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SUMMARY
Cancer cell lines are major model systems for mechanistic investigation and drug development. However,
protein expression data linked to high-quality DNA, RNA, and drug-screening data have not been available
across a large number of cancer cell lines. Using reverse-phase protein arrays, we measured expression
levels of�230 key cancer-related proteins in >650 independent cell lines, many of which have publically avail-
able genomic, transcriptomic, and drug-screening data. Our dataset recapitulates the effects of mutated
pathways on protein expression observed in patient samples, and demonstrates that proteins and particu-
larly phosphoproteins provide information for predicting drug sensitivity that is not available from the corre-
sponding mRNAs. We also developed a user-friendly bioinformatic resource, MCLP, to help serve the
biomedical research community.
INTRODUCTION

Cancer cell lines are major model systems for investigating can-

cer mechanisms and developing effective therapies. With the

advance of high-throughput genome characterization technolo-

gies, several studies have systematically characterized a large

number of cancer cell lines for mutations, copy number alter-

ations, andgene expression profiles, and these studies represent

valuable resources for the cancer research community (Barretina

et al., 2012; Garnett et al., 2012; Klijn et al., 2015). Importantly,

comprehensive drug response and multiplexed genomic manip-

ulation data are rapidly emerging across large datasets (Marcotte
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et al., 2016; Seashore-Ludlow et al., 2015). In contrast, although

proteomic data are available for limited cell line sets such as the

NCI-60 cell lines (Moghaddas Gholami et al., 2013; Nishizuka

et al., 2003), there havebeenno large-scaleproteomicdata of hu-

man cancer cell lines. This is despite the fact that proteins

comprise the basic functional units in biological processes and

representmajor targets for cancer therapy. Furthermore, our abil-

ity to impute protein levels and function fromDNAandRNA levels

is limited by posttranscriptional and posttranslational regulatory

processes. Therefore, there is an urgent need to fill this gap,

which would greatly contribute to the comprehensive molecular

portrait and translational utility of cancer cell lines.
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Reverse-phase protein arrays (RPPAs), which have been

widely used to elucidate the molecular basis of human cancer,

evaluate protein-based biomarkers, and investigate the mecha-

nisms underlying sensitivity and resistance to cancer therapy,

offer a powerful approach for this purpose (Cheung et al.,

2015; Ince et al., 2015; Sheehan et al., 2005; Spurrier et al.,

2008; Yang et al., 2013, 2015). This rapidly maturing quantitative

antibody-based assay can assess a large number of protein

markers in many samples in a cost-effective, sensitive, and

high-throughput manner (Hennessy et al., 2010; Nishizuka

et al., 2003; Tibes et al., 2006). More recently, The Cancer

Genome Atlas (TCGA) has employed this technology to charac-

terize thousands of patient samples across a broad range of can-

cer types and generated the expression data of >200 total and

phosphorylated protein markers in major signaling pathways,

including phosphatidylinositol 3-kinase (PI3K), mammalian

target of rapamycin, mitogen-activated protein kinase (MAPK),

transforming growth factor b, WNT, cell cycle, apoptosis, im-

mune responsiveness, and DNA damage response (Akbani

et al., 2014; Li et al., 2013). To serve the broader biomedical

research community, we initiated the MD Anderson Cell Lines

Project (MCLP) with the goal of characterizing a large number

of cancer cell lines using the RPPA platform and presenting a

bioinformatic resource for analyzing these data.

RESULTS

Overview of Protein Expression Data of Cancer
Cell Lines
We generated high-quality normalized protein expression data

for 706 cell lines (including 651 independent cell lines) using

the Cancer Center Support Grant-supported RPPA platform

(Experimental Procedures, Supplemental Experimental Pro-

cedures, Figure S1 and Table S1). The average number of

protein markers (including both total and phosphorylated pro-

teins) profiled per sample is 227. Many of the cell lines (65%)

have been profiled at the DNA and RNA levels through other

major cell line efforts such as the Cancer Cell Line Encyclo-

pedia (CCLE), the COSMIC Cell Lines Project, and a recent

project from Genentech (Barretina et al., 2012; Garnett et al.,

2012; Klijn et al., 2015) (Figure 1A); however, 246 cell lines

are unique to our study. The MCLP cell lines encompass 19

lineages, with six lineages having more than 50 cell lines char-

acterized (lung, blood, head and neck, breast, ovary, and skin)

(Figure 1B).

To enhance the utility of the MCLP, we collected genomic,

transcriptomic, and drug sensitivity data from our in-house and

other major publicly available cell line resources (Barretina

et al., 2012; Daemen et al., 2013; Garnett et al., 2012; Klijn

et al., 2015; Seashore-Ludlow et al., 2015) (Figure 1C). The

numbers of MCLP cell lines with available mRNA expression,

copy number alteration, and single-nucleotide variation data

are 464, 456, and 418, respectively. For mRNA and copy number

alteration data, our MCLP shares >300 cell lines with three major

public cell line resources; for single-nucleotide variation data,

our MCLP shares >250 cell lines with two major public

resources. For drug sensitivity data, both the Cancer Therapeu-

tic Response Portal (CTRPv2, based on CCLE cell lines;

Seashore-Ludlow et al., 2015) and Genomics of Drug Sensitivity
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in Cancer (GDSC) resources (Garnett et al., 2012) include >250

MCLP cell lines.

We performed several analyses to assess the quality of our

RPPA data. To evaluate reproducibility, we generated the

RPPA data of replicate samples of NCI-60 cell lines. The median

value of the sample-wise Pearson correlations between the NCI-

60 replicates was 0.92, which was substantially higher than

that of random cell lines pairs sampled from NCI-60 cell lines,

0.46 (Z score = 14.97, p = 6.15 3 10�51, Figures 1D and S1D).

Since some cell lines were derived from the same patient, such

as HEC-1-A and HEC-1-B, or as derivative drug-resistant

and -sensitive pairs (Table S1), we next calculated the sample-

wise correlations between all derivative cell line pairs and

compared them with random cell line pairs sampled from all

the cell lines surveyed. We found that the correlations among

the derivative pairs (median R = 0.87) were again much higher

than those of random pairs (median R = 0.42, Z score = 18.65,

p = 6.773 10�78, Figures 1E and S1E). The positive correlations

among random cell line pairs probably reflect the intrinsic simi-

larities of protein expression profiles in cell lines, particularly in

the same lineage. Indeed, the correlation of random pairs within

a single lineage were higher than those sampled across lineages

(Figure S1F). Finally, we assessed the protein-wise correlations

between matched total and phosphorylated protein pairs such

as AKT and AKT_pT308. Approximately 34% of the total-phos-

phorylated protein pairs showed a correlation of >0.5 while

only 2% of random pairs exceeded the same cutoff (Figure 1F).

These results indicate that RPPA data can reliably capture infor-

mation content across the cell lines and protein markers sur-

veyed. Together, our study presents a robust RPPA protein

expression dataset of the largest number of cancer cell lines

with matched DNA, RNA profiling, and drug sensitivity data. To

avoid sample redundancy, we only retained one cell line from

all derivative cell line pairs and focused on 651 independent

cell lines for subsequent analyses.

Comparison of mRNA and Protein Expression in Cancer
Cell Lines
The RPPA-based characterization of the MCLP dataset with

parallel transcriptomic data enabled us to investigate the rela-

tionship between mRNA and protein expression in a systematic

manner. Among our MCLP cell lines, 369 cell lines (mainly from

11 lineages) have available mRNA expression data from the

CCLE. We analyzed 250 proteins (including 188 total proteins

and 62 phosphoproteins) with matching protein and RNA data.

We found that the corresponding mRNA and protein pairs

generally showed good correlations: 86.4% of the mRNA-pro-

tein pairs had a significantly positive correlation, whereas only

1.6% of the pairs showed a significantly negative correlation

(false discovery rate [FDR] < 0.1). The significant negative corre-

lations may arise due to regulatory feedback loops. The median

Spearman rank correlation (Rs) across the 250 mRNA-protein

pairs is �0.45, which is higher than that previously observed

on patient samples (Akbani et al., 2014), potentially due to the

ease of handling cell lines and preserving RNA and protein levels

as well as the increased purity of cell line samples relative to

clinical samples (Figure 2A). After filtering proteins with lower

variations, the median correlations across lineages were further

improved. Among the 11 lineage groups, the blood cell line
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Figure 1. Overview of the MCLP Cell Line Dataset and Associated Molecular and Drug Data

(A) Venn diagram of theMCLP cell line set with other large public cell line resources, including CCLE, the COSMICCell Lines Project, and theGenentech Cell Lines

Project.

(B) Distribution of MCLP cell lines in various lineages.

(C) Heatmaps summarizing the publically available mRNA expression, copy number alteration, single-nucleotide variation, and drug sensitivity data. In the

heatmaps, each vertical line in the top row represents a cell line in the MCLP set, and each line in other rows indicates that the corresponding molecular data are

available for that specific data type. The CTRPv2 drug sensitivity data were based on CCLE cell lines, and the GDSC data were based on COSMIC cell lines.

(D) RPPA data reproducibility based on replicate samples of NCI-60 cell lines. Random pairs were sampled from NCI-60 cell lines only.

(E) Correlations of derivative cell lines relative to random cell line pairs that were sampled from all cell lines surveyed.

(F) Correlations of total-phosphorylated protein pairs relative to random protein pairs.

Vertical dotted lines indicate the median values. See also Table S1 and Figure S1.
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Figure 2. Comparison of Protein and mRNA Expression in MCLP Cell Lines

(A) Boxplots of the expression correlations of matched mRNA and protein pairs in different lineages. Box boundaries mark the first and third quartiles, with the

median in the center, and whiskers extending to 1.5 interquartile range from the boundaries. The striped boxplots were based on the protein sets after excluding

the 20% of proteins with the lowest coefficient of variation within each lineage.

(B) Distribution of the number of lineages in which the mRNA and protein pair show a significant correlation. Three protein groups are shown in different colors.

(C) Co-expression network of protein-protein expression. See also Tables S2–S4 and Figure S2.

228 Cancer Cell 31, 225–239, February 13, 2017



Figure 3. Clustered Heatmap of MCLP Cell Lines Based on RPPA Protein Expression Data

(A) Distribution of different lineages in clusters based on protein expression and a heatmap showing clustered patterns of 651 MCLP cell lines based on >200

protein markers. Mutation data in key cancer genes are shown in the bars (red, mutation; white, no mutation; and gray, NA) above the heatmap, with corrected

p values (FDRs) indicating the significance of correlations with the clusters.

(legend continued on next page)
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group showed the lowest median correlation (Rs = 0.3, blood

versus other p = 1.12 3 10�6) because many of the protein

markers, which were enriched for proteins of interest from solid

tumors, are expressed at low levels in hematopoietic cell lines.

Importantly, the mRNA-protein correlation varied greatly from

protein to protein (especially for phosphorylated proteins), as

noted in earlier studies (Gygi et al., 1999), which is presumably

related to the complexity of the regulation of individual protein

levels by microRNA and posttranscriptional processes such as

degradation. We further examined the correlation of individual

protein markers with mRNA expression across different cell

line lineages. Based on the number of lineages in which the

mRNA-protein pair showed a positive correlation (Rs > 0.5), pro-

tein markers were classified into three groups: proteins in group

1 showed no correlation in any lineage, those in group 2 showed

a positive correlation in 1–5 lineages, and proteins in group 3

showed a correlation in >5 lineages surveyed (Figures 2B and

Table S2). The proportion of phosphoproteins was 51%, 22%,

and 6% in these groups (chi-square test, p = 5.68 3 10�9), indi-

cating that phosphoproteins tend to have lower correlations

with their corresponding mRNAs (Tables S3 and S4) and further

that mRNA is not able to accurately reflect phosphoprotein

levels.

To obtain a view beyond individual proteins, we constructed

a protein-protein co-expression network and assessed whether

the same protein-protein connections could be identified at the

mRNA level (Figure 2C). In total, we identified 72 strongly co-ex-

pressed protein pairs (jRsj> 0:6, FDR < 0.01), among which 16

pairs represented total and phosphorylated proteins from the

same gene and 56 pairs were from two genes. Among the

co-expressed protein pairs, 41% also showed a significant

mRNA expression correlation in the same direction (jRsj> 0:2)

including a small group of proteins related to the cell cycle

(i.e., CDK1/CDK1_pY15/CRM1). When both proteins involved

in an interaction were total proteins, nearly 60% of them were

correlated at the mRNA level, which was significantly higher

than that (24%) when at least one protein involved in an interac-

tion was a phosphoprotein (chi-squared test, p = 0.031). Intrigu-

ingly, four pairs showed an mRNA co-expression correlation

pattern opposite to that observed at the protein level, all of

which involved the phosphorylated protein EPHA2_pT594, sug-

gesting that phosphorylation of EPHA2 at T594 is regulated at a

posttranslational level by complex mechanisms including nega-

tive (i.e., compensatory) feedback loops. We also performed a

similar analysis based on mRNA co-expression networks and

found that 40% of strongly correlated mRNA pairs are not

correlated at the protein level (Figure S2). These results indicate

that a protein and the corresponding mRNA contain consider-

ably distinct information content in terms of expression and in-

terrelationships with the expression levels of other proteins.

Importantly, protein activity reflected by phosphoprotein levels

could not be accurately inferred from mRNA expression data,

supporting the importance of a comprehensive cell line proteo-

mic resource.
(B) Boxplots of key protein markers that distinguish a cluster of interest from oth

(C) The alignment of the RPPA clusters and the tumor subtype of breast cancer

(D) Heatmap showing pathway scores across different protein clusters, with correc

A high-resolution, interactive clustered heatmap is available at the MCLP data p
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Clustering Pattern of Cancer Cell Lines by Protein
Expression
To understand the global protein expression patterns of cancer

cell lines, we performed unsupervised clustering analysis on

the 651 unique cancer cell lines based on proteins most

commonly assessed across cell lines. Using a robust unsuper-

vised consensus clustering algorithm (Monti et al., 2003), we

identified ten distinct cell line clusters (Figure 3A, Table S5).

(An interactive, high-resolution, next-generation clustered heat-

map is included in the web portal described below to allow

exploration of specific proteins and cell lines.) These clusters

showed significant correlations with mutated cancer genes,

including PTEN (FDR = 0.027), KRAS (FDR = 7.7 3 10�4),

ARID1A (FDR = 1.4 3 10�3), and PIK3CA (FDR = 4.6 3 10�6),

suggesting that these aberrations contribute to alterations in to-

tal and phosphoprotein levels in a sufficient number of cell lines.

For a set of cell lines with both mRNA and protein expression

data, we performed unsupervised clustering analysis in parallel.

We found that the resulting RPPA clusters showed more signifi-

cant correlations with key mutated genes than the mRNA clus-

ters (FDR < 0.1, 5 versus 3, Figures S3A and S3B), suggesting

that protein expression captures more signals from key genetic

alterations than mRNA.

Among the RPPA clusters, four clusters were dominated by

one lineage (i.e., >50%cell lines in the cluster came from the line-

age) and we therefore named them by the major lineage in that

cluster; while the other six clusters contained mixtures of cell

lines and were therefore named by the lineage compositions or

by key protein markers (Figure 3B). The epithelial-mesenchymal

transition (EMT) cluster consisted of multiple lineages and was

clearly defined by increased levels of EMT protein markers

such as caveolin1 and PAI-1 and decreased levels of epithelial

markers such as E-cadherin and claudin 7. Almost all the mem-

bers (98%) of the blood cluster were composed of hematopoietic

cell lines, which represented the most differential cluster, and

was defined by lower expression of epithelial markers such as

b-catenin, phospho-YAP, and epidermal growth factor receptor

(EGFR), and higher expression of LCK and SYK as expected

based on the dominantly hematopoietic cell lineage. The head

and neck cluster was dominated by head and neck cell lines

plus a few lung and breast cancer lines, and was associated

with high expression of annexin1, caveolin1, and EGFR. The

skin cluster was dominated by melanoma and was associated

with high levels of GAB2 and low levels of SYK. The sarcoma

cluster was mainly composed of sarcoma and bone cell lines,

and was associated with higher levels of TP53 and c-KIT. The

breast cluster consisted of breast cancer cell lines only, with

increased AR and HER2 protein levels and represented primarily

luminal breast cancer lines. The lung cancer cell lines were sepa-

rated into four major clusters: lung/pancreas/ovary, lung/ovary,

lung/colon, and lung/gyne. The lung/gyne cluster consisted of

breast, ovarian, and uterine cancer cell lines, and was marked

by the activation of the PI3K/AKT pathway. The lung/colon clus-

ter was a cross-lineage group that included the majority of the
er clusters.

cell lines.

ted p values (FDRs) indicating the significance of correlations with the clusters.

ortal. See also Table S5 and Figure S3.



colon cancer cell lines. We further focused on a set of breast cell

lines with known subtypes, and found a significant correlation

between well-established breast cancer subtypes and RPPA

clusters (p = 5.6 3 10�10, Figure 3C). Almost all cell lines of the

claudin-low subtype were located in the EMT cluster; while

luminal and basal cell lines were enriched in the breast and

lung/gyne clusters, respectively. These results indicate that the

RPPA pattern not only reflects the lineage/tissue information

but also tumor subtype distinctions.

Given the clustering patterns, we further calculated pathway

scores as described previously (Akbani et al., 2014) and found

that these clusters showed distinct pathway associations (Fig-

ures 3D and S3C). In particular, the EMT cluster was clearly

associated with an increased EMT score (p = 8.1 3 10�114, Fig-

ure S3C); the breast cluster was marked by high hormone

pathway scores (hormone_a, p = 2.0 3 10�45, and hormone_b,

p = 9.63 10�64, Figure S3C); and the sarcoma cluster was asso-

ciated with an increased DNA damage response score (p = 8.33

10�32, Figure S3C).

Effects of Mutations on Protein Expression Patterns
TCGA studies have systematically identified genes and path-

ways frequently mutated in different cancer types. Understand-

ing the effects of mutated genes on cancer signaling pathways is

essential for developing cancer therapy. As commonly used

cellular models, a key question is to what extent cancer cell lines

capture the clinically relevantmutation patterns observed in can-

cer patient cohorts. Among our MCLP cell lines, single-nucleo-

tide variations of 250 cell lines have been characterized by

CCLE with targeted sequencing; and five lineage groups (breast,

ovary, colon, lung, and uterus) had more than ten cell lines, with

respectively matched TCGA cancer types (BRCA, OV, COAD,

LUAD/LUSC, and UCEC). Due to the relatively small number of

cell lines in each lineage, we focused on the four most frequently

mutated pathways (or sub-networks), p53, PI3K, NOTCH, and

SWI/SNF complex signaling, each of which exhibited >10%mu-

tation frequency in at least one of the five patient cohorts from a

recent TCGA pan-cancer study (Leiserson et al., 2015) (Tables

S6 and S7). We observed an overall strong concordance be-

tween TCGA patient cohorts and MCLP cell line lineages for

these pathways in terms of the top mutated genes and their

mutation frequencies (Figures 4A–4B, Tables S6 and S7).

We then examined the effects of the selected mutated path-

ways (Leiserson et al., 2015) on the expression of individual pro-

teins. Given a mutated signaling pathway and a cell line lineage

described above, we first identified proteins that were signifi-

cantly differentially expressed between wild-type (WT) and

mutated groups (t test, FDR < 0.05, Tables S6 and S7). Only

five lineages showed sufficient differential expression signals

(more than ten differentially expressed proteins in WT and

mutated samples), so we focused on these lineages and as-

sessed whether TCGA patient samples and MCLP cell lines

showed similar patterns of dysregulated proteins (i.e., up- or

downregulated fold changes across the differential proteins).

We found that four of the five comparisons showed overall

similar mutation protein patterns: mutations in PI3K signaling in

breast cancer (Spearman rank Rs = 0.41, p < 0.001), lung cancer

(Rs = 0.36, p = 0.36), and colon cancer (Rs = 0.83, p = 0.005); and

mutations in p53 signaling pathway in breast cancer (Rs = 0.34,
p < 0.001) (Figures 4C and S4 and Tables S6 and S7). The only

exception was the effect of mutated p53 signaling pathway in

lung cancer, where a weak negative correlation was detected.

Thus, given a mutated pathway, individual proteins generally

showed the similar patterns between the WT and mutant groups

in both patient and cell line cohorts (Figure 4D).

The Predictive Power of Protein Markers in Drug
Sensitivity
OurMCLP proteomic dataset is able to link protein and particular

protein phosphorylation levels to drug sensitivity, which offers an

opportunity to complement the assessment of genomic and

transcriptomic activity as potential predictive biomarkers. Using

the CTRPv2 drug sensitivity data for the cell lines with both pro-

tein andmRNA expression data, we performed a global compar-

ison of protein markers and corresponding mRNA markers from

the same genes in predicting drug sensitivity. Since quantitative

drug sensitivity data tend to be noisy and less consistent (Haibe-

Kains et al., 2013), we first employed a robust method to classify

the cell lines into sensitive or resistant groups for a given drug

(Cancer Cell Line Encyclopedia Consortium and Genomics of

Drug Sensitivity in Cancer Consortium, 2015) and assessed

whether a protein was significantly differentially expressed be-

tween the two cell line groups (Experimental Procedures).

Then, given a drug and the mRNA and protein (total and phos-

phoproteins) from the same gene, drug sensitivity could be either

associatedwith protein only, mRNAonly, or bothmRNA and pro-

tein levels (t test, FDR < 0.1). We found that the relative abun-

dance of these three types of markers varied across different

drug families, suggesting complementary predictive power of

RNA and protein analysis (Figure 5A). We next focused on the

predictive powers of protein or mRNA levels of specific drug tar-

gets (e.g., EGFR family members and EGFR-targeted drugs), the

most important relationships in the clinic. We found that protein

markers showedmore significant associations than those of cor-

responding mRNAs (Figures 5B and S5A–S5C). The predictive

power of phospho-HER2 and phospho-EGFR was particularly

apparent for EGFR pathway-targeted drugs (Figure 5B). Further-

more, baseline phosphorylation level of AKT was a negative

predictor of response to a subset of EGFR family inhibitors, as

expected. In terms of BRAF inhibitors, phospho-CRAF and to a

degree phospho-ARAF and VEGFR2, were predictors of resis-

tance, observations that were not captured at RNA levels (Fig-

ure S5A). Similarly, total phospho-MEK levels were predictors

of response to MEK inhibitors (Figure S5B). In addition to individ-

ual proteins, using the CTRPv2 drug data as the training set and

theGDSCdrug data as the test set, we compared the drug sensi-

tivity predictive power of protein or mRNA combinations and

found that the protein-based classifiers showed better predictive

power (based on the area under the curve [AUC] score in the

receiver-operating characteristic [ROC] curve) than the mRNA-

based classifiers for a greater number of drugs (Experimental

Procedures, Figure 5C). Taken together, these comparisons

demonstrate that protein markers provide an improved ability

to predict response to drugs and thus have the potential to func-

tion as predictive markers in the clinic.

We next explored the relationship for drugs that target

the EGFR family of receptors since these showed the

strongest associations (Figure 5B). In both CTRPv2 and GDSC
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Figure 4. Effects of Mutated Pathways on Protein Expression

(A) Pattern of frequently mutated pathways in TCGA patient cohorts; red bars indicate the presence of mutations in a sample.

(B) Profiles of frequently mutated pathways in MCLP cell line lineages; red bars indicate the presence of mutations in a sample.

(C) Given themutations of a p53 signaling pathway, a Circos plot showing proteins differentially expressed between TCGAWT andmutated breast cancer patient

samples (FDR < 0.05) in the external layer and those differentially expressed between MCLP WT and mutated breast cancer cell lines in the middle layer. Color-

coded fold changes: blue indicates downregulation relative to WT samples; red indicates upregulation. The inner layer: consistently up- and downregulated

markers in TCGA and MCLP samples are indicated by red and blue, respectively; inconsistently regulated markers are indicated by green.

(D) Examples of individual proteins differentially expressed between WT and mutated samples in TCGA patients and MCLP cell lines. Box boundaries mark first

and third quartiles, with themedian in the center, andwhiskers extending to 1.5 interquartile range from the boundaries. See also Tables S6 and S7 and Figure S4.
data, phospho-EGFR_Y1068 and phospho-HER2_Y1248 were

strongly associated with response to drugs that targeted mem-

bers of the EGFR family, as expected (Figures 5D and S5D–
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S5F). The associations were particularly clear for pan-inhibitors

such as afatinib, canertinib, neratinib, and lapatinib, with weaker

associations with EGFR-selective drugs such as WZ-1-84,
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(legend continued on next page)
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gefitinib, and PD153035. Intriguingly, we observed marked

sensitivity to saracatinib (SRC/Abl inhibitor) and ibrutinib, a

BTK inhibitor. SRC is a downstreammediator for EGFR, and sar-

acatinib has shown activity in a number of EGFR-activated tumor

models (Formisano et al., 2014; Nam et al., 2013). The strong as-

sociation between the activation of EGFR and HER2 and saraca-

tinib activity suggests that saracatinib (Figures S5G and S5H)

should be considered for evaluation in patients whose tumors

exhibit EGFR and HER2 activation (due to EGFR mutations or

HER2 amplification). In terms of predicting ibrutinib activity (Fig-

ure S5I), phospho-HER2 showed the strongest correlation to

sensitivity. Strikingly, ibrutinib, which is under evaluation in B

cell tumors as a BTK inhibitor, demonstrates cross-reactivity

with EGFR and in particular mutant EGFR (Gao et al., 2014;

Haura and Rix, 2014; Wu et al., 2015). Indeed, ibrutinib is being

evaluated in a clinical trial for patients with EGFR-mutant lung tu-

mors (NCT02321540).

Interestingly, the volcano plots for lapatinib and other EGFR

family inhibitors demonstrate a marked sensitivity in cells with

high levels of markers associated with epithelial differentiation

(Figures S5J–S5M). This is compatible with several studies re-

porting that EMT is associated with a stem cell-like phenotype

and resistance to multiple therapeutic modalities, including tar-

geted therapies (Byers et al., 2013; Mani et al., 2008; Singh

and Settleman, 2010). We thus used our EMT pathway predictor

(Akbani et al., 2014) to classify cell lines to identify drugs may

have increased activity in the cells that had undergone EMT (Fig-

ure 5E). As predicted, cell lines that had a strong EMT signature

were resistant to targeted therapies including saracatinib and

drugs targeting the EGFR family. However, the EMT cell lines

were markedly sensitive to fluvastatin and lovastatin, which

target HMGCR and were moderately sensitive to a number of

drugs that target BRAF, MAPK, or nuclear factor kB signaling.

One interesting example is theMDM2 inhibitor Nutlin3 (Figures

S5N and S5O). The analysis on both the CTRPv2 and GDSC sets

showed that elevated p53 proteins levels predicted resistance to

Nultin3. This likely represents the resistance being due to

elevated p53 levels associated with stabilizing p53 mutations.

Indeed, the association of Nutlin3 activity with BAX levels

(CTRPv2, p = 6.3 3 10�7, GDSC, p = 7.8 3 10�5, both FDR <

0.05) and p21 levels (CTRPv2, p = 2.1 3 10�5, FDR < 0.01; and

GDSC, p = 0.0056), which are downstream targets for p53 and

indicative of WT p53, supports this contention.

Another example of particular interest is the relationship be-

tween ARID1A protein expression and sensitivity to the MEK in-

hibitor trametinib, which has been approved by the US Food and

Drug Administration for the treatment of patients with metastatic

melanoma and currently under intensive clinical investigation

(Flaherty et al., 2012). Based on the volcano plots, ARID1A

was one top predictor for trametinib across different protein

markers; reciprocally, trametinib showed the strongest negative

correlation with the ARID1A protein level across different drugs

(Figures S5P and S5Q). Indeed, the ARID1A expression was

significantly higher in sensitive cell lines than resistant cell lines
(C) Predictive power comparison of proteins versus mRNAs based on multiple-m

(D) Volcano plot for EGFR_pY1068.

(E) Volcano plot of the EMT pathway score. Significant nodes (FDR < 0.1) are hi

positive correlations. See also Figure S5.
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(CTRPv2, p = 0.01, Figure S5R). We performed independent

drug sensitivity assays in a set of in-house cell lines and validated

this pattern (p = 1.59 3 10�5, Figure S5S). In contrast, both

mRNA expression and mutational status of ARID1A were not

correlated with trametinib sensitivity (Figures S5T and S5U).

This example further demonstrates a unique value of RPPA pro-

tein markers over DNA mutation or mRNA expression data. This

result also suggests that a retrospective analysis of patient sam-

ples treated with MEK inhibitors is warranted and, if the associ-

ation with ARID1A protein levels is validated, a prospective study

of ARID1A as a biomarker for MEK inhibitor response could be

implemented. Taken together, these observations support the

power of RPPA analysis for predicting responses to different

therapeutic modalities.

A Protein-Centered Web Platform for Exploring Cancer
Cell Line Data
To facilitate the utilization of the proteomic data contained in

our cell line set to a broad biomedical community, we devel-

oped a user-friendly, interactive web platform, MCLP, for

fluent data exploration and analysis, which can be accessed

at http://bioinformatics.mdanderson.org/main/MCLP:Overview.

The MCLP platform provides four interactive modules: My Pro-

tein, Analysis, Visualization, and Data Sets (Figure 6A). To illus-

trate how users can quickly obtain useful information about a

specific protein, we use PDL1, a key immunotherapy target as

an example in this section. My Protein shows detailed informa-

tion for each RPPA protein, including protein name, correspond-

ing gene names, antibody source, and validation status. This

module also provides the global expression pattern of a protein

across different cell line lineages in boxplots. For example, the

PDL1 protein expression is much higher in head and neck and

lung cancer cell lines which are associated with tobacco and

have a high mutational load than in uterine cell lines (Figure 6B).

This may also correlate with the response to PDL1 and PD1 in-

hibitors in these lineages. The Analysis module provides three

common analyses through which users can explore the function

and underlying associations of proteins in each cell line lineage.

(1) Protein-Protein Correlation: with this module, users can iden-

tify pairwise protein correlations for each cell line lineage, such

as a positive correlation between PDL1 and CD49B in uterine

cell lines (Figure 6C). (2) Protein-Mutation Correlation: given a

mutated gene of interest, users can identify proteins differentially

expressed between the WT and mutant cell lines such as the

higher PDL1 expression in CCDC50 mutant cell lines than WT

cell lines (Figure 6D). (3) Protein-Drug Correlation: users can

explore the correlations between protein expression and drug

sensitivity through volcano plots such as the correlations of

PDL1 with pyrazolanthrone (Figure 6E). The module Visualization

provides two ways to examine the global patterns of protein

expression. (1) The Protein-Protein Network shows the correla-

tions of a protein expression with its interacting partners in

protein interaction networks derived from databases such as

HPRD and STRING (Stelzl et al., 2005; Szklarczyk et al., 2015)
arker classifiers using the AUC scores.

ghlighted, with green representing negative correlations and red representing

http://bioinformatics.mdanderson.org/main/MCLP:Overview
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Figure 6. Illustration of the Utility of the MCLP Web Platform through the Example of PDL1

(A) Overview.

(B) The PDL1 protein expression across lineages.

(C) A positive correlation between PDL1 expression and CD49B.

(legend continued on next page)
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(the interacting neighbors of PDL1 are shown in Figure 6F). (2)

The Dynamic Heatmap allows users to navigate, magnify, and

explore the clustering patterns of cell lines or proteins in an inter-

active heatmap as well as to identify proteins expressed in

particular cell lines (Figure 6G). The Data Sets module describes

in detail the datasets curated in MCLP. Each dataset can be

easily downloaded through a tree-view interface. Collectively,

MCLP provides a protein-centeredweb platform that enables re-

searchers to explore, analyze, and visualize RPPAdata and other

associated data on MCLP cell lines in an intuitive and efficient

manner.

DISCUSSION

Recent large cancer genome projects such as TCGA have re-

vealed great molecular diversity among tumors across and

within cancer types. Understanding the functional conse-

quence of this diversity on treatment response is a central

task for implementing precision cancer medicine. It is therefore

essential to characterize the comprehensive molecular profiles

of a large number of human cancer cell lines in order to capture

the diversity observed in patient tumors and elucidate the

complex relationships between molecular aberrations, cancer

phenotypes, and therapeutic response. Using the same RPPA

platform employed for TCGA, we generated protein expression

profiles of 651 independent cell lines, a comprehensive cell line

protein expression dataset. This study greatly expands our un-

derstanding of cancer cell lines by adding information on pro-

tein expression, including total and posttranslationally modified

proteins, which are arguably the most crucial molecules in the

cell and, importantly, the target of most drugs. Together with

recent efforts that have systematically characterized cancer

cell lines at the DNA and RNA levels as well as drug responses,

our study provides a rich resource for the research community

to use to investigate tumor behaviors in a quantitative and effi-

cient way.

As major model systems, cell lines allow us to investigate

cancer mechanisms and drug response in a simplified, well-

controlled environment, thereby identifying the most compelling

candidates or hypotheses for further investigation. Through

straightforward, side-by-side comparisons, we showed that

our MCLP data could largely recapitulate the protein expression

patterns associated with frequently mutated pathways that are

observed in TCGA patient cohorts; and that RPPA-based protein

markers are powerful predictors of drug response providing

information that cannot be obtained solely from analysis of cor-

responding mRNAs. Although many of the predicted drug re-

sponses were expected, others were not initially but could be

justified by literature review. We further validated some cases

through training-and-test approaches across different datasets

or independent experiments in our laboratory. This suggests

that the protein-drug sensitivity analysis resource can be used

to discover associations and therapeutic markers, and highlights

the potential clinical utility of our MCLP project.
(D) The differential expression of PDL1 protein between the mutant and WT grou

(E) Volcano plot of PDL1.

(F) The co-expression pattern of PDL1 and its interacting partners in a protein-pr

(G) A snapshot of a dynamic heatmap of the RPPA dataset.
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Our RPPA platform also has some limitations. First, compared

with recent mass spectrometry studies of cell lines or patient

samples (�10,000 detectable proteins) (Mertins et al., 2016; Tya-

nova et al., 2016; Zhang et al., 2014, 2016), the number of RPPA

protein markers (including phosphorylated proteins) that can be

effectively monitored by the RPPA technology is much smaller.

However, the increased sensitivity (particularly for some key pro-

teins and phosphoproteins) and cost make RPPA a practical

platform for the analysis of the large number of cell lines avail-

able. Second, the RPPA readout of a protein is largely dependent

on the antibody availability and quality. Further, as with other

high-throughput technologies, there is a relatively high technical

measurement error on individual samples, so that interesting

observations from the RPPA platform should be confirmed by

further in-depth investigations.

To help the broader research community to capitalize on our

protein expression data, as well as other associated data on

MCLP cell lines, we have provided an interactive, user-friendly

web platform through which biomedical researchers can

explore, visualize, and analyze these data in an intuitive and

convenient way. We expect this tool to greatly reduce the bar-

riers that researchers face in mining complex genomic and

proteomic data, directly facilitating the translation of these data

into clinical knowledge and utility.

EXPERIMENTAL PROCEDURES

Cell Line Source and RPPA Profiling

We collected cancer cell lines or proteins through the CCSG supported Cell

Line Characterization Core facility (Houston, TX) and from a number of outside

collaborations. All lines prepared at theMDAnderson Cancer Center (MDACC)

were confirmed by short tandem repeat (STR) analysis in the core as per insti-

tutional policy. The cell lines and STR are routinely ‘‘cleaned’’ by comparison

with the Database of Cross-Contaminated or Misidentified Cell Lines (http://

iclac.org/databases/cross-contaminations/). The outside collaborators also

routinely confirm cell lines by STR analysis. In the most cases we were able

to confirm the identity of proteins or lines from outside collaborators by

comparing RPPA results from multiple runs of the same cell line from several

groups. For RPPA experiments, cell line samples were prepared and anti-

bodies were validated as described previously (Hennessy et al., 2010; Nishi-

zuka et al., 2003; Tibes et al., 2006). RPPA data were generated by the

RPPA core facility at MDACC, the same platform used for TCGA patient sam-

ples. RPPA slides were first quantified using Array-Pro (Meda Cybernetics) to

generate signal intensities, then processed by SuperCurve (Hu et al., 2007) to

estimate the relative protein expression level, and were normalized by median

polish. RPPA slide quality was assessed by a quality control classifier (Ju et al.,

2015) and only those slides above 0.8 (range, 0–1) were retained for further

analysis. The cell line sampleswere run in a total of seven batches, andmerged

using a replicate-based normalization method (Akbani et al., 2014), in which

replicate samples profiled across multiple batches are used to adjust the

data for potential batch effects. In total, we generated RPPA data of 706 cell

lines and, after removing closely related cell derivatives, 651 independent

cell lines were used in subsequent analysis (Table S1). See more details in

the Supplemental Experimental Procedures and Figure S1.

Genomic, Gene Expression, and Drug Sensitivity Data Collection

We collected single-nucleotide variation, copy number alteration, and gene

expression data from four major cell line resources: CCLE (http://www.
ps based on the mutation status of CCDC50.

otein network view.

http://iclac.org/databases/cross-contaminations/
http://iclac.org/databases/cross-contaminations/
http://www.broadinstitute.org/ccle


broadinstitute.org/ccle), the COSMIC Cell Line Project (http://cancer.sanger.

ac.uk/cell_lines), the J.W. Gray Breast Cancer Cell Line Panel (Synapse:

syn2346643), and a recent cell line resource generated by Genentech (Klijn

et al., 2015). We obtained drug sensitivity data from two pharmacogenomic re-

sources: GDSC (http://www.cancerrxgene.org/) and CTRPv2 (http://www.

broadinstitute.org/ctrp.v2/). Annotations of compounds were extracted from

previous studies (Garnett et al., 2012; Seashore-Ludlow et al., 2015).

Protein and mRNA Expression Analysis

For protein and mRNA correlation analysis, we used the CCLE mRNA expres-

sion data (Affymetrix microarrays) since it shares the largest number of cell

lines with our MCLP dataset. For the 369 cell lines with both protein and

mRNA expression data, we analyzed 250 proteins that were measured

in >30% of the cell lines. These proteins had matched mRNA expression

data from 201 unique genes. We calculated Spearman’s rank correlations be-

tween the matched protein-mRNA pairs for each of 11 lineages and across all

the cell lines, and repeated the analyses after filtering the 20% of protein

markers with the lowest coefficient of variation for each lineage. FDR was

used to adjust for multiple comparisons. Based on the number of comparisons

in which an mRNA and protein pair (n) showed a significant correlation (Rs >

0.5), we classified the proteins into three groups: n = 0, group 1, no correlation;

n = 1–5, group 2, low correlation; and n > 5, group 3, high correlation. Based

on Spearman’s rank correlations of each protein-protein pair across all the

cell lines, we constructed a protein co-expression network with jRsj> 0:6,

FDR < 0.001. Then, for each protein-protein interaction, we assessed whether

the corresponding mRNAs showed a significant co-expression pattern

(jRsj> 0:2). We used the chi-square test to assess whether phosphoproteins

were enriched in a specific protein or interaction group.We performed a similar

analysis for the mRNA co-expression network.

Protein Expression Clustering Analysis

We performed consensus clustering analysis on 651 cell lines based on

the >200 most commonly shared proteins across cell lines, and used the

chi-squared test to assess the correlations of the resulting cell line clusters

with cell line lineages or mutated cancer genes or breast cancer subtypes.

We calculated the RPPA-based pathway scores (Akbani et al., 2014) and

used the ANOVA to assess the correlations of the resulting cell line clusters

with the pathway scores.

Mutation Protein Analysis

We performed mutation protein analysis on our MCLP cell lines and TCGA pa-

tient sample tumors. For the cell lines with available mutation data from CCLE,

we focused on the six lineages with more than ten cell lines available. Since the

RPPA data of acute myeloid leukemia were not available in TCGA, blood cell

lines were removed from the comparison. For patient cohorts, we retrieved

level 3 mutation data and replicate-based normalized RPPA data from the cor-

responding five TCGA cancer types (BRCA, COAD, LUSC/LUAD, OV, and

UCEC) from synapse (syn4924181) and The Cancer Proteome Atlas (Li et al.,

2013). To identify frequently mutated pathways (or subnetwork), we obtained

16 frequently mutated pathways (Leiserson et al., 2015), among which only

four pathways had >10%mutation frequencies in at least one of the five cancer

types. Given a pathway of interest, we used Student’s t test to assess whether

a protein was differentially expressed between theWT andmutated groups. To

assess global similarity, for the cell line lineages with more than ten differen-

tially expressed proteins (FDR < 0.05), we used Spearman’s rank correlation

to assess the similarity of fold changes across different proteins between

MCLP cell lines and TCGA patient samples.

Drug Sensitivity Data Analysis

We analyzed the drug sensitivity data over MCLP cell lines using two ap-

proaches. First, we implemented the waterfall method to categorize sensitive

and resistant cell lines as described previously (Barretina et al., 2012; Haibe-

Kains et al., 2013), and applied Student’s t test to identify individual protein

and mRNAmarkers significantly associated with a specific drug. We identified

individual features (total/phospho-proteins or mRNAs) at FDR = 0.1 between

the two sensitive and resistant groups. To compare the power of the classifiers

of differentially expressed proteins or mRNAs, we first employed an elastic net

to construct multiple-marker classifiers to predict sensitive/resistant cell lines
using the CTRPv2 data as the training set and optimized the parameters

through cross-validation. Then we applied the classifiers to the corresponding

drugs in the GDSC datasets (the test set), and assessed the classifier

performance based on the AUC score in the ROC. Second, to examine the

relationships of individual proteins with a drug, we visualized their patterns

by volcano plots.

Drug Sensitivity Assays

Trametinib was 3-fold serial diluted for seven dilutions in DMSO at 1,0003

concentration stocks. Aliquots of the diluted stocks were stored at �20�C.
The cancer cell lines involved in this assay were verified by STR analysis at

the MD Anderson Core. They were maintained in their optimal growth medium

(with 5% fetal bovine serum [FBS]) and seeded in 96-well plates at 2,500 cells/

100 mL/well for 24 hr incubation prior to being changed into the medium

containing 2% FBS for overnight incubation (for serum deprivation). Serial

diluted drug stocks were added to each well to make 1/1,000 final concentra-

tion for an additional 72 hr incubation. DMSO at 0.1% without any drugs was

used as a control (basal level). Triplicates were performed for each concentra-

tion. Cell viability was determined at the endpoint by CellTiter Blue Cell Viability

Assay (5 mL of the reagent/well) based on the ability of living cells to convert

redox dye (resazurin) into a fluorescent product (resorufin) to be measured

at 530Ex/604Em. Cellular responsibility was defined by median growth inhib-

itory and median effective concentrations calculated according to the cell

viability curve.

Web Platform Development

All RPPA, genomic, mRNA expression, and drug sensitivity data accompa-

nying the pre-calculated analytic results were stored in a CouchDB database.

We generated all the analytic results in R before loading them into the data-

base. We implemented a user-friendly and interactive web interface in

JavaScript. Specifically, tabular results were generated by DataTables; box-

plots and scatterplots were generated by HighCharts; and interactive network

views were implemented by Cytoscape.js library.
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