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Abstract

Long noncoding RNAs (lncRNA) have emerged as essential
players in cancer biology. Using recent large-scale RNA-seq data-
sets, especially those from The Cancer Genome Atlas (TCGA),
we have developed "The Atlas of Noncoding RNAs in Cancer"
(TANRIC; http://bioinformatics.mdanderson.org/main/TANRIC:
Overview), a user-friendly, open-access web resource for interac-
tive exploration of lncRNAs in cancer. It characterizes the expres-
sion profiles of lncRNAs in large patient cohorts of 20 cancer
types, including TCGAand independent datasets (>8,000 samples
overall). TANRIC enables researchers to rapidly and intuitively

analyze lncRNAs of interest (annotated lncRNAs or any user-
defined ones) in the context of clinical and other molecular data,
both within and across tumor types. Using TANRIC, we have
identified a large number of lncRNAs with potential biomedical
significance, many of which show strong correlations with estab-
lished therapeutic targets and biomarkers across tumor types or
with drug sensitivity across cell lines. TANRIC represents a valuable
tool for investigating the function and clinical relevance of lncRNAs
in cancer, greatly facilitating lncRNA-related biologic discoveries
and clinical applications. Cancer Res; 75(18); 3728–37. �2015 AACR.

Introduction
The human genome encodes approximately 20,000 protein-

coding genes and also a large number of transcriptionally active,
noncoding RNAs (�14,000 according to the ENCODE annota-
tion; ref. 1). Among noncoding RNAs, long noncoding RNAs
(lncRNA), typically >200bp, have increasingly been recognized as
playing essential roles in tumor biology, representing a new focus
in cancer research (2–4). Emerging evidence has indicated that
lncRNAs contribute to tumor initiation and progression through
diverse mechanisms ranging from epigenetic regulation of key
cancer genes (5, 6) and enhancer-associated activity (7) to post-
transcriptional processing of mRNAs (8, 9). Therefore, central
tasks in cancer research are the identification of lncRNA compo-
nents involved in carcinogenesis and elucidation of their func-
tions in specific tumor contexts. That inquiry is expected to lay the
foundation for development of novel biomarkers and therapeutic
agents.

Recent RNA-seq data over large cancer patient cohorts provide
an unprecedented opportunity to pursue that inquiry in a sys-
tematic way. In particular, The Cancer Genome Atlas (TCGA)
represents a unique resource as it generates multidimensional
data at the DNA, RNA, and protein levels for a broad range of
human tumor types (10). However, there are several computa-
tional challenges for biomedical researchers to make full use of
these data and prioritize lncRNAs for further functional investiga-
tions. First, the number of expressed lncRNAs in human cancers is
large. For example, a very recent pan-cancer analysis reveals
approximately 8,000 tumor-specific or lineage-specific lncRNAs
(11). In terms of prioritizing lncRNAs with potential clinical
relevance and elucidating their mechanisms, it is very informative
to perform the correlation analysis of lncRNA expression with
clinical variables (e.g., patient survival) or with the molecular
characteristics of driver genes or therapeutic targets (e.g., PTEN
loss or HER2 status) over large patient cohorts. But because of
high dimension and complexity of the data involved, such anal-
yses are often daunting and time-consuming. Second, the anno-
tationof lncRNAs in the humangenome is rough, very incomplete
and fast evolving, so it is important for researchers to be able to
query the expression profiles of user-defined lncRNAs (based on
genomic coordinates). This function is not available in current
lncRNA-related bioinformatics resources as it requires the calcu-
lation directly from ahuge amount of rawRNA-seqmapping files.
Third, given lncRNA candidates of interest, it is critical to examine
their profiles in a variety of cancer cell lines, which allows
researchers to choose appropriatemodel systems for experimental
studies. Unfortunately, efficient bioinformatics tools with the
above functions are still missing, representing a major barrier for
the cancer research community to a systems-level understanding
of the function and underlying mechanisms of lncRNAs.

Tofill the gap,wehavedevelopedTheAtlas ofNoncodingRNAs
in Cancer (TANRIC), a user-friendly, open resource for interactive
exploration of lncRNAs in the context of TCGA clinical and
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genomic data. Using TANRIC, we have demonstrated that a large
number of lncRNA species show differential expression among
known tumor subtypes or in correlation with clinical variables;
many lncRNAs show strong correlations with established thera-
peutic targets and biomarkers across tumor types or with drug
sensitivity across cell lines; and the tumor subtypes defined by
lncRNA-expression profiles show extensive concordance with
established tumor subtypes and provide potential prognostic
value.

Materials and Methods
Data resource

We downloaded RNA-seq BAM files of 6,309 patient samples
(including 6,083 primary tumor samples and 226 metastasis
samples) across 20 TCGA cancer types and their related 564
non-tumor tissue samples (if available; ref. 10) from the UCSC
Cancer Genomics Hub (CGHub, https://cghub.ucsc.edu/).
Included were bladder urothelial carcinoma (BLCA), brain
lower-grade glioma (LGG), breast invasive carcinoma (BRCA),
cervical squamous cell carcinoma and endocervical adenocar-
cinoma (CESC), colon adenocarcinoma (COAD), skin cutane-
ous melanoma (SKCM), glioblastomamultiforme (GBM), head
and neck squamous cell carcinoma (HNSC), kidney chromo-
phobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), liver hepatocellular car-
cinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), ovarian serous cystadenocarcinoma

(OV), prostate adenocarcinoma (PRAD), rectum adenocarcino-
ma (READ), stomach adenocarcinoma (STAD), thyroid carci-
noma (THCA), and uterine corpus endometrioid carcinoma
(UCEC). We also downloaded 739 BAM files of Cancer Cell Line
Encyclopedia (CCLE) cell lines (12) from CGHub. In addition,
we obtained the RNA-seq files of 531 samples from another
three independent studies, including LUAD (13), clear-cell
renal cell carcinoma (14), and glioblastomas (15). In total, the
current TANRIC release includes RNA-seq data from 8,143
samples (1,142 billion reads).

Efficient algorithm for expression quantitation of user-defined
lncRNAs

To calculate the expression of a user-defined lncRNA, TANRIC
accepts the genomic coordinates of multiple segments as the
input (e.g., given a lncRNA of 3 exons, the input could
be "chr7:27135713–27136007;27138458–27138985;27139398–
27139585"). The total exon length of a queried lncRNA should
be shorter than 50 kb. To minimize the computation time for
quantifying user-defined lncRNA expression, we preprocessed
all raw BAM files through three steps: (i) extraction of sequence
depth data from raw BAM files using SAMtools; (ii) division of
genome-wide depth data into short segments (�3,000,000 bp);
(iii) merged of the data into a single file, thereby minimizing
thefile input/output timewhendealingwithhundreds of samples
for each cancer type; (iv) compression of the merged depth files
using a block compression algorithm; and (v) generation of

Figure 1.
Summary of TANRIC architecture.
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corresponding index files for quick location and retrieval of
queried data. We quantified the lncRNA expression as reads per
kilobase permillionmapped reads (RPKM; ref. 16) and generated
the expressionprofile in adynamic table.Withdata preprocessing,
the time for calculating lncRNA expression was reduced by >100-
fold compared with that of SAMtools. Currently, TANRIC, oper-
ating single threaded, can generate the expression profile for any
user-defined lncRNA in a minute. That capability dramatically
improves performance, enabling rapid analysis of specified
lncRNAs through a web interface.

Implementation of the TANRIC data portal
The expression data on annotated lncRNAs and the precalcu-

lated correlations with clinical and genomic data are stored in
CouchDB.Correlation, differential analyses, and survival analyses
were performed in R. The Web interface was implemented in
JavaScript; tables were visualized by DataTables; the embedded
plots were based on HighCharts; and heat maps were generated
using the Next-Generation Clustered Heat Map tool (Broom,
Weinstein and colleagues; unpublished data).

Expression quantitation of annotated lncRNAs
To perform a comprehensive survey of human lncRNAs, we

obtained the genomic coordinates of 13,870 human lncRNAs
from the GENCODE Resource (version 19; ref. 1). We further
filtered those lncRNA exons that overlapped with any known
coding genes based on the gene annotations of GENCODE (1)
and RefGene. As a result, the analysis focused on the remaining
12,727 lncRNAs. On the basis of the BAM files, we quantified
the expression levels of lncRNAs as RPKM, and the lncRNAs
with detectable expression were defined as those with an
average RPKM � 0.3 across all samples in each cancer type,
as defined in the literature (17).

Analysis of expressed lncRNAs for biomedical significance
We obtained the clinical information associated with tumor

samples, including the patient's overall survival time, tumor stage,
and tumor grade from Synapse TCGA Pan-Cancer data portal
(https://www.synapse.org/), with ID syn300013. We also
obtained known tumor subtype information from TCGA marker
articles (if available). To identify lncRNAs differentially expressed
between tumors andmatchednormal samples, weused the paired
Student t test to assess the statistical difference between the two
groups. To identify lncRNAs differentially expressed among estab-
lished tumor subtypes or tumor stages, we used ANOVA to assess
the statistical difference.Groupswith fewer thanfive sampleswere
excluded from the analysis.

Analysis of lncRNA expression related to potential clinical
applications

We obtained a list of 121 actionable target genes from Van Allen
and colleagues (18) and added two genes that are well-established
targets in immune therapy. We downloaded TCGA molecular pro-
filingdata of these target genes, including somaticmutations,mRNA
expression, miRNA expression, and somatic copy-number alter-
ation (SCNA) data from Synapse TCGA Pan-Cancer data portal.
Student t tests were used to assess the statistical difference in lncRNA
expression between mutated and wild-type samples given a gene of
interest, and Spearman rank correlations were used to assess rela-
tionships between lncRNA expression and SCNA or mRNA, with a
coefficient (absolute value) cutoff of 0.6. Multiple comparisons
correction was performed using the Benjamini–Hochberg method
with a corrected false discovery rate (FDR) cutoff of 0.05, and a
2-fold change between at least two groups was also required. To
assess the effects of lncRNA expression on drug sensitivity, we
downloaded the drug screening data from CCLE (http://www.
broadinstitute.org/ccle/home), and calculated the correlations
between the expression levels of approximately 1,290 expressed

Table 1. Summary of the data resources of the current TANRIC release

Data source Cancer type
#Normal
samples

#Tumor
samples

Sequencing
strategy

Read
length

#Expressed
lncRNAsa

TCGA Bladder urothelial carcinoma (BLCA) 19 252 Paired-end 48 1,958
TCGA Brain lower grade glioma (LGG) 0 486 Paired-end 48 2,301
TCGA Breast invasive carcinoma (BRCA) 105 837 Paired-end 50 1,960
TCGA Cervical squamous cell carcinoma

and endocervical adenocarcinoma (CESC)
3 196 Paired-end 48 1,846

TCGA Colon adenocarcinoma (COAD) 0 157 Single-end 76 714
TCGA Skin cutaneous melanoma (SKCM) 0 226 Paired-end 48 1,755
TCGA Glioblastoma multiforme (GBM) 0 154 Paired-end 76 2,369
TCGA Head and neck squamous cell carcinoma (HNSC) 42 426 Paired-end 48 1,357
TCGA Kidney chromophobe (KICH) 25 66 Paired-end 48 1,971
TCGA Kidney renal clear cell carcinoma (KIRC) 67 448 Paired-end 50 2,111
TCGA Kidney renal papillary cell carcinoma (KIRP) 30 198 Paired-end 48 2,118
TCGA Liver hepatocellular carcinoma (LIHC) 50 200 Paired-end 48 1,446
TCGA Lung adenocarcinoma (LUAD) 58 488 Paired-end 48 2,031
TCGA Lung squamous cell carcinoma (LUSC) 17 220 Paired-end 50 1,883
TCGA Ovarian serous cystadenocarcinoma (OV) 0 412 Paired-end 75 1,866
TCGA Prostate adenocarcinoma (PRAD) 52 374 Paired-end 48 2,010
TCGA Rectal adenocarcinoma (READ) 0 71 Single-end 76 716
TCGA Stomach adenocarcinoma (STAD) 33 285 Paired-end 75 1,328
TCGA Thyroid carcinoma (THCA) 59 497 Paired-end 48 1,900
TCGA Uterine corpus endometrioid carcinoma (UCEC) 4 316 Single-end 76 855
CCLE Tumor cell lines 0 739 Paired-end 101 2,137
Independent Chinese_GBM 0 274 Paired-end 101 2,419
Independent Japanese_KIRC 0 97 Paired-end 100 2,308
Independent Korean_LUAD 77 83 Paired-end 101 2,569
aExpressed lncRNAs defined as those with an average RPKM � 0.3 across all samples in each cancer type.
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Figure 2.
Overview of TANRIC data portal. The panel of six modules (i); the "Summary" module (ii); the "next-generation clustered heat map" view in the "Visualization"
module (iii); the "Download" module (iv); the three analysis modules provide raw expression data on a lncRNA of interest (v); the analysis modules provide
clinical data analysis of lncRNAs (including differential analysis among tumor subtypes, stages, and grades) and analysis of correlation with patient survival (vi);
and the analysis modules provide genomic data analysis of lncRNAs, including differential analysis between mutated and wild-type samples for a protein-coding
gene of interest and analysis of correlations with SCNA, miRNA, mRNA, and protein expression (vii).
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lncRNAs and the IC50 values of 24 drugs across approximately 330
cell lines. Spearman rank correlations were used to detect significant
correlations with a coefficient (absolute value) cutoff of 0.3.

Analysis of tumor subtypes revealed by lncRNA expression
To classify tumor subtypes based on lncRNA expression, for

each cancer type, we selected the 500 lncRNAs with the most
variable expression pattern and used ConsensusClusterPlus
(19) to classify the tumor samples into sample clusters (sub-
types). We then used the c2 test to determine concordance
between lncRNA-expression subtypes and known subtypes, and
the log-rank test to examine whether lncRNA-expression sub-
types significantly correlated with the overall patient survival
times. To understand the molecular mechanisms associated
with lncRNA subtypes, we downloaded reverse-phase protein
array (RPPA) expression data from The Cancer Proteome Atlas
(20). Pathway analysis was conducted as previously described
(21). Briefly, the members of each pathway were predefined on

the basis of a literature search. RPPA data were median-centered
and normalized by SD across all samples for each component
to obtain relative protein levels. The pathway score was then
taken as the sum of the relative protein levels of all positive
regulatory components minus the equivalent sum for the
negative regulatory components in a particular pathway. Anti-
bodies targeting different phosphorylated forms of the same
protein with Pearson correlation coefficient >0.85 were aver-
aged. We used a Student t test or ANOVA analysis to assess
statistical differences in pathway score among groups, using the
Benjamini–Hochberg correction, with FDR cutoff of 0.05.

Results
A user-friendly, interactive, open-access platform for exploring
the function of lncRNAs in cancer

To provide a comprehensive lncRNA resource to the cancer
research community, we have collected large-scale RNA-seq

Figure 3.
A large number of lncRNAs with potential biomedical significance in various cancer types. A, the total bars represent the numbers of expressed lncRNAs;
red represents the numbers of lncRNAs differentially expressed between tumor and matched normal samples across tumor types. B, the total bars represent the
numbers of expressed lncRNAs; blue represents the numbers of differentially expressed lncRNAs among known tumor subtypes. C, the total bars represent
the numbers of expressed lncRNAs; green represents the numbers of differentially expressed lncRNAs among clinical stages, among which the light green
parts represent those with a pattern of consistent increase or decrease across stages. D, the pie chart showing the numbers of lncRNAs with biomedical
significance across tumor types.
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datasets from TCGA and other, independent studies and have
made processed lncRNA expression data plus multiple analysis
and visualization modules available through TANRIC (http://
bioinformatics.mdanderson.org/main/TANRIC:Overview; Fig. 1).
This data release, which covers 8,143 samples, has three parts
(Table 1). (i) Part one consists of TCGA tissue sample sets: 6,309
tumor samples from 20 cancer types and 564 normal samples
from 11 tissues. Other TCGA cancer sets will be added in the
coming months. (ii) Part two consists of independent tumor
tissue sample sets: one GBM set (274 samples; ref. 15), one KIRC
set (97 samples; ref. 14), and one LUAD set (83 samples; ref. 13).
Other independent sample sets will be addedwhen available. (iii)
Part three consists of tumor cell lines: 739 cell line samples from
CCLE (12). To our knowledge, this represents the largest publicly
available collection of lncRNA data with parallel multidimen-
sional cancer genomic data.

TANRIC integrates lncRNA expression data with clinical and
genomic data (Fig. 1) and provides a user-friendly interface
consisting of six modules: Summary, Visualization, Download,
My lncRNA, Analyze all lncRNAs and lncRNAs in cell lines

(Fig. 2,i). The "Summary" module shows an overview of RNA-
seq datasets in TANRIC with a detailed description of each set
(e.g., source, read length, sequencing platform, and sequencing
strategy; Fig. 2,ii). The "Visualization" module offers an inno-
vative way to examine the global patterns of lncRNA expres-
sion in a specific sample set through "next-generation clustered
heat maps" (Fig. 2,iii). The interactive heat maps allow users to
zoom, navigate, and drill down on clustering patterns (sub-
types) of samples or lncRNAs and link to relevant biologic
information sources. The "Download" module allows users to
obtain the expression data of approximately 13,000 annotated
lncRNAs for analysis (Fig. 2, iv; Materials and Methods).

TANRIC provides three analysis modules that enable users to
examine the function and underlying mechanisms of lncRNAs in
a flexible, interactive way. The "My lncRNA" module provides
detailed information about one lncRNA of interest in a user-
specified patient sample set. With the module, users can obtain
the expression data for any annotated lncRNA (Fig. 2,v) and
examine whether the lncRNA shows differential expression
between tumor and normal samples or among tumor subgroups

Figure 4.
Associations of lncRNAs with clinically actionable genes or drug sensitivity. A, numbers of lncRNAs for which the expressed levels are associated with an SCNA,
mRNA expression, or somatic mutation of clinically actionable genes in each cancer type. B, numbers of lncRNA–gene pairs across multiple cancer types.
The color bars represent the frequencies according to the clinical utility of actionable genes. C, a Manhattan plot showing the correlations of lncRNA expression
and drug IC50 across CCLE cell lines. Each dot represents one lncRNA–drug correlation and correlations for different drugs are shown in different colors.
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(as visualized through the box plots, Fig. 2,vi) or whether it
correlates with patient survival time (based on P values from the
univariate Cox proportional hazards model and log-rank test and
visualization through a Kaplan–Meier plot, Fig. 2,vi). This mod-
ule also enables users to examine the correlations of the lncRNA
with various molecular data for protein-coding and miRNA
genes. The data types include SCNAs, mRNA expression, miRNA
expression, protein expression (as visualized through the scatter
plots in Fig. 2,vii) and somatic mutations (as visualized through
the box plots, Fig. 2,vii). For example, elevated BCAR4 expression
has been shown to significantly correlate with shorter survival
time of breast cancer patients (22); and HOTAIR, a well-studied
lncRNA, is known to be coexpressed with HOXC genes (23).
Through this module, these findings can be easily confirmed on
the basis of TCGA cohorts. Because the annotation of lncRNAs is

still rough and incomplete, this module also allows for the query
of any user-defined lncRNA or its isoform (based on genomic
coordinates) and returns the analysis results. The "Analyze all
lncRNAs" module allows users to analyze approximately 13,000
ENCODE-annotated RNAs in a user-specified patient sample set.
With this module, users can easily identify the most differentially
expressed lncRNAs among tumor subtypes or those with the
strongest correlationswith patient survival times (Fig. 2,vi). Given
a known coding/miRNA gene of interest, this module helps
identify those lncRNAs with the strongest associations for various
types of molecular data (Fig. 2,vi). The results are presented in a
table, and users can search the results by lncRNA name, rank the
correlations, and visually examine the details. The "lncRNAs in
cell lines" module provides analyses similar to those in "My
lncRNA," but in sets based on cell lines. It can help users identify

Figure 5.
lncRNA expression reveals clinically and biologically relevant tumor subtypes. A, lncRNA-expression subtypes show extensive, strong concordance with established
tumor subtypes. B, lncRNA-expression subtypes appear to be correlated with overall patient survival times in BRCA, HNSC, KIRC, and LGG. C, key signaling
pathways are differentially expressed among tumor subtypes defined by lncRNA expression. The colors in the heat map represent the statistical significance
(FDR) of the associations between lncRNA-expression tumor subtypes and the protein-expression pathway scores.
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appropriate cell line models for functional experiments. Through
the TANRIC portal, users can perform extensive analyses on
lncRNAs, both within and across tumor types and obtain publi-
cation-quality figures in a convenient way.

A large number of lncRNAs with potential biomedical
significance across cancer types

Using the data and analysis modules available at TANRIC, we
performed a comprehensive survey to assess the potential bio-
medical significance of lncRNAs. First, for 12 TCGA cancer types
with available non-tumor samples, we found large numbers of
lncRNAs with significant differential expression between tumor
and matched normal samples (paired t test; FDR < 0.05; fold
change �2; Fig. 3A). As an independent validation, 81% of the
differentially expressed lncRNAs identified in the TCGA LUAD set
were confirmed in a Korean sample set (13). Second, for 11 TCGA
cancer types with established biologic or molecular subtypes
(Supplementary Table S1), we found considerable numbers of
differentially expressed lncRNAs among the known tumor sub-
types (t test or ANOVA; FDR < 0.05; fold change� 2 in at least two
groups; Fig. 3B), and those lncRNAs may play a role in defining
tumor heterogeneity within a cancer type. Third, for eight TCGA
cancer types with sufficient samples available across different
disease stages (tumor stages I–IV), we identified some lncRNAs
for which the expression patterns correlated with disease stage.
Some showed amonotonic change [e.g., 71 and 41 in kidney clear
cell cancer (KIRC) and KIRP, ANOVA analysis, FDR < 0.05, fold
change�2 in at least two groups; Fig. 3C]. Those lncRNAsmay be
involved in tumor progression. Across the above three analyses,
we demonstrate an abundance of lncRNAs with potential bio-
medical relevance, andmany of the lncRNAs show significance in
more than one cancer type (Fig. 3D).

To examine the potential impact of lncRNAs on clinical prac-
tice,we focusedon123 clinically actionable genes (18). According
to their clinical utility, we classified the genes into four groups:
(i) therapeutic targets with FDA drugs approved for cancer treat-
ment; (ii) therapeutic targets with drugs in late-stage clinical
trials; (iii) therapeutic targets with drugs in early-stage clinical

trials; and (iv) other established diagnostic and prognostic bio-
markers (Supplementary Table S2). We then examined the cor-
relations between the expressed lncRNAs and the actionable
genes, and found considerable numbers of lncRNAs strongly
correlated with one or more targets in terms of (i) differential
expression between samples with wild-type and mutated genes
(t test, FDR < 0.05, and fold change �2); (ii) in correlation
with SCNAs (Spearman rank correlation j Rs j > 0.6); and
(iii) in correlation with mRNA expression (Spearman rank cor-
relation j Rs j > 0.6; Fig. 4A). Focusing on strongly correlated
lncRNA-target pairs, we found that many of the pairs are consis-
tently identified in multiple TCGA cancer types (Fig. 4B). These
results highlight the potential of lncRNAs as regulators of key
therapeutic targets for clinical practice.

To explore the potential effects of lncRNAs on drug sensi-
tivity, we identified the expressed lncRNAs in the CCLE cell
lines (12) and examined their correlations with the sensitivity
data (IC50) of 24 drugs available. Interestingly, we found 202
lncRNA–drug pairs with significant correlations (Spearman
rank correlation j Rs j > 0.3 and FDR < 0.01; Fig. 4C). These
results suggest a critical role of some lncRNAs in affecting
the response of cancer therapies.

Biologic and clinical relevance of tumor subtypes revealed by
lncRNA expression

Finally, we examined the clinical relevance of tumor subtypes
revealed by TCGA lncRNA expression profiles. On the basis of the
top 500 lncRNAs with the most variable expression, we defined
sample subtypes (sample clusters) by ConsensusClusterPlus
(Materials and Methods; ref. 19). For each of the TCGA cancer
types we studied, lncRNA-expression subtypes show extensive,
strong concordance with established subtypes (c2 test; P < 0.05;
FDR < 0.05; Fig. 5A). For example, lncRNA subtype 1 in breast
cancer (BRCA) almost exclusively corresponds to the basal sub-
type; lncRNA subtype 5 in HNSC primarily corresponds to HPV-
negative tumors; and lncRNA subtype 1 in endometrial cancer
(UCEC) mainly represents the high copy-number molecular sub-
type (24). We next assessed the prognostic value of lncRNA-

Table 2. Comparison of TANRIC with other available lncRNA-focused bioinformatics resources

Analysis

Data resource Allow user input?
Clinical data
analysis Molecular data analysis

Namea
Total

sample size
Cancer
cell line

Non-TCGA large
patient cohorts

User-defined
lncRNAs

User-defined
sample set

Survival, grade,
stage, subtype

Genomic
data

Proteomic
data

lncRNA-expression
subtype

TANRIC 8,143 739 H H H H mutation
SCNA
mRNA
miRNA

H H

MiTranscriptome 6,938 �200 H O O O O O O

lncRNAtor 4,995 NA O O O O mRNA O O
lncRNABase �6,000 NA O O O O O O O
ChIPBase NA �80 O O O O O O O
LNCipedia NA NA O O O O O O O
lncRNAdb NA NA O O O O O O O
NONCODE NA NA O O O O O O O
lncRNome NA NA O O O O O O O
NRED NA NA O O O O O O O
DIANA-LncBase NA NA O O O O O O O
lncRNADisease NA NA O O O O O O O

Abbreviation: NA, not available.
aThe resources with a primary focus on cancer lnRNAs are shaded.
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expression subtypes. For BRCA, HNSC, KIRC, and brain LGG, the
lncRNA-expression subtypes show distinct patient survival profiles
(log-rank test, P < 0.05, Fig. 5B). As an independent validation, the
three lncRNA-expression subtypes in another independent KIRC
cohort (14) also show a significant correlation with the overall
patient survival times (Supplementary Fig. S1). Furthermore, given
clinical variables (i.e., disease stage and tumor grade), the lncRNA
subtypes confer additional prognostic power in BRCA and KIRC
(multivariate Cox proportional hazards model, P < 0.05).

To explore molecular mechanisms associated with the tumor
subtypes defined by lncRNA expression, we examined whether
some biologic pathways showed some differential expression
among the tumor subtypes based on pathway scores calculated
from TCGA protein expression data (21). We found that the
tumor subtypes defined by lncRNA expression (Fig. 5A) are
associated with activation or inhibition of some pathways (Fig.
5C). These results suggest that lncRNA expression represents one
meaningful dimension; therefore, integrating lncRNA expression
with other molecular data may help characterize the molecular
basis of human cancer more fully.

Discussion
We have developed TANRIC, a user-friendly, interactive, open-

access web resource for exploring the functions and mechanisms
of lncRNAs in cancer. Compared with other available lncRNA-
focused bioinformatics resources (11, 25–34), TANRIC has sev-
eral unique features (Table 2): (i) It provides extensive, intuitive,
and interactive analyses on lncRNAs of interest for their interac-
tions with other TCGA genomic/proteomic/epigenomic and clin-
ical data types, both within a tumor type and across tumor types;
(ii) it enables users to query expression profiles of user-defined
lncRNAs quickly; (iii) it includes RNA-seq data from well-char-
acterized cell lines and other large, non-TCGA patient cohorts,
thereby allowing users to validate a pattern of interest or identify
model cell lines for experimental characterization. With the
efficient analytic modules, TANRIC substantially lowers the bar-
riers between cancer researchers and complex cancer transcrip-
tomic data (>60TB and 1,142 billion reads in the current release).
Going forward, we will constantly incorporate newly available
large-scale cancer RNA-seq data into TANRIC.

We have further demonstrated the utility of TANRIC through a
comprehensive pan-cancer analysis of expressed lncRNAs. Con-
sistentwithprevious studies (4, 11, 35, 36), our analysis revealed a

largenumber of tumor-associated lncRNAs.More importantly,we
report that some lncRNAs show strong correlations with estab-
lished therapeutic targets across tumor types or with drug sensi-
tivity across cell lines. Although the correlations donot necessarily
indicate direct cause–effect relationships, they highlight the
potential of lncRNAs as a novel class of biomarkers or therapeutic
targets. TANRIC, thus, represents a starting point for exploration
of particular lncRNA species and for generation of testable
hypotheses for further experimental investigation.
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