbf{x}_{ij}^T \beta(v) + a_{ij}(v) + c_i(v) + e_{ij}(v)$ We set:  $(\beta_2(v), \beta_3(v), \sigma_d(v)^2, \sigma_e(v)^2)^T = (1, 1, 1, 1)^T$  across all voxels v  $(\beta_1(v), \sigma_a(v)^2)$  as (0, 0), (0.3, 0.5), (0.6, 1), (0.9, 1.5) and (1.2, 2.0)across 5 regions of interest  $a_{ij}(v), d_{ij}(v), c_i(v)$  and  $e_{ij}(v)$ : are independently normally distributed with mean 0 and variance:  $\sigma_a(v)^2, \sigma_d(v)^2, \sigma_c(v)^2$ , and  $\sigma_e(v)^2$  $\operatorname{Cov}(a_{i1}(v), a_{i2}(v))$  equals  $\sigma_a(v)^2$  for MZ twins  $\sigma_a(v)^2/2$ 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## **Simulation Study**

# It is dangerous to use Gaussian-kernel to smooth imaging data and then carry out twin analysis.



The UNIVERSITT OF NUKTH CAROLINA AL CHAFEL HILL



# FSEM (I)

 $y_{ii}(d) = x_{ii}^T \beta(d) + a_{ii}(d) + d_{ii}(d) + c_i(d) + e_{ii}(d)$ 



Marginal Modeling

Not capture covariance structure
 How to define stochastic processes
 for DZ?



# FSEM (II)

 $y_{ij}(d) = x_{ij}^T \beta(d) + \sqrt{0.5} 1(\text{DZ})a_{ij}(d) + [1(\text{MZ}) + \sqrt{0.5} 1(\text{DZ})]a_i(d) + c_i(d) + e_{ij}(d)$ 

$$\begin{aligned} a_{ij}(d) \sim GP(0, \Sigma_a) & \Sigma_Y(d, d') = \begin{bmatrix} \Sigma_a + \Sigma_c + \Sigma_e & \Sigma_a + \Sigma_c \\ \Sigma_a + \Sigma_c & \Sigma_a + \Sigma_c + \Sigma_e \end{bmatrix} (d, d') \\ a_i(d) \sim GP(0, \Sigma_a) & c_i(d) \sim GP(0, \Sigma_c) \\ e_{ij}(d) \sim GP(0, \Sigma_e) & \Sigma_Y(d, d') = \begin{bmatrix} \Sigma_a + \Sigma_c + \Sigma_e & 0.5\Sigma_a + \Sigma_c \\ 0.5\Sigma_a + \Sigma_c & \Sigma_a + \Sigma_c + \Sigma_e \end{bmatrix} (d, d') \end{aligned}$$



# FSEM (II)

## **Three-stage Approach**

Mean structure

$$Y_{ij}(d) = x_{ij}^T \beta(d) + \varepsilon_{ij}(d) \Longrightarrow \{\hat{\beta}(d;h) : d \in D\}$$

- Variance structure (Weighted likelihood)  $\{Y_{ij}(d) - x_{ij}^T \hat{\beta}(d;h)\}^2 = z_{ij}^T \rho(d) + \delta_{ij}(d) \Rightarrow \{\hat{\rho}(d;h) : d \in D\}$
- Estimate covariance operators  $\Sigma_a(d,d')$  and  $\Sigma_c(d,d')$

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## FSEM (II)

## **Two Key Test Procedures**

- Test marginal genetic and environmental effects  $H_{0A}(d): \Sigma_a(d,d) = 0$  versus  $H_{1A}(d): \Sigma_a(d,d) > 0$  $H_{0C}(d): \Sigma_c(d,d) = 0$  versus  $H_{1C}(d): \Sigma_c(d,d) > 0$
- Test global genetic and environmental effects  $H_{0A} : \int \Sigma_a(d,d)m(d) = 0 \text{ versus } H_{1A}(d) : \int \Sigma_a(d,d)m(d) > 0$   $H_{0C} : \int \Sigma_c(d,d)m(d) = 0 \text{ versus } H_{1C}(d) : \int \Sigma_c(d,d)m(d) > 0$

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



## **Simulations**















Mean of 100 Estimated Common Environmental Covariances





## **Simulations**

50

0

0.05

0.1



Histograms of 100 genetic variance estimates when genetic variance = 0 via WLR



**No Genetic Effect** 



Histograms of 100 genetic variance estimates when genetic variance = 0.09 via LR

(c)

0.2

0.25

0.3

0.35

0.15



#### **Genetic Variance=0.09**



## **Simulations**





# **UNC Early Brain Development Studies**

## Pls: Drs. John H. Gilmore and Weili Lin

To track changes in behavior with brain structure, connectivity, and function, in order to characterize the progression from primary changes to subsequent clinical presentation, and to identify predictors of divergence from the typical trajectory.

- Singletons, twins, high risk
- A longitudinal prospective study
- 900 young children aged 0 to 6 years
- Recruited prenatally
  - Exclusion: ultrasound abnormality, significant fetal/ maternal medical problem, substance abuse
- 3TMRI (Seimens Allegra)
  - T1, T2, DTI, resting state fMRI
- Scanned during normal sleep(no meds)
- Ear protection, head in vac-fix device
- Success rate: 87% @ 2 weeks, 71% @ 1 year, 62% at 2 years The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



# Quantitative tract-based white matter heritability in twin neonates

- The data set consists of **356** healthy twin neonates with **190 males and 166 females** from the neonatal project as part of the UNC Early Brain Development Studies.
- There are **129** twin pairs (**48 MZ** twin pairs and **81 DZ** twin pairs) and **98 unrelated** "singleton" twins - a single unpaired twin subject in which a usable scan was not obtained from the co-twin.
- The gestational ages of these infants range from 257 to 401 days, and their mean gestational age is 289 days with standard deviation 18 days.

#### **Question of interest:**

comprehensive heritability data on white matter microstructure fractional anisotropy (FA), radial diffusion (RD), and axial diffusion (AD) along 47 fiber tracts.




### **Twin Functional Data**





ΜZ

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **Coefficient Functions**





### **Genetic and Environmental COs**







### **Genetic Effects**





### **Prediction Accuracy**





### Heritability





### HPRM: Hierarchical Principal Regression Model of Diffusion Tensor Bundle Statistics



### **Reading Materials**

- 1. Zhang, J. W., Ibrahim, J. G., J. Gilmore., M. Styner and Zhu, H.T. HPRM: Hierarchical Principal Regression Model of Diffusion Tensor Bundle Statistics. 2016. In Submission.
- 2. Luo, X. C., Zhu, L. X., Kong, L., <u>Zhu, H.T.</u> Functional Nonlinear Mixed Effects Models For Longitudinal Image Data. Information Processing in Medical Imaging (IPMI) 2015.
- 3. Luo. X. C., Zhu, L.X., and <u>Zhu, H.T</u>. (2016). Single-index Varying Coefficient Model for Functional Responses. *Biometrics*, in revision.
- 4. Liang, J. L., Huang, C., and <u>Zhu, H.T</u>. (2014). Functional single-index varying coefficient models. In submission.
- 5. Hua, Z.W., Dunson, D., Gilmore, J.H., Styner, M., and <u>Zhu, HT.</u> (2012). Semiparametric Bayesian local functional models for diffusion tensor tract statistics. *NeuroImage*, 63, 460-674.
- 6. <u>Zhu, HT.,</u> Kong, L., Li, R., Styner, M., Gerig, G., Lin, W. and Gilmore, J. H. (2011). FADTTS: Functional Analysis of Diffusion Tensor Tract Statistics, *NeuroImage*, 56, 1412-1425.
- 7. <u>Zhu, H.T.</u>, Styner, M., Tang, N.S., Liu, Z.X., Lin, W.L., Gilmore, J.H. (2010). FRATS: functional regression analysis of DTI tract statistics. *IEEE Transactions on Medical Imaging*, 29, 1039-1049.

#### <u>Video</u>

http://www.birs.ca/events/2016/5-day-workshops/16w5036/videos/watch/201602021312-Zhang.html

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **White Matter Fiber Bundles**







### **Scalar-on-Functional Models**





### **Existing Methods**







THE UNIVERSITY OF NORTH CAROLINA HI CHAPEL HILL

### GWAS of early brain development: DTI Tracts

- 472 twin subjects
  - ◆ 236 DZ pairs, 32 MZ pairs and 260 Singletons
- Neonatal MRI (around one month old )
  - ◆ 3T Siemens Allegra head-only scanner or 3T Siemens TIM Trio
  - DTIPrep (Quality Control), Slicer<sup>[1]</sup> (Visual QC, DTI atlas creation, Fiber tract segmentation, Registration)
  - DTI Data: FA measure of 44 Fiber Tracts
  - TBSS Data: FA measure of 21 bundles
- Genetic markers
  - ◆ ~ 800k genetic marker
  - Imputation with MACH-Admix, template 1000G Phase I v3
  - ~ 6 million SNPs and indels with MAF>0.05
- Fit ACE model in regression
- Covariates
  - Gestational age at birth, family income, DTI direction, Scanner Type, 3 genetic PC scores

## GWAS of early brain development: DTI Tracts





### **Plot of Loading**

#### Loading of each fPCs





### **Loading Zoom**



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Weighted loading



### **Global Factor in Real Data Analysis**





### **GWAS Result of global factor**





### **GWAS Result of global factor: TBSS**



Scree Plot

The UNIVERSITY WITH CAROLINA at CHAPEL HILL



### **Global factors: Tracts versus TBSS**

# The global factors of DTI tracts and TBSS are highly correlated !





### **GWAS Result of global factor: TBSS**





### **Comparison of Top Snps**



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **GWAS Result of global factor**

| Top 20 SNPs and corresponding/proximal Genes |     |             |             |              |                     |              |                                       |  |
|----------------------------------------------|-----|-------------|-------------|--------------|---------------------|--------------|---------------------------------------|--|
| snpname                                      | chr | Rank in DTI | Pval in DTI | Rank in TBSS | <b>Pval in TBSS</b> | gene         | Gene function                         |  |
| rs66556850                                   | 2   | 1           | 5.67E-09    | 2            | 1.44E-08            |              |                                       |  |
| rs62131138                                   | 2   | 2           | 7.32E-09    | 17           | 6.89E-08            |              |                                       |  |
| rs34328925                                   | 2   | 3           | 2.71E-08    | 8            | 4.53E-08            | ALK          | Brain development                     |  |
| rs34938026                                   | 2   | 4           | 2.81E-08    | 10           | 4.81E-08            |              |                                       |  |
| rs10167952                                   | 2   | 6           | 2.88E-08    | 15           | 6.49E-08            |              |                                       |  |
| rs6878826                                    | 5   | 5           | 2.81E-08    | 1            | 1.30E-08            |              |                                       |  |
| rs6866769                                    | 5   | 7           | 3.23E-08    | 18           |                     |              |                                       |  |
| rs6878602                                    | 5   | 8           | 3.65E-08    | 3            | 1.58E-08            |              |                                       |  |
| rs6883230                                    | 5   | 9           | 4.03E-08    | 4            | 1.93E-08            |              |                                       |  |
| 5:115008755:A_AGT                            | 5   | 10          | 5.55E-08    | 5            | 2.71E-08            | LOC102467217 |                                       |  |
| 5:115008760:G_GTG                            | 5   | 11          | 7.61E-08    | 6            | 3.39E-08            | TMED7        |                                       |  |
| rs7705506                                    | 5   | 12          | 7.94E-08    | 7            | 3.61E-08            | LOC10927100  |                                       |  |
| rs6594898                                    | 5   | 13          | 9.03E-08    | 9            | 4.73E-08            | TICAM2       | Progressive Multifocal                |  |
| 5:115009046:CA_C                             | 5   | 14          | 9.85E-08    | 11           | 5.03E-08            |              | Leukoencephalopathy                   |  |
| rs7732489                                    | 5   | 15          | 1.06E-07    | 12           | 5.11E-08            |              |                                       |  |
| rs7712289                                    | 5   | 16          | 1.07E-07    | 13           | 5.59E-08            |              |                                       |  |
| rs6594897                                    | 5   | 17          | 1.20E-07    | 14           | 6.43E-08            |              |                                       |  |
| rs6594896                                    | 5   | 18          | 1.22E-07    | 16           | 6.67E-08            |              |                                       |  |
| rs73116519                                   | 3   | 19          | 7.09E-07    | 55           | 3.15E-06            |              |                                       |  |
| rs72734794                                   | 15  | 20          | 8.66E-07    | 23           | 6.91E-07            | UNC13C       | infantile epileptic<br>encephalopathy |  |



### **Risk Score**

| Common factor extracted from | Tract       | TBSS        | TBSS - avrFA |  |
|------------------------------|-------------|-------------|--------------|--|
| P<1e-04                      | 0.186767379 | 0.149947354 | 0.151419505  |  |
| P<1e-03                      | 0.223172509 | 0.183620164 | 0.18614227   |  |
| P<1e-02                      | 0.802213498 | 0.831979203 | 0.826575438  |  |
| P<0.05                       | 0.7030879   | 0.653264153 | 0.655184678  |  |
| P<0.1                        | 0.488391459 | 0.41296802  | 0.414686436  |  |
| P<0.2                        | 0.405096436 | 0.373412981 | 0.373995957  |  |
| P<0.3                        | 0.555212245 | 0.533781039 | 0.534005301  |  |
| P<0.4                        | 0.454465118 | 0.418048888 | 0.418313965  |  |
| P<0.5                        | 0.537275523 | 0.472857816 | 0.472769655  |  |
| P<1                          | 0.61317957  | 0.523945656 | 0.523566001  |  |



### **FADTTS**

- <u>http://www.nitrc.org/projects/fadtts</u>
- FMPM GUI is a MATLAB graphical user interface

| FMPM for Windows (64-bit) V1.1 |                                  |       |  |  |  |  |  |  |
|--------------------------------|----------------------------------|-------|--|--|--|--|--|--|
| Input-Output Directory         | Hypothesis Testing               | Marks |  |  |  |  |  |  |
| ExpVar                         | Simultaneous Confidence Interval |       |  |  |  |  |  |  |



### FFGWAS: Fast Functional Genome Wide Association AnalysiS of Surface-based Imaging Genetics



### **Imaging Genetics**





### **Reading Materials**

- **1.** Lin, J., Zhu, H.T., Knickmeyer, R., Styner, M., Gilmore, J. H. and Ibrahim, J.G. (2012). Projection Regression Models for Multivariate Imaging Phenotype. *Genetic Epidemiology*, 36, 631-641.
- Lin, J., <u>Zhu, H.T.</u>, Mihye, A., and Ibrahim, J.G. (2014). Functional Mixed Effects Models for Candidate Genetic Mapping in Imaging Genetic Studies. *Genetic Epidemiology*, 38(8):680-91.
- **3.** <u>Zhu, H.T.</u>, Khondker, Z. S., Lu, Z.H., and Ibrahim, J. G. (2014). Bayesian generalized low rank regression models for neuroimaging phenotypes and genetic markers. *Journal of American Statistical Association*, 507, 977-990.
- 4. <u>Zhu, HT</u>, Fan, J., and Kong, L. (2014). Spatial varying coefficient model and its applications in neuroimaging data with jump discontinuity. *Journal of American Statistical Association*, 109, 1084-1098.
- **5.** Sun, Q., <u>Zhu, H.T.</u>, Liu, Y. F., and Ibrahim, J.G. SPReM: Sparse Projection Regression Model for High-dimensional Linear Regression. *Journal of American Statistical Association,* in press, 2015.
- 6. Huang, M., Nichols, T., Huang, C., Yu, Y., Lu, Z., Knickmeyer, R. C., Feng, Q., and <u>*Zhu, H. T.*</u> (2015). FVGWAS: Fast Voxelwise Genome Wide Association Analysis of Large-scale Imaging Genetic Data, *NeuroImage*, in press.

### <u>Video</u>

http://www.birs.ca/events/2016/5-day-workshops/16w5036/videos/watch/ 201602021521-Huang.html

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **Statistical Methods**



Hibar, et al. HBM 2012



### **Data Structure**















# **High Dimensional Regression Model**

# **Data** $\{(Y_i, X_i): i = 1, \dots, n\}$ $Y_i = \{y_i(v): v \in V\}$ $X_i = \{X_i(g): g \in G_0\}$







### **Fast Functional GWAS**





### **Imaging Genetics for ADNI**

### PI: Dr. Michael W. Weiner

- detecting AD at the earliest stage and marking its progress through biomarkers;
- developing new diagnostic methods for AD intervention, prevention, and treatment.
  - A longitudinal prospective study with 1700 aged between 55 to 90 years
  - Clinical Data including Clinical and Cognitive Assessments
  - Genetic Data including Ilumina SNP genotyping and WGS
  - MRI (fMRI, DTI, T1, T2)
  - PET (PIB, Florbetapir PET and FDG-PET)
  - Chemical Biomarker







### **ADNI Data Analysis: Dataset Description**

- 708 MRI scans of AD (186), MCI (388), and healthy controls (224) from ADNI-1.
- These scans on 462 males and 336 females are performed on a 1.5 T MRI scanners.
- The typical protocol includes the following parameters:
  - (i) repetition time (TR) = 2400 ms;
  - (ii) inversion time (TI) = 1000 ms;
  - (iii) flip angle = 8°;

(iv) field of view (FOV) = 24 cm with a 256 x 256 x 170 acquisition matrix in the x-, y-, and z-dimensions,

- (v) voxel size: 1.25 x 1.26 x 1.2 mm<sup>3</sup>.
- Covariates: gender, age, APOE ε4, and the top 5 PC scores in SNPs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **Imaging Data Preprocessing**

Surface fluid registration based hippocampal sub-regional analysis package (Shi et al., Neuroimage, 2013)

- Hippocampal surface registration isothermal coordinates and fluid registration
- Surface statistics computation
  - 1. multivariate tensor-based morphometry (mTBM) statistics
  - 2. radial distance

Finally, we obtained left and right hippocampus shape representations as  $100 \times 150$  matrices.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
About 92,000 s



### **ADNI Data Analysis**

Top 10 SNPs (Left Hippocampus)

Top 10 SNPs (Right Hippocampus)

| SNP        | CHR | BP          | -LOG 10(p) | 9    | SNP     | CHR | BP          | -LOG 10(p) |
|------------|-----|-------------|------------|------|---------|-----|-------------|------------|
|            |     |             |            |      |         |     |             |            |
| rs657132   | 18  | 2.20533e+07 | 7.579767   | rs4  | 681527  | 3   | 1.44e+08    | 6.764886   |
| rs604345   | 18  | 2.20033e+07 | 6.729377   | rs3  | 108514  | 2   | 1.51279e+08 | 6.274511   |
|            |     |             |            |      |         |     |             |            |
| rs582110   | 18  | 2.19954e+07 | 6.672876   | rs12 | 2264728 | 10  | 1.3214e+08  | 5.961976   |
| rs546000   | 18  | 2.20031e+07 | 6.672876   | rse  | 552911  | 10  | 1.3214e+08  | 5.739661   |
|            |     |             |            |      |         |     |             |            |
| rs489631   | 18  | 2.1989e+07  | 6.620395   | rs10 | 0801705 | 1   | 8.95004e+07 | 5.622668   |
| rs16837577 | 1   | 1.94871e+08 | 6.016773   | rsB  | 366346  | 10  | 1.32141e+08 | 5.617185   |
|            |     |             |            |      |         |     |             |            |
| rs3812872  | 13  | 6.19869e+07 | 5.468391   | rs7  | 312068  | 12  | 2.94352e+07 | 5.604041   |
|            |     |             |            | _    |         |     | 4 40000 00  |            |
| rs6826085  | 4   | 7.68702e+07 | 5.459163   | rs7  | 617465  | 3   | 1.43999e+08 | 5.522112   |
| rs929714   | 7   | 1.3263e+08  | 5.314317   | rs17 | 7605251 | 7   | 1.02746e+08 | 5.486603   |
| rs2042067  | 7   | 1.32651e+08 | 5.306583   | rs7  | 749788  | 2   | 2.84618e+06 | 5.474675   |



#### **ADNI Data Analysis**





#### **ADNI Data Analysis: Left Hippocampus**

#### Significant Loci Zoom





#### **ADNI Data Analysis: Left Hippocampus**

(Left Hippocampus) Top 1 SNP: rs657132 Closed Gene: HRH4

HRH4 (Histamine Receptor H4) is a Protein Coding gene. Diseases associated with HRH4: cerebellar degeneration An important paralog of this gene: CHRM4

Mirshafiey & Naddafi, Am J Alzheimers Dis Other Demen. 2013

(Right Hippocampus)

Top 1 SNP: rs4681527 Closed Gene: C3orf58

C3orf58 (Chromosome 3 Open Reading Frame 58) is a Protein Coding gene. Diseases associated with C3orf58: hypoxia

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



#### **ADNI Data Analysis**





#### **ADNI Data Analysis**





## **A Software for FFGWAS**



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



#### SAMSI 2013 Neuroimaging Data Analysis 2015-2016 Challenges in Computational Neuroscience

#### **2016 Banff Birds Neuroimaging Data Analysis**



# Thank You!!