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SUMMARY
An individual’s sex has been long recognized as a key factor affecting cancer incidence, prognosis, and treat-
ment responses. However, the molecular basis for sex disparities in cancer remains poorly understood. We
performed a comprehensive analysis ofmolecular differences betweenmale and female patients in 13 cancer
types of The Cancer Genome Atlas and revealed two sex-effect groups associated with distinct incidence
and mortality profiles. One group contains a small number of sex-affected genes, whereas the other shows
much more extensive sex-biased molecular signatures. Importantly, 53% of clinically actionable genes
(60/114) show sex-biased signatures. Our study provides a systematic molecular-level understanding of
sex effects in diverse cancers and suggests a pressing need to develop sex-specific therapeutic strategies
in certain cancer types.
INTRODUCTION

An individual’s sex is a key factor affecting the risk of cancer

development and management during his or her lifetime. This

is not only because some cancer types are sex-specific (e.g.,

ovarian cancer in women and prostate cancer in men), but there

are significant sex disparities in the incidence of cancer, tumor

aggressiveness, prognosis, and treatment responses for many

other cancer types (Branford et al., 2013; Cook et al., 2011;

Dorak and Karpuzoglu, 2012; Molife et al., 2001; Pal and Hurria,

2010). However, the molecular basis for these observed dispar-

ities remains poorly understood. Previous studies have reported
Significance

For many cancer types, men and women are very different
knowledge about the differences between male and female c
a fundamental issue for cancer prevention and therapy but ha
multidimensional analysis of sex-affected genes, we revealed
sex-effect group versus strong sex-effect group) and demo
sex-biased molecular signatures in certain cancer types. Our
in cancer and lays a critical foundation for the future developm
some sex-related molecular patterns. For example, an elevated

mutation rate of EGFR in female patients with non-small-cell lung

cancer may contribute to enhanced response rates among

female patients (Shepherd et al., 2005; Tam et al., 2006); and

H3K27me3 demethylase UTX has been identified as a sex-

specific tumor suppressor in T cell acute lymphoblastic leukemia

(Van der Meulen et al., 2015). However, these studies on the

sex effect have been limited to individual genes, single molec-

ular data types, and single cancer lineages. Furthermore, pre-

vious cohort analyses of sex-affected molecular traits have

been based on simple statistical tests without explicitly account-

ing for potentially confounding factors such as patient age,
in terms of susceptibility, survival, and mortality. But our
ancer patients at the molecular level is very limited. This is
s not been investigated systematically. Through a rigorous,
a two-group molecular classification of cancer types (weak
nstrated that >50% of clinically actionable genes showed
study helps elucidate the molecular basis for sex disparities
ent of precision cancer medicine.
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Table 1. Summary of TCGA Cancer Types, Patient Samples, and Data Types Surveyed in This Study

Cancer Type

Somatic

Mutation SCNA

DNA

Methylation

mRNA

Expression

miRNA

Expression

Protein

Expression

M F M F M F M F M F M F

BLCA 130 44 135 46 142 47 141 47 142 46 83 32

COAD 162 144 218 197 142 125 222 205 207 189 174 153

GBM 171 98 322 208 65 48 94 53 NA NA 123 82

HNSC 228 104 231 104 235 105 229 99 233 105 132 55

KIRC 275 148 314 168 192 102 321 177 311 165 294 144

KIRP 101 41 123 50 134 53 143 53 143 54 NA NA

LAML 101 90 102 85 103 87 91 78 99 85 NA NA

LGG 221 176 206 170 222 178 221 176 219 178 145 108

LIHC 75 53 76 51 91 60 89 57 90 57 NA NA

LUAD 147 185 168 201 146 174 163 201 170 202 86 105

LUSC 111 42 274 97 184 65 273 97 260 92 128 44

READ 55 50 79 70 45 40 80 69 67 62 62 57

THCA 98 289 124 350 126 354 126 350 125 352 104 251

For each data type and each cancer type, the numbers of male and female patients available in the analysis are shown. NA, the data type in that cancer

type was not included in the analysis. TCGA high-throughput characterization platforms are as follows. Somatic mutations: exome-sequencing data

based on IlluminaGA/HiSeq automated DNA sequencing platform and SOLiD sequencing platform. Somatic copy-number alterations (SCNAs): Affy-

metrix Genome-Wide Human SNP Array 6.0. DNAmethylation: Illumina Infinium Human DNAMethylation 450K Array. RNA expression: Illumina HiSeq

2000 RNA Sequencing V2. miRNA expression: Illumina Genome Analyzer/HiSeq 2000 miRNA sequencing platform. Protein expression: MD Anderson

reverse-phase protein arrays. BLCA, bladder urothelial carcinoma; COAD, colon adenocarcinoma; GBM, glioblastoma multiforme; HNSC, head and

neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia;

LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; READ,

rectal carcinoma; and THCA, thyroid carcinoma.
histological subtype, and tumor stage, which may introduce

significant bias and misinterpretation. So far, a comprehensive

characterization of molecular differences between male and fe-

male patients and related mechanisms across a broad range

of human cancer types using a rigorous statistical approach

has not been performed.

The availability of high-throughput molecular data over large,

well-characterized patient sample cohorts of multiple cancer

types through The Cancer Genome Atlas (TCGA) project pro-

vides an unprecedented opportunity to address this question

(The Cancer Genome Atlas Research Network et al., 2013). Us-

ing these TCGA data, we performed a comprehensive, rigorous,

pan-cancer analysis in order to address if and what the mo-

lecular-level differences are between the male and female can-

cer patients that have otherwise similar clinical and tumor

characteristics.

RESULTS

Overview of Multidimensional Sex-Affected Molecular
Signatures across Cancer Types
Wefocusedon13majorTCGAcancer typeswithsufficient sample

sizes (R30 for both male and female patients) for at least five out

of six molecular data types (somatic mutations, somatic copy-

number alternations [SCNAs], mRNA expression, DNA methyl-

ation, miRNA expression, and protein expression, Table 1). These

cancer types include bladder urothelial carcinoma (BLCA), colon

adenocarcinoma (COAD), glioblastoma multiforme (GBM), head

and neck squamous cell carcinoma (HNSC), kidney renal clear

cell carcinoma (KIRC), kidney renal papillary cell carcinoma
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(KIRP), acute myeloid leukemia (LAML), brain lower grade glioma

(LGG), liver hepatocellular carcinoma (LIHC), lung adenocarci-

noma (LUAD), lung squamous cell carcinoma (LUSC), rectal

carcinoma (READ), and thyroid carcinoma (THCA). It is important

to note that these TCGA patient cohorts were not designed to

study the sex effect, thus male and female patient groups in a

cancer type are frequently different in other patient and tumor

characteristics.

To identify molecular differences related to sex with appro-

priate controls for other factors that may bias findings (e.g.,

age, race, disease stage, and tumor purity, see potential con-

founders surveyed in Figure S1A), we employed an analytic

approach based on the propensity score. Introduced in the early

1980s (Rosenbaum and Rubin, 1983), the propensity score is

an important statistical tool for adjusting for confounding factors

in observational studies, and has been widely used in clinical

research, economics, and social sciences (D’Agostino, 1998;

Ho et al., 2007; Imbens, 2004). Importantly, samples with the

same propensity score have the same distribution of measured

confounders, so balancing the confounders can be achieved

by simply balancing the propensity score. As outlined in Fig-

ure 1A, we calculated the propensity scores, ‘‘reweighted’’ the

samples in a cohort, and then compared the molecular features

between the two balanced sex groups (Experimental Proce-

dures). Our statistical simulations further confirmed that the pro-

pensity score method outperformed alternative methods in

terms of both sensitivity and specificity (Figure S1B). With this

approach, we identified significantly differential molecular fea-

tures (genes) between female and male patients in the 13 cancer

types (false discovery rate [FDR] % 0.05). For the significant
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Figure 1. Overview of the Propensity Score Algorithm and the Sex-Affected Molecular Patterns across Cancer Types

(A) An overview of the propensity score algorithm.

(B) Relative abundance of multidimensional sex-biased molecular signatures identified by the propensity score algorithm across cancer types (FDR% 0.05). The

fraction of significant features over total features was first calculated in each cancer type and then normalized across all cancer types. A gray box indicates that

the specific data are not available for that cancer type. The bar plot shows the total number of significant features (by aggregating across all platforms) for each

cancer type. The weak sex-effect and strong sex-effect groups are marked in orange and purple, respectively.

(C) The distribution of significant feature counts in the weak sex-effect group versus the strong sex-effect group (from left to right: DNA methylation, mRNA

expression, and miRNA expression). The boundaries of the box mark the first and third quartile, with the median in the center, and whiskers extending to

1.5 interquartile range from the boundaries.

(D) The incidence sex-bias index for each cancer type.

(E) The mortality sex-bias index for each cancer type. The p values were calculated fromWilcoxon rank-sum tests to compare the two groups. See Figure S1 and

Tables S1–S3.
feature set identified for a given data type and cancer type, we

further confirmed its statistical significance by using permutation

tests of randomly shuffling the sex labels of the patients (Exper-

imental Procedures, Figure S1C). Focusing on the significant

feature sets confirmed by the permutation tests, we examined

the global patterns of sex-biased genes across different molec-

ular types and found a clear separation among the cancer types
under survey. One group includes LGG, GBM, COAD, READ,

and LAML, each of which shows a relatively small number of

genes (44–104, mean 67) with a sex-biased pattern, which we

therefore labeled the weak sex-effect group. The other group in-

cludes THCA, HNSC, LUSC, LUAD, LIHC, BLCA, KIRP, and

KIRC, each of which shows much more extensive sex-biased

molecular signatures (240–3,521, mean 1,112); we therefore
Cancer Cell 29, 711–722, May 9, 2016 713



labeled it the strong sex-effect group (Figures 1B and Table S1).

Indeed, no sex-biased somatically mutated genes or SCNAs

were identified in any cancer of the weak sex-effect group;

and the numbers of sex-biased genes at the mRNA, DNA

methylation, and miRNA expression levels in this group were

much lower than those in the strong sex-effect group (Figure 1C,

Wilcoxon rank test, DNA methylation p < 0.015; mRNA p <

0.0022; miRNA p < 0.074). Importantly, the sample sizes

included in the analysis between these two cancer groups are

similar, and so the observed distinct patterns cannot be attrib-

uted to the power to detect differences (Figure S1D).

Strikingly, compared with those in the weak sex-effect group,

the cancer types in the strong sex-effect group show a higher

incidence sex-bias index (defined on the basis of the ratio of

new cases of female and male patients, Figures 1D and Table

S2) and a higher mortality sex-bias index (defined on the basis

of the ratio of the number of deaths among female and male pa-

tients, Figures 1E and Table S3). Furthermore, according to the

National Comprehensive Cancer Network (NCCN) Clinical Prac-

tice Guidelines in Oncology, a patient’s sex has been suggested

as a prognostic factor in five of the eight cancer types in the

strong sex-effect group (i.e., LUSC, LUAD, HNSC, KIRC, and

KIRP), but not in any cancer in the weak sex-effect group. We

observed similar patterns based on other statistical cutoffs

(e.g., FDR = 0.1 and 0.2, Figures S1E and S1F). Taken together,

these results provide an overview of molecular differences be-

tweenmale and female cancer patients, and the distinct patterns

of the two sex-effect groups are well aligned with the empirical

observations of disease behaviors across cancer types.

Sex-Biased Somatic Mutations and Copy-Number
Alterations
To identify sex-biased mutation patterns, we focused on highly

mutated genes in each cancer type (R5% mutation frequency).

The number of mutated genes under survey ranged from two in

THCA to 650 in LUSC (Experimental Procedures). At FDR = 0.05,

we identified 11 sex-biased genes in LUAD and one in LIHC (Fig-

ures 2A and 2B). The most striking gene identified in LUAD was

STK11 (also known as LKB1), which encodes a major upstream

kinase that activates the energy-sensing AMPK pathway and is

frequently mutated in a variety of cancers (Jenne et al., 1998).

Clinically, inactivating mutations in this gene may predict sensi-

tivity to mTOR inhibitors, SRC inhibitors, and the metabolism

drug phenformin in lung cancer (Carretero et al., 2010; Mahoney

et al., 2009; Shackelford et al., 2013). Consistent with a previous

analysis (The Cancer Genome Atlas Research Network, 2014),

we found this gene to be more frequently mutated in males

than in females, even after correcting for potential confounders

(male versus female: 22.8% versus 11.3%, p < 6.9 3 10�4,

FDR = 0.033). Another gene of interest in LUAD is DMD, which

encodes a protein called dystrophin and is presumably respon-

sible for Duchenne and Becker muscular dystrophies (Tennyson

et al., 1995). The mutations in this gene were highly biased to-

ward female patients (8.4% versus 19.6%, p < 3.7 3 10�4,

FDR = 0.029). In particular, compared with the mutations in

males, those in females had a greater tendency to be loss-of-

function truncating mutations (Fisher’s exact test, p < 0.026, Fig-

ure 2C). EGFR, a major therapeutic target in LUAD, showed a

higher mutation frequency in female patients but did not reach
714 Cancer Cell 29, 711–722, May 9, 2016
the FDR cutoff (9.8% versus 15.8%, p < 0.042, FDR = 0.28),

which is consistent with previous reports (Marchetti et al.,

2005; Schuette et al., 2015). The only sex-biased mutation

gene we identified in LICH was CTNNB1, the activation of which

could affect the sensitivity to EGFR inhibitors, PI3K inhibitors,

AKT inhibitors, and WNT inhibitors (Anastas and Moon, 2013;

Nakayama et al., 2014; Tenbaum et al., 2012). This gene is

more frequently mutated in males (37.9% versus 12.2%, p <

1.2 3 10�4, FDR = 7.4 3 10�3), and we further confirmed this

pattern in an independent sample cohort (Ahn et al., 2014)

(22.9% versus 12.5%, p < 0.044, Figure 2C).

To identify sex-biased SCNAs, we focused on the most signif-

icant SCNAs identified by GISTIC (Mermel et al., 2011) in each

cancer type. The number of region-based SCNAs (including

both focal and arm-level amplifications/deletions) we surveyed

ranged from 68 in KIRP to 122 in LUAD. At FDR = 0.05, we iden-

tified sex-biased SCNAs in LUSC, KIRP, and KIRC, all of which

were in the strong sex-effect group. Figure 3 provides an over-

view of the statistical significance of sex-biased focal amplifica-

tions and deletions in these three cancer types, showing a total

of 21 significant peaks (FDR % 0.1). Notably, these sex-biased

SCNAs cover quite a number of clinically actionable genes (as

highlighted in Figure 3). Among them, two gene groups are of

particular clinical interest. One group is related to the phosphoi-

nositide 3-kinase (PI3K) pathway, which represents the signaling

pathway most commonly activated in human cancer and has

been under intensive clinical investigation (Liu et al., 2009),

and related genes include PIK3CA, MTOR, PTEN, NF1, and

FBXW7. In LUSC, an SCNA (17q11.2) harboring NF1 is more

frequently deleted in females, and the inactivation of this gene

has been associated with sensitivity to mTOR inhibitors and

resistance to MEK inhibitors (Janku et al., 2014; Nissan et al.,

2014). In KIRP, the 4q34.3 deletion containing FBXW7 occurs

more frequently in females, and the deletion of this gene may

affect the sensitivity to rapamycin treatment and antitubulin che-

motherapeutics (Mao et al., 2008;Wertz et al., 2011). In KIRC, the

amplicon 3q26 containing PI3KCA occurs more frequently in fe-

males, and PI3KCA activation has been reported to predict the

sensitivity to PI3K/AKT/mTOR inhibitors (Janku et al., 2012);

and the deletions of 1p36.23 (harboring MTOR) and 10q23.31

(harboring PTEN) are more prevalent in male patients. Another

group is several therapeutic targets for cancer immunotherapy,

which were detected in KIRC. TNFRSF8 (CD30) and CD52 are

more frequently lost in males, and these two genes are the tar-

gets of Food and Drug Administration (FDA)-approved drugs

for lymphoma and B cell chronic lymphocytic leukemia, respec-

tively (Buggins et al., 2002; Younes et al., 2013). The deletion

involving PDCD1 (PD-1) shows a similar bias; this gene repre-

sents an immune checkpoint and has been a major focus in

the development of immunotherapy (Pardoll, 2012).

Sex-Biased Gene Expression Signatures
To characterize the sex-biased gene expression signatures in a

comprehensivemanner, we performed analyses on RNA expres-

sion (�20,000 genes, including �17,000 protein-coding genes

and �3,000 noncoding genes), DNA methylation (�16,000 pro-

tein-coding genes), miRNA (�500), and protein expression (191

proteins and phosphorylated proteins). For RNA expression, the

number of sex-biased genes in the weak sex-effect group was
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parentheses summarize the number of truncating mutations, and the p value was calculated with Fisher’s exact test.
very limited (Figure 1C); while the number of sex-biased genes in

the strong sex-effect group was much higher (ranging from 79 in

BLCA to 2,819 in KIRC, FDR % 0.05), up to 14% of the whole

gene set under survey. As expected, we found that the sex-

biased genes were significantly enriched in the sex chromo-

somes (i.e., chrX and chrY); and, in particular, the vast majority

(88%) of the sex-biased genes in at least four cancer types

come from these two chromosomes (Figure S2A, Fisher’s exact

test, p = 2.2 3 10�16). For comparison, we performed a similar

analysis of themRNA expression data from related normal tissue

samples of the five cancer types in the strong sex-effect group

(Table S4). Although much fewer sex-biased genes were de-

tected in the normal samples (likely due to the much smaller
sample sizes), we observed the same enrichment of sex-biased

genes in the sex chromosomes. One of the most commonly

identified genes is XIST, a major effector of chromosome X inac-

tivation; and its role in cancer has been extensively studied (Ga-

nesan et al., 2002; Vincent-Salomon et al., 2007). In parallel, we

found many more genes with a sex-biased DNA methylation

pattern in the strong sex-effect group than in the weak sex-effect

group (Figure 1C). We also identified sex-biasedmiRNA genes in

six cancer types, five of which are in the strong sex-effect group.

Focusing on the eight cancer types in the strong sex-effect

group, we further examined the genes identified by RNA expres-

sion (FDR% 0.05), and found that, in all the cancer types, the sex

bias observed at the mRNA level of a gene tended to be the
Cancer Cell 29, 711–722, May 9, 2016 715
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opposite of that at its DNA methylation level. This is consistent

with the established role of DNA methylation in gene regulation:

hypermethylation leads to gene silencing, while hypomethylation

results in the up-regulation of gene expression (Figure 4A).

To gain insight into the global patterns of the sex effect on

gene expression, we performed a gene-set-enrichment analysis

(GSEA) given the gene ranks according to the sex bias, and iden-

tified the affected pathways. In general, we observed biologically

sensible, contrasting sex-bias patterns at the mRNA and DNA

methylation levels (Figure 4B). We obtained similar results after

excluding the genes in the sex chromosomes (Figure S2B).

Thus, both gene-based and gene-rank-based pathway-enrich-

ment analyses indicated that the sex-biased mRNA expression

patterns in the strong sex-effect cancers are partially the result

of the corresponding sex-biased DNA methylation.
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Combining the analyses on mRNA and DNA methylation, we

identified several themes among the sex-affected pathways.

The first group relates to the immune response, including allo-

graft rejection, IL2 and STAT5 signaling, IL6, JAK, and STAT3

signaling, inflammatory responses, interferon alpha response,

interferon gamma response, and TNF-a signaling and comple-

ment. These enrichments are well aligned with the long-standing

observation that females and males often mount significantly

different immune responses (Purtilo and Sullivan, 1979; Wein-

stein et al., 1984). The second group relates to apoptosis and

the cell cycle, including E2F targets, the G2/M checkpoint,

mitotic spindle, andMyc targets. The targets of E2F transcription

factors play a major role during the G1/S transition and, interest-

ingly, some target genes encode differentiation factors that

are transcribed in developmentally regulated and sex-specific



patterns (Dimova et al., 2003). The third group is several meta-

bolism-related pathways such as angiogenesis, bile acid

metabolism, fatty acid metabolism, glycolysis, and xenobiotic

metabolism. Notably, sex-relatedmetabolic differences and hor-

monal regulation have been reported in several studies (Drolz

et al., 2014; Mittelstrass et al., 2011). Finally, DNA repair and

P53 pathways also show sex-biased expression signatures in

several cancer types including HNSC, KIRC, and LIHC.

As for protein expression, we found abundant sex-biased pro-

tein expression signals in HNSC and KIRC. Interestingly, 12 (of

the 15) sex-biased proteins identified in HNSC or 18 (of the 25)

sex-biased proteins identified in KIRC form well-connected reg-

ulatory networks (Figures 4C and 4D); SRC and MAPK proteins

take a central position in both networks. SRC plays a key role

in regulating a variety of cellular-signaling transduction path-

ways, and the frequent activation of the SRC kinase pathway

has been observed in many caner types, especially in metastatic

diseases (Dehm and Bonham, 2004). Thus, targeted inhibition of

SRC signaling has been suggested as an effective therapeutic

strategy and has been under intensive clinical investigation in

several cancers, including renal cell cancer (Araujo and Logo-

thetis, 2010; Suwaki et al., 2011). Indeed, the factor of female

sex has been reported to predict the response of imatinib, an

inhibitor of BRC-ABL tyrosine kinase that also affects the SRC/

MAPK pathway, in patients with chronic myeloid leukemia (Dein-

inger et al., 2003; Valeyrie et al., 2003). This finding may be rele-

vant to the female-biased expression pattern observed here.

Sex-Biased Molecular Signatures of Clinically
Actionable Genes
To investigate the clinical implications of the sex-biased mo-

lecular signatures, we focused on a set of clinically actionable

genes, which includes 86 therapeutic targets of FDA-approved

drugs or their associated predictive marker genes. Across

the various molecular dimensions we examined (Figure S3), we

found that 60 genes are associated with at least one type of

sex-biased signature, almost all of which were identified in seven

of the eight cancer types in the strong sex-effect group, ranging

from two in LUAD/LUSC to 32 in KIRC (Figure 5). Among these

genes, quite a few showed sex-biased signatures in the cancer

type for which their relevant drugs are being used in clinical prac-

tice, which is of particular importance. For example, EGFR, argu-

ably the most important therapeutic target in LUAD, shows

female-biased mRNA expression, which may contribute to a

higher response rate in female patients (Shepherd et al., 2005).

TOP2B shows male-biased DNA methylation in BLCA, and the

relevant drug valrubicin is being used as an intravesical therapy

for BCG-refractory carcinoma in situ of the urinary bladder. Var-

lrubicin can increase the risk of heart failure, but this side effect

can be suppressed by tamoxifen, an agonist of estrogen (Zhang

et al., 2012), which suggests that the innately distinct back-

ground level of sex hormone (e.g., estrogen levels) between

male and female patients may lead to different drug responses

or efficacy. Across cancer types, the two kidney cancers (KIRC

and KIRP) contain the most clinically actionable genes, with a

KIRP signature including FBXW7, FGFR1, RET, and TSC2, and

a KIRC signature including FGFR3, AKT, TSC2, and KIT. These

results highlight the clinical importance of sex-biased molecular

signatures.
DISCUSSION

Although the significance of the sex effect in cancer incidence,

prognosis, and treatment responses has long been recognized

in the literature, its molecular basis has largely remained elusive.

Our study represents a comprehensive and well-controlled anal-

ysis that focuses on themolecular differences betweenmale and

female patients across a broad range of cancer types, and sys-

tematically catalogues the molecular signatures related to the

sex effect from DNA to RNA to protein. Using the propensity

score algorithm, we controlled the potential confounders (both

patient characteristics such as age and smoking status, and tu-

mor characteristics such as stage, histology subtype, and tumor

purity) whenever possible in the analysis. Thus, for the TCGA

datasets we assessed, the detected molecular differences be-

tween the two sex-effect groups could not be attributed to these

potential confounders. Based on multidimensional molecular

signatures, we defined two distinct cancer groups (weak sex-ef-

fect versus strong sex-effect): the cancer types in the weak

group contain a very limited number of sex-biased genes and

are associated with more balanced incidence and mortality

ratios; whereas cancers in the strong group show extensive

sex-biased molecular signatures and are associated with more

distorted incidence and mortality ratios. This molecular classifi-

cation of cancer types we put forward will help to achieve a

molecular-level understanding of how the sex factor affects the

behavior of different cancer types.

Given the widespread sex-biased gene expression signatures

in the strong sex-effect group, it would be interesting to identify

to what extent the observed sex bias is specific to cancer sam-

ples and elucidate the contributing factors. Our analysis based

on the mRNA expression data of related TCGA normal samples

detected much fewer sex-biased genes, suggesting the sex bias

might be amplified during the tumorigenesis process. However,

this observation should be interpreted with caution, because (1)

the so-called normal tissues actually consist of quite distinct cell

types from the corresponding tumor samples (e.g., the pro-

portion of epithelial cells), which may confound the observed

tumor-normal differences; and (2) the sample size of normal tis-

sues is much smaller than that of the corresponding tumor sam-

ples, which may limit the detection power. Thus, further efforts

are required to elucidate the relative contributions of various fac-

tors (e.g., sex chromosomes, hormones, and tumorigenesis) to

the observed sex-biased gene expression signatures in cancer

samples.

Our study reports 53% of clinically actionable genes (i.e., ther-

apeutic targets and biomarkers) with a sex-related molecular

pattern, and this proportion is significantly higher than that

for all protein-coding genes (39%). However, this enrichment

may not be surprising. Because most genes were not or rarely

mutated or gained/lost in cancer samples, we could only

examine the sex effect for highly mutated genes or frequent

SCNAs. These genes or regions are enriched for cancer driver

genes, and driver genes tend to be clinically actionable genes.

As for protein expression data, those protein markers in the

profiling platformwere selected to represent clinically actionable

genes. When we focused on mRNA and DNA methylation data,

the two relatively unbiased platforms, and repeated the analysis,

we observed the sex-biased signatures in 40% (46/114) of
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across cancer types (right). Different symbol shapes indicate different types of molecular signatures, and the filled shapes indicate that the gene is a therapeutic

target of clinical practice in the corresponding cancer type. See Figure S3.
clinically actionable genes, which is no longer statistically signif-

icant. Such a systematic identification of sex-biased signatures

for clinically actionable genes has crucial clinical implications.

Currently, male and female patients with many cancer types

are often treated in a similar way without explicitly considering

the factor of sex. While this practice may be appropriate for

the cancer types in the weak sex-effect group, special consider-

ation should be given to those in the strong sex-effect group in

terms of both drug development and clinical practice. For a ther-

apeutic target with a strong sex-biased signature, sex-specific

clinical trials may be more likely to succeed. For example, SRC

appeared to have a much higher protein expression level in
(B) The biological pathways identified by GSEA based on the sex-biased gene ra

statistically significant enriched pathways (mRNA: FDR % 0.05; DNA methylatio

shown in red and blue, respectively.

(C and D) The gene regulatory networks formed by the proteins with a sex-biased p

HNSC and (D) KIRC. See Figure S2 and Table S4.
females than in males with HNSC, but two recent dasatinib-

driven clinical trials in this disease failed (Brooks et al., 2011;

Fury et al., 2011), which might be due to the small proportion

of female patients recruited in these studies (4/15 and 2/9,

respectively). Our results thus provide a valuable starting point

from which sex-specific effects should be explicitly considered

in future clinical investigations. In clinical practice, even when

the molecular data for a specific drug target are not available

for a patient, it would be helpful to use the sex-biased molecular

signatures identified as prior knowledge when making a choice

among different treatment options. Since TCGA clinical infor-

mation may not be complete and rigorously annotated, future
nks of mRNA expression (left) and DNA methylation (right). Boxes highlight the

n: FDR % 0.2), and enrichment for female-biased and male-biased genes are

rotein expression level (FDR% 0.05) and their potential miRNA regulators in (C)
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studies on this topic would require analyses on additional patient

cohorts with more carefully annotated clinical variables, as well

as the efforts of assessing the clinical utility of the sex-biased

signatures identified.

EXPERIMENTAL PROCEDURES

Propensity Score Algorithm

We obtained TCGA patient and tumor characteristics (e.g., sex, age at diag-

nosis, smoking status, tumor stage, and histology subtype) for the 13 cancer

types from the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/), and the

tumor purity data from Synapse: syn3242754. We obtained various types of

TCGA molecular data as described in subsequent sections. Given the patient

and tumor variables in the sample cohort for a specific molecular data type,

we first calculated the propensity score based on ‘‘sex’’ using logistic regres-

sion. Then we employed the matching weight scheme (Li and Greene, 2013)

to re-weight the samples based on the calculated scores. This step balanced

the propensity scores and ultimately the covariates. The design followed a

strict checking loop so that the propensity score model could be revised

continuously until all covariates were balanced between the male and female

groups (i.e., standardized differences <10%). After completing the above pro-

cedure, we compared the molecular data between the two balanced groups

by supplying the weight vector calculated from the balancing step to a linear

regression model using sex as the sole independent variable, and quantified

the relative fold-change and corresponding statistical significance (e.g., raw

p and FDR) of the sex effect. For each data type and each cancer type,

we identified a significant feature (gene) set at FDR % 0.05. To further

ensure that the signals detected were above the level of random noise, we

performed permutation tests by randomly shuffling the sex label of the

patients (while the other variables remained the same) and repeated the

propensity score balancing/calculation procedure on the permutated data.

The above procedure was conducted independently 100 times. We then

compared the hit number in a significant feature set inferred from the original

dataset with those from the permuted datasets to assess whether the signals

we observed from the original data were true (caused by sex) or due to

random noise. Only the significant feature sets showing statistical signifi-

cance (p % 0.05) in the permutation tests were retained for further analysis

(Figure S1C).

Patient Statistical Data Analysis

We obtained the incidence and mortality data from the literature (Lipworth

et al., 2014; Ostrom et al., 2014; Siegel et al., 2015) and the Surveillance,

Epidemiology, and End Results Program of the National Cancer Institute

(http://seer.cancer.gov/data/). For both incidence and mortality rates, the

sex-bias index was defined as the maximum (female-to-male ratio, male-to-

female ratio). The Wilcoxon sum rank test was used to compare the sex-

bias indexes between the weak sex-effect and strong sex-effect groups.

Cancer prognostic factor information was obtained from the NCCN Clinical

Practice Guidelines in Oncology (www.nccn.org/professionals/physician_gls).

Analysis of Somatic Mutation Data

We obtained the mutation data (MAF files) from Firehose (http://gdac.

broadinstitute.org) (2015 April) and retained only non-silent mutations for anal-

ysis. To prevent the potential bias introduced by ultramutated samples, we

filtered out the samples with >1,000 mutations in their exomes. We focused

on the non-silent mutations with R5% mutation frequency in a patient cohort

because of their potential biological significance and detecting power in the

analysis. We applied the propensity score algorithm to identify the mutated

genes that show significant differences between male and female patients

at FDR = 0.05 and permutation test p = 0.05. We obtained an independent

cohort of liver cancer (Ahn et al., 2014), and performed the same procedure

as for the TCGA data. For selected genes of interest, we extracted mutation

information from the MAF file and generated the lollipop plot using Mutation-

Mapper from cBioPortal (Cerami et al., 2012). Truncating mutations referred

to those involving frame shift, nonsense and splicing sites. Fisher’s exact

test was used to compare truncating versus other mutation patterns between

male and female patients.
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Analysis of Somatic Copy-Number Alterations

We obtained significant SCNAs (both focal- and arm-level) from Firehose

(2014 April). The propensity score algorithm was applied to identify the cancer

types with a sex-biased SCNA at FDR = 0.05 and permutation test p = 0.05.

The sex bias was determined according to the relative levels of SCNAs in

male and female patients, and their nature (i.e., whether it was an amplification

peak or deletion peak). The cancer genes were annotated (Futreal et al., 2004).

Clinically actionable genes are defined below.

Analysis of mRNA Expression and DNA Methylation Data

Weobtained normalizedmRNA expression data based on RNA-seq (RNA-Seq

by expectation maximization [RSEM]) from the TCGA data portal. The propen-

sity score algorithm was applied to the log2-transformed RSEM to identify the

genes that show significant differences between male and female patients at

FDR = 0.05 and permutation test p = 0.05. To identify sex-biased pathways,

we performed GSEA (Subramanian et al., 2005) based on the full set of genes,

ranked on the basis of the female-biased or male-biased mRNA expression

fold-change and statistical significance, and detected significant pathways

at FDR = 0.05. We performed a similar analysis on gene expression data of

normal tissue samples from five cancer types.

We obtained DNA methylation 450K data from the TCGA data portal. Since

multiple methylation probes can be mapped to a single gene, we first gener-

ated a one-to-one gene-methylation probe mapping by preserving the

methylation probes that are most negatively correlated with the correspond-

ing gene expression. We then applied the propensity score algorithm to the

re-annotated methylation data, performed the same GSEA as for the mRNA

expression data, and detected significant pathways at FDR = 0.2. In addition,

to elucidate the regulatory mechanism of sex-biased gene expression

patterns, for the genes with a sex-biased mRNA signature (FDR % 0.05),

we examined whether their methylation patterns were significantly sex-

biased (p % 0.05) and used Fisher’s exact test to assess the concordance

of their directions (i.e., whether it was a male-biased or female-biased

signature).

Protein and miRNA Expression Analyses

We obtained the protein expression data from The Cancer Proteome Atlas

(Li et al., 2013) and the miRNA expression data (in reads per million) from

Firehose (2014 October). The propensity score algorithm was applied to iden-

tify the proteins/miRNAs that showed significant differences between male

and female patients at FDR = 0.05 and permutation test p = 0.05. Among

these candidate miRNAs, we further identified potential miRNA regulators

for these sex-biased proteins using two criteria: (1) the mature miRNA has

the identified sex-biased protein genes as either experimentally validated tar-

gets from miRTarBase (Hsu et al., 2011), or computationally predicted targets

from three well-established miRNA-target prediction databases TargetScan,

miRanda and miRDB (John et al., 2004; Lewis et al., 2003; Wong and

Wang, 2015); and (2) the candidate miRNA shows the opposite sex bias as

that of the protein.

Analysis of Clinically Actionable Genes and Drugs

We defined clinically actionable genes as FDA-approved therapeutic targets

and their relevant predictor markers (Van Allen et al., 2014). We obtained the

hematology/oncology (cancer) drugs and prescription information from the

website (http://www.fda.gov/Drugs/InformationOnDrugs/) during the period

of 1995–July 2015.
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