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UNC Biostatistics and Imaging Analysis Lab 

Reconstruction 

Sequence Evaluation 

Population Analysis 

Smoothing 

Sequence Optimization 

Data Mining 

Imaging Genetics 

group 1 group 2 
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Outline 
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  Statistical Methods in Diagnostic Medicine  
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Select ARFI/SWEI beam sequences will yield higher 
sensitivity and specificity for atherosclerotic plaque 

detection in peripheral arteries.  
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        General Methods: Beam Sequences 

Single F/1.5 
(SP1.5) 

Single F/3 
(SP3) 

Single A-line RX 
(SRx) 

Lat 

4:1 Parallel RX 
(ParRx) 

Lat 

SWEI 

Lat 

Double F/1.5 
(DP) 

∆t 

•  3 Types of Tracking 

•  Combine for 9 Total Sequences 

•  3 Types of Excitation 
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Reader Study 

•  Automatically Generated Images 
♦  Lumen masking & Color scaling 

•  12 Trained Readers 
♦  Various levels of experience with ARFI 
♦  Only 6 evaluated each Image Set 

•  Validation 
♦  Phantom results compared with known truth 
♦  Ex vivo results compared with pathologist rating of 

spatially matched histology 
•  Statistics 

♦  Latent Variable Models to compare ordinal responses 
♦  Generated receiver operating characteristic (ROC) curves 
♦  Calculated mean area under the curve (AUC) 
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Reader GUI 
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Custom Phantom Structure 

•  ~4mm Layer 
•  Hard or Soft Inclusions 

♦  ~110 kPa & ~190 kPa 
•  2.5 or 5mm Width 
•  Imaging in 3 Locations 

♦  Centered (0mm Offset) 
♦  -3mm Lateral Offset 
♦  -6mm Lateral Offset 

•  2 Acquisitions 

•  250 Total Image Sets 
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Results: Phantom, All Locations 

**  p<0.02 
***  p<0.005 
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Results: Phantom, -6 mm Lateral Offset 
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•  Robust Method for Statistically Comparing Beam Sequences 
•  Plaque Detection was better when tracking in ROE 

♦  Both in Phantoms and Ex Vivo 
♦  Even when accounting for optimal positioning 

•  Ranking of sequence performance remained consistent 
between phantom and ex vivo studies 
♦  SP1.5-SRx 
♦  SP3-SRx 
♦  SP3-ParRx 
♦  DP-SRx 
♦  DP-ParRx 
♦  SP3-SWEI 
♦  SP1.5-SWEI 

Conclusions 
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Experimental Design 
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  Acquisition Scheme 
  (Imaging Parameters) 

  Noisy  Images 

  Images  Reconstruction 

Puled-gradient spin-echo (PGSE) sequence  
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Gradient Orientations &  
b factors 

Design Criterion 

Global Optimization 

Gradient directions (Hasan & Narayana, 2005,  
MedicaMundi) 
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Gao, Zhu, Lin. (2008). Neuroimage.  Hasan & Narayana (2005), MedicaMundi. 
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Gao, Zhu, Lin. (2008). Neuroimage.  

Conventionall gradient schemes (a) and optimized schemes (b) 
 based on LS and WLS estimation for uniform fiber case. fiber case 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Estimation Theory 
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€ 

{(Si(v),bi,gi) : i =1,…,n;v ∈V}

€ 

Si(v) = S0(v)exp(−bigi
TD(v)gi) + noise

€ 

ˆ D (v)

€ 

{( ˆ λ k, ˆ e k ) : k =1,2,3} x 

y 

z 

€ 

ˆ e 1
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€ 

E( ˆ λ 1) > λ1

E( ˆ λ 3) < λ3

E( ˆ λ 2) ≈ λ2

€ 

P( ˆ λ 1 > ˆ λ 2 > ˆ λ 3) =1

€ 

ˆ D (v) = ˆ λ 1ˆ e 1ˆ e 1
T + ˆ λ 2 ˆ e 2 ˆ e 2

T + ˆ λ 3 ˆ e 3 ˆ e 3
T

€ 

D(v) = λ1e1e1
T + λ2e2e2

T + λ3e3e3
T

€ 

λ1 ≥ λ2 ≥ λ3D=diag(0.7, 0.7, 0.7)  
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•    
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A 
A 

B B 

Repetition Wild 

Yuan, Zhu, Ibrahim, Lin, Peterson. (2008). IEEE TMI 

Repetition Wild 
Bootstrap 
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Gold Standard 

Wild Bootstrap 

Repetition Bootstrap 
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Nonparametric Regression 
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€ 

S(x)Data 

Styner, M. (2008). 
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€ 

M = Sym(m)+
Inner product  

Geodesic 

Riemannian exponential/logarithm maps 

•  Affine invariant metric 

•  Log-Euclidean metric 

€ 

<<YD ,ZD >>D,R = tr(YDD
−1ZDD

−1)

€ 

<<YD ,ZD >>D,L = tr(RD (YD )RD (ZD ))

€ 

RD :TDM →TImM
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Local polynomial kernel regression to nonparametrically 
estimate an intrinsic mean of S given x. 

Local linear regression performs better than local 
constant regression. 

Statistical inferences depend on a specific inner product 
defined on the tangent  space.  
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€ 

φD(x0 )(.) :TD(x0 )Sym
+(m)→TImSym

+(m)

Local Polynomial Kernel Regression 

€ 

LogD(x0 )(D(x))∈TD(x0 )Sym
+(m)

€ 

Y (x) = φD(x0 )(LogD(x0 )(D(x)))

€ 

LogD(x0 )(D(x))) = φ D ( x0 )
−1 (Y (x)) ≈ φ D ( x0 )

−1 (Y (x0) + Y (k )(x0)(x − x0)
k

k=1

K

∑ )

€ 

D(x) = ExpD(x0 )(φ D ( x0 )
−1 (Y (x))) ≈ ExpD(x0 )(φ D ( x0 )

−1 ( Y (k )(x0)(x − x0)
k

k=1

K

∑ ))
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€ 

C(x) =

−0.1x 0.2x sin(x)
0.2x 0.6x −0.4x
sin(x) −0.4x 0.5x

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ € 

Si = C(xi)exp(Ei)C(xi), Ei ~ MN(0,Ω)
D(x) = C(x)2

€ 

Σ1 =

0.3 0.049 0.052
0.049 0.2 0.0424
0.052 0.0424 0.1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
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Simulation Studies 

Data model 

Correlation 

€ 

Σ2 = 2Σ1, Σ3 = 4Σ1, Σ4 = 8Σ1

€ 

xi ~ N(0,0.25)

  

€ 

{(xi,Si) : i =1,,n} for n = 50 or 100Data 
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Set Truth 

Noisy 
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Log-Euclidean 
Local Linear 

Riemannian 
Local Linear 

Truth 
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Simulation 1. 

•  Compare the performance of the local linear with the local constant  

•  Assess the performance using the Average Geodesic Distance (AGD) 
for each replication j=1, … , N with N as the number of replications,  
denoted by   

€ 

AGD = (nN)−1 d( ˆ D j (xi),D(xi))
i=1

n

∑
j =1

N

∑
where 

€ 

ˆ D j (xi) and D(xi) are, respectively, the estimated and true  

diffusion tensors at  

€ 

xi
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Log-Euclidean 

Riemannian 
€ 

Σ1

€ 

Σ2

€ 

Σ3
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€ 

Σ1

€ 

Σ2

€ 

Σ3Log-Euclidean 

Log-Euclidean 

Riemannian 

Riemannian 

Local constant (solid) 
Local linear (dashed) 
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€ 

Σ4

Simulation 2. High noisy level 
Compare the performance of the local linear under two metrics  

Riemannian (dashed)  Log-Euclidean (solid) 
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Simulation 3. 

•  Value of developing the LPK smoothing method 

•  Two different methods for smoothing FA values  

 M1. Calculate FA values from `noisy’ SPDs and then use the local    linear 
method to smooth the FA values 

 M2. Use the local linear method to smooth SPDs and then calculate FA 
values from the smoothed SPDs  

•  Calculate the Mean Absolute Deviation Error (MADE):          

€ 

MADE = (nN)−1 | FA
∧

j (xi) −FA j (xi) |
i=1

n

∑
j=1

N

∑
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€ 

Σ1

€ 

Σ2

€ 

Σ3

€ 

M

€ 

M

truth 
M1 
M2 
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Smoothing DTs along a select tract 
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Local Polynomial Kernel Regression for SPD 
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16 subjects resting state fcMRI 
32 ROIs 

Age 

Smoothing Covariance matrices along age 
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Analyzing Tract-based Diffusion Tensor Statistics 

Multivariate Varying Coefficient Model  
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Neonatal Brain Development 

Knickmeyer RC, et al. J Neurosci, 2008 28: 12176-12182. 

PI: John H. Gilmore.  

www.google.com 
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Early Brain Development 

Knickmeyer RC, et al. J Neurosci, 2008 28: 12176-12182. 
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White Matter Maturation 

Week 2 Week 2 
Year 1 Year 1 Year 2 Year 2 
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(e) 

Right internal capsule: a collection of axons 
connecting the cerebral cortex and the brain stem 

  

€ 

Yi(s j ) = (yi,1(s j ),,yi,m (s j ))
T

diffusion properties  or  diffusion tensors 

  

€ 

{s1,,snG }grids 
covariates   

€ 

x1,,xn

 Sample Data 
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Tract-based FA as a function of Age 
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 Varying Coefficient Model 
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Splenium 

Sujects: 
125 healthy infants 
(75:53 M:F) 
Gestational age 
(298+/-17.6 days) 

PI: John H. Gilmore 

Aims: 
Gender Effects 
Age Effects 
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Global and Local p-values for Gender and Age Effects 
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Functional Prinicipal Components 
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Simultaneous Confidence Bands 
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Multiscale Adaptive Regression Models  

Regression Analysis and Nonparametric 
Smoothing Methods  
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General 
linear 
 model 

Preprocessed 
data: single 

voxel  

Design matrix 

SPMs 

RFT/ 
permutation 

Parameter 
estimates 

Univariate Statistics 

Multiple Comparisons 
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            All voxels are treated as independent units. 

 Initial smoothing step before the voxel-wise approach often 
blurs the image data near the edges of activated regions. 
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   Multiscale Adaptive Regression Model 

Learning Voxel Feature 

Local Feature Adaptation 

Adaptive Estimation and Testing 

Automatic Stop 

Li, Zhu, et al. (2010). JRSSB under revision.  

Nice Asymptotic Results 
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Identifying homogeneous regions 

Drawing a sphere with radius r0 at each voxel 

Calculating the similarities between the current  
voxel and its neighboring voxels. 
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   Being Hierarchical 

Drawing nested spheres with increasing  
radiuses at each voxel 
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              How to determine              ? 
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Simulation Studies 

€ 

yi(d) = xi
Tβ(d) +ε i(d)

€ 

β(d) = (β1(d),β2(d),β3(d))
T€ 

xi = (1,xi2,xi3)
T

Model 
64x64 phantom image 

€ 

ε i(d) ~ N(0,1) or 

€ 

ε i(d) ~ χ
2(3) − 3

€ 

n = 60 or n = 80

€ 

xi2 ~ Bernoulli(0.5)

€ 

xi3 ~ Uniform[1,2]

€ 

β1(d) = β2(d) = 0

Error 

Covariates 

Coefficients 

€ 

ROI black blue red yellow white

€ 

β3(d)

€ 

0.0

€ 

0.2

€ 

0.4

€ 

0.6

€ 

0.8
ROIs 
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-‐1.76	   2.31	   0.16	   0.76	  0.35	   0.88	   0.43	   0.80	  -‐0.18	  (a
)	  

(b
)	  

(c)	   (d
)	  

(e)	  

1.3	  

-‐0.90	  	   1.19	   0.	  23	   0.88	   1.34	  0.19	   0.45	   0.22	   0.38	  (f)	   (g)	   (h)	   (i)	   (j)	  -‐0.38	  	  

€ 

ˆ β 3(d,h0)

€ 

ˆ β 3(d,h10)

bias RMS SD RE 
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Simulation Studies 
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Infant Brain Development Data 
•  Objective: We  want to assess the brain structure 

change in the early brain development.  

•  Subject: 38 infants.  

•  Image: Diffusion-weighted images and T1 weighted 
images were acquired for each subject at 2 weeks, 1 and 
2 years old.  

•  Method: Voxel-wise imaging analysis and MARM. 
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  Adaptive Neighhoods 

Parametric and Nonparametric 
Components 

Cross-sectional, longitudinal,  
twin and family studies 

Robust Procedure 

  Adaptive Weights 

New Developments 
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Brain Connectivity Analysis 

Penalized Methods, Multivariate Analysis,  
and Time Series Analysis  
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Biswal et al, JCBFM, 17:301-308, 1997 

fMRI   fcMRI 

Functional connectivity is the  
mechanism for the coordination  
of activity between different neural  
assemblies in order to achieve a  
complex cognitive task or perceptual  
process. (Fingelkurts, Fingelkurts,  
Seppo Kahkonen, Fingelkurts, 2005)  

Resting-State Network: 
fMRI for finger tapping task;  
fcMRI: contralateral motor cortex showed  
    activation and low frequency (<0.1 Hz) 
    fluctuations in the signal of the resting 
    brain, revealing a high degree of  
    temporal correlation. 
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group 1 group 2 
Conventional Analysis 
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A multivariate network-level approach  

(i)   network-level correlation using CCA;  
(ii) network-level mediation analysis;  
(iii) significance detection by resampling methods;  
(iv) Network-level correlation pattern. 
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Network Definition 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Selective regulation of the two opposing 
 networks during different tasks 
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 Bayesian Covariance Lasso 

Flow Cytometry Data 
11 proteins 
7466 cells 
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90 ROIs  
30 subjects 
2-rd fcMRI 
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