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Esophageal squamous cell carcinoma is a major histological type of esophageal cancer, with

distinct incidence and survival patterns among races. Although previous studies have char-

acterized somatic mutations in this disease, a rigorous comparison between different patient

populations has not been conducted. Here we sequence the samples of 316 Chinese patients,

combine them with those from The Cancer Genome Atlas, and perform a comparative

analysis between Asian and Caucasian patients. We find that mutated CSMD3 is associated

with better prognosis in Asian patients. Applying a robust computational strategy that adjusts

for both technical and biological confounding factors, we find that TP53, EP300, and NFE2L2

show higher mutational frequencies in Asian patients. Moreover, NFE2L2 mutations correlate

with the allele status of a nearby high-Fst SNP, suggesting their potential interaction. Our

study provides insights into the molecular basis underlying the striking racial disparities of

this disease, and represents a general computational framework for such a cross-population

comparison.
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Esophageal cancer disproportionately affects certain ethnic
groups and races. More than half of global esophageal
cancer cases occur in China, with 477.9 thousand new cases

diagnosed in 20151; whereas in the United States, the incidence
of esophageal cancer is much lower, with 17.9 thousand new
cases diagnosed in 20162. Histologically, esophageal squamous

cell carcinoma (ESCC) is the major type in Asian populations
(e.g., 90% of Chinese patients); while esophageal adenocarcinoma
is the dominant type in western countries3. Among American
patients, the incidence rate for ESCC is 81% higher among Asian/
Pacific Islander males compared with the rate for white males, but
is 64% lower than the rate for black males4. Furthermore, there
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Fig. 1 Schematic representation of the analytic strategy. a ESCC whole-exome sequencing data of three patient cohorts, Caucasian, Vietnamese and
Chinese, were respectively obtained from this study and TCGA. Our strategy includes two major steps to remove confounders. To remove technical
confounders, we applied the same procedure to process sequencing reads generated from the Hi-seq sequencing platform. We then performed
downsampling to balance the depth of coverage among the three cohorts, followed by a stringent method to call somatic single-nucleotide mutations using
multiple mutational callers. Second, to remove biological confounders, we calculated propensity scores, reweighted samples in the cohorts, and compared
gene mutation frequencies between two balanced cohorts. We considered five biological factors (age at diagnosis, gender, tumor stage, smoking history,
and alcohol consumption history) in the propensity score adjustment. b Hierarchical clustering pattern of patient samples by common SNP status in the
exonic regions. Asian patients and Caucasian patients form two distinct clusters
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are substantial differences among races in terms of cancer
survival5,6.

Besides external factors such as environmental differences,
behaviors, and treatment options7, it is essential to investigate the
molecular basis underlying the striking racial disparities in ESCC.
Several recent studies8–12 have characterized significantly muta-
ted genes in this disease, but a rigorous cross-population
comparative analysis remains challenging for two notable
reasons. First, mutation detection is largely affected by technical
factors, including the sequencing platform, mapping pipeline,
sequencing depths, and mutational calling algorithms, all of
which should be carefully controlled in such an analysis. The
effects of these factors are often large for mutation data collected
from different studies13. Second, biological factors such as patient
age, gender, and clinical stage also strongly impact the mutational
status of a gene14,15, and these confounding effects should be
considered when detecting race-specific mutational differences.

Results
Overall analytic strategy for cross-population comparison. To
overcome these challenges, we developed a robust computational
strategy to detect race-biased mutated genes in ESCC between
Asian patients (Chinese patients characterized by this study and
Vietnamese patients characterized by the recent The Cancer
Genome Atlas (TCGA) study8) and Caucasian patients (char-
acterized by the TCGA) (Fig. 1a). Briefly, we employed the Illu-
mina sequencing platform to generate whole-exome sequencing
(WES) data for Chinese patients and applied the same processing
pipeline to generate mapping files for both Chinese and TCGA
patients. Then, we implemented a down-sampling strategy to
remove the batch effects due to the sequencing depth variation
between the studies and robustly detected mutations using the
same strategy of multiple mutation callers. Finally, we employed
the propensity score analysis16 to remove the confounding effects
due to biological factors.

To conduct the cross-population comparison, we performed
WES for 78 Chinese patients with ESCC (Supplementary Data 1).
This patient cohort was combined with Caucasian (n= 39) and
Vietnamese (n= 41) patients with ESCC in TCGA as a discovery
cohort to identify race-specific mutational features in a genome-
wide, unbiased way. Among the three populations surveyed,
Vietnamese and Chinese populations are geographically close and
belong to the same Mongolian race. We first examined the genetic
relationship of the patients based on common single-nucleotide
polymorphism (SNP) status of the 158 WES samples. The
hierarchical clustering identified two major clusters (Fig. 1b): one
cluster contained mixed Chinese and Vietnamese patients, and
the other consisted of Caucasian patients only. In addition,
alcohol intake is one important factor for ESCC development,
especially in Asian population17. We therefore compared germ-
line variations of two important alcohol metabolizing enzymes,
ALDH2 (rs671) and ADH1B (rs1229984) in the three populations
and found very similar patterns between Chinese and Vietnamese
patients (Supplementary Fig. 1). These results confirmed the
genetic similarity between Chinese and Vietnamese patients,
justifying that they should be combined as an Asian cohort in the
comparison. We further characterized another Chinese cohort of
313 patients (of which 75 had been characterized with WES)
using targeted sequencing (283 select genes)18 as a validation
cohort to confirm the WES findings (Table 1, Supplementary
Data 1). We applied the same analytic pipeline (both mapping
and mutation calling) to the WES data of Chinese patients and
TCGA patients. We validated our mutation calls in two ways.
First, for TCGA patients, compared to the latest refined TCGA
mutation data, 96.4% of our non-silent mutation (missense

mutation, nonsense mutation and non-stop mutation) calls on
the same patients were reported. Conversely, 85.1% of TCGA
mutation calls were confirmed in our analysis. Second, for the
Chinese patients in the discovery cohort, 95.3% of our mutations
(564/592) detected in WES were validated with independently
targeted sequencing in the same patients. Further, the variant
allele frequencies characterized by WES and targeted sequencing
were highly correlated (r= 0.91, Supplementary Fig. 2). These
results demonstrate the high quality of our mutation data.

Prognostic power of CSMD3 mutation status in Asian patients.
Combining the WES mutation data from 158 Chinese, Caucasian
and Vietnamese patients, we detected seven significantly mutated
genes using MutSigCV19 (q-value= 0.1) with a mutation
frequency of ≥5% (Fig. 2a). Among them, TP53, NOTCH1,
PIK3CA, and ZNF750 have been reported in previous ESCC
sequencing studies8–11. Among novel significantly mutated genes
identified, the function of CSMD3 (CUB and Sushi multiple
domains protein 3) remains largely unknown in this disease
(Fig. 2b). CSMD3 inhibition has been reported to affect the
proliferation of airway epithelial cells20. Since this gene contains
very long introns, its elevated mutation rate might be due to
mutational heterogeneity (although MutSigCV has corrected for
gene-specific background mutation rates19). We therefore
examined the correlation of CSMD3 mutation status with patient
survival times, which is orthogonal to the mutation rate analysis.
We found that among Chinese patients with WES data (n= 78),
patients with mutated CSMD3 showed significantly better
survival time than those with the wild-type allele (Fig. 2c, log-
rank P= 0.035), and we observed a similar pattern in Asian
patient samples (n= 354) (Fig. 2d, log-rank P= 0.037). However,
there was no such pattern in Caucasian patients (Supplementary
Fig. 3). Intriguingly, a similar prognostic pattern of CSMD3 has

Table 1 Characteristics of patient cohorts surveyed in this
study

Clinical factors TCGA This study

WES WES Additional
targeted
sequencing

Caucasian Vietnamese Chinese Chinese

Gender
Male 29 39 65 215
Female 10 2 13 23

Age (years)
30–40 0 2 0 1
40–50 6 11 11 27
50–60 19 15 35 106
60–70 9 9 27 100
70–80 4 4 5 4
80–90 4 0 0 0

Tumor stage
I 6 0 0 12
II 17 31 63 118
III 14 9 15 108
IV 2 1 0 0

Smoking history
Smoked/smoking 25 22 46 160
Never 11 19 32 78
Unknown 3 0 0 0

Alcohol history
Yes 25 30 36 105
No 12 11 42 133
Unknown 2 0 0 0
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been recently reported in Chinese patients with lung squamous
cell carcinoma21. These results suggest that the mutational status
of CSMD3 is a prognostic marker for Asian populations.

Mutational rate comparison among patient populations. To
rigorously compare the mutational rates among the ESCC
populations, we first assessed the sequencing depth of exons and
found that samples from Chinese patients had a considerably
greater depth than those from Caucasian or Vietnamese patients
(Fig. 3a), which would result in an overestimation of the mutation
rate in Chinese patients. We therefore implemented a random
read downsampling strategy so that each exon had similar
sequencing depths across the three patient populations. We
performed downsampling for 10 times and called somatic
mutations independently in order to assess random effects. As a
result, the total mutation numbers were respectively reduced by
16.5–17.1% and 16.1–16.6% in Caucasian and Vietnamese
patients; while the mutation number was reduced by 31.9–32.7%
in Chinese patients due to a larger down-sampling effect (Fig. 3b).
We observed very consistent somatic mutation callings across
different downsampling iterations (Supplementary Fig. 4), and
therefore used consensus mutation calls (in ≥8 times) for further
analyses. After downsampling, Chinese and Vietnamese patients
showed a significantly lower mutation rate than Caucasian
patients (ANOVA, P= 0.023); whereas before downsampling,
there was no difference among these three populations (ANOVA,
P= 0.44) (Fig. 3c). This result highlights the importance of

controlling for technical confounding factors in such a compar-
ison. We also examined the mutational signatures and found very
similar patterns across the populations (Fig. 3d).

Identification of race-biased mutated genes. To robustly iden-
tify the race-biased mutated genes, we assessed the distributions
of several key biological/clinical factors in the three populations.
We found that patient age at diagnosis, gender, tumor stage, and
alcohol consumption all showed some significant bias across the
populations (ANOVA for age, and chi-square test for gender,
tumor stage, smoking, and alcohol consumption; Fig. 4a). We
therefore employed propensity score analysis16 to adjust for the
potential effects of these confounders. Importantly, samples with
the same propensity score have the same distribution of measured
confounders, so balancing the confounders can be achieved by
simply balancing the propensity scores22. Using this algorithm,
we identified six genes between Asian and Caucasian patients
(false discovery rate (FDR) <0.1). Specifically, TP53, NFE2L2, and
EP300 showed a significantly higher mutation rate in Asian
populations; while KRTAP9-1, LRFN5, and MAP2 showed the
opposite patterns (Fig. 4b). We further confirmed the high
mutation frequency of TP53, NFE2L2, and EP300 using targeted
sequencing data on the discovery and validation cohorts (Fig. 4c).
Interestingly, the mutational status of these three genes showed
marginally significant mutual exclusivity (CoMEt algorithm,
Fig. 4d), and analyses on additional patient cohorts are required
to confirm this pattern.
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Fig. 2 Significantly mutated genes in ESCC. a Significantly mutated genes (SMGs) identified by MutSigCV on a combined cohort of Caucasian, Vietnamese,
and Chinese WES samples. Each column denotes an ESCC patient, and each row is a gene. On top is the number of somatic mutations per sample. On the
left are the mutation frequencies of each SMG. The bar plot on the right shows the composition of mutations in the gene. Genes are ordered by their
mutation frequencies. b Overlap of SMGs reported by five studies. c, d Kaplan–Meier curves according to the mutational status of CSMD3 gene in c 78
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Correlation of somatic mutations with a 5′UTR SNP in
NFE2L2. We next examined the detailed mutational distributions
in these genes. The TP53 mutations are widespread throughout
the whole gene, while the mutations in EP300 are enriched in the
domain of HAT_KAT11, as previously reported10 (Supplemen-
tary Fig. 5). NFE2L2 (also known as NRF2) is of particular
interest: this gene is a transcription factor that regulates many
proteins involved in response to injury and inflammation as well
as cellular defense against oxidative stress; NFE2L2-knockout
mice are more susceptible to esophageal carcinogenesis than wild-
type mice23; and its mutations have been recently reported to
enrich in Vietnamese patients8. We identified several mutation
hotspots at the first 100 amino acids of the protein encoded by

NFE2L2 and found that the most frequently mutated site resided
in the coiled coil region (Fig. 5a). To examine whether the race-
biased mutation pattern correlates with some germline signature
of this gene, we calculated the fixation index24 (a commonly used
measure of population differentiation due to genetic structure),
Fst for common SNPs of this gene by comparing European
and Chinese populations using data from the 1000 Genomes
Project25. We found a SNP (rs113671272) with a very high Fst
score in the 5′UTR of NFE2L2 (Fig. 5b). This SNP is located in
one region with strong DNaseI hypersensitivity and high-density
regulatory binding sites, suggesting potential functional effects on
the transcriptional regulation of NFE2L2 (Fig. 5c). To further
investigate the potential effects of this SNP on NFE2L2
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expression, we integrated the SNP data from International Cancer
Genome Consortium (ICGC) whole-genome sequencing and
TCGA RNA-seq data to compare the mRNA expression level of
NFE2L2 between cancer samples with and without this SNP and
found that the presence of this SNP was associated with a sig-
nificantly lower NFE2L2 expression across cancer types (paired
Wilcoxon signed rank test, P= 4.9 × 10−4, Fig. 5d). Interestingly,
the mutational status for Asian patients was strongly associated
with the allele status of this SNP (CoMEt, P= 1.7 × 10−2, Fig. 5e).
This intriguing pattern suggests their potentially interacting
relationships.

Discussion
In recent years, with the advance of next-generation sequencing
technology, mutated driver genes have been systematically iden-
tified for all major cancer types, especially through consortium
projects such as TCGA or ICGC. But these studies usually
characterize the mutational signals from patients with mixed
genetic backgrounds or a single-patient population. A key next
step to implement precision cancer medicine is to identify race-
specific mutated drivers, which will lay a critical foundation for
developing novel therapeutic strategies that target different
patient populations.

Here we performed such an analysis of race-biased mutational
features in ESCC patients by sequencing large patient cohorts and
employing a rigorous analytic pipeline that explicitly considered
various confounding factors. Compared to Caucasian patients, we
identified one frequently mutated gene (CSMD3) with potential
prognostic power and three race-biased mutated genes (TP53,
EP300, and NFE2L2) in Asian patients. Additional efforts are
needed to investigate their potential as biomarkers or therapeutic
targets specific to Asian patients. The computational pipeline we
developed can be readily applied to similar analyses for other
cancers.

Methods
Sample collection. Human primary ESCC and corresponding adjacent non-tumor
tissues (5 cm from the tumor site) were collected from patients who were diagnosed
and received surgery as primary treatment at Fudan University Cancer Center
(Shanghai, China) from September 2007 to June 2011. The tumor tissues were
snap-frozen in liquid nitrogen immediately after surgical resection and then stored
at −80 °C until they were analyzed. The clinicopathological features of the patients
were collected from in-patient medical records. The pathological features were
evaluated by independent pathologists according to the TNM staging system of the
American Joint Committee on Cancer (AJCC 7th edition). All patients were fol-
lowed up after primary treatment at intervals that increased from 3 months to 1
year until death. The study protocol was approved by the hospital ethics committee
and informed consent was obtained from all participants.
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Whole-exome sequencing and targeted sequencing. Genomic DNA was
extracted from the tissue specimens using QIAamp DNA kit (Qiagen). The
libraries were then prepared using protocols recommended by Illumina. Briefly,
1 μg DNA was sheared to short fragments (200–300 bp) using Covaris S220. DNA
fragments were end repaired and an adenylate blocker was added at the 3′ ends.
Adaptors with barcode sequences were then ligated to both ends of the fragments.
E-Gel was then used to select DNA fragments of the targeted size. Afterward,
10 cycles of polymerase chain reaction (PCR) were performed, and the resulting
mixture was purified. Whole-exome capture was performed using the TruSeqEx-
ome Enrichment kit (Illumina) according to the manufacturer’s protocol, with
minor modifications. After the libraries were amplified with 10 cycles of PCR,
the capture probes were added and incubated for 24 h at 65 °C. The hybridized
mixtures were then amplified with another 10 cycles of PCR. Validated DNA
libraries were then sequenced on the Illumina Sequencing System (IlluminaHiSeq
2500). We included 283 “cancer-related genes” in the target enrichment panel as
previously described18. Briefly, these genes included those recurrently mutated
genes in gallbladder carcinoma, high-priority genes in Catalogue of Somatic
Mutations in Cancer (COSMIC, http://cancer.sanger.ac.uk/cosmic/), genes related
to drug sensitivity and highly mutated genes in gastrointestinal cancer. Targeted
gene enrichment was performed with the TruSeq Custom Enrichment kits
(Illumina).

Sequencing data processing and mutation calling. Read pairs (FASTQ format)
were trimmed and filtered with fastq-mcf (https://github.com/ExpressionAnalysis/

ea-utils). The resulting high-quality reads were aligned to the human reference
genome (GRCh37) using Burrows-Wheeler Aligner (BWA 0.7.12)26. BAM files
were processed by Genome Analysis Toolkit27 to improve alignment accuracy.
Major steps included marking duplicates, local realignment around high-
confidence insertion and deletions and base quality recalibration. We then used
several popular callers, including Muse28, MuTect229, SomaticSniper30, Radia31,
and VarScan232, to identify somatic point mutations. Only mutations reported by
at least two callers were used in further analyses. Low coverage and strand-biased
mutations were filtered out. To further reduce false positives and miscalled
germline events, we used MuTect2 to call point mutations on all the normal
samples. Any of these germline mutations, if found in more than one normal
sample, were removed from our final list of somatic mutations. To assess the
accuracy of our mutation calls, we obtained TCGA MC3 mutation data from
Synapse (syn5917256, version 0.2.8) and calculated the (median) fraction of MC3
non-silent mutations (e.g., missense, nonsense, and nonstop) called in our muta-
tion set across the same set of TCGA samples and vice versa. To further validate
our somatic mutation calls, we performed targeted sequencing on the same Chinese
samples (n = 75). For all somatic mutations called from WES data, 592 mutations
positions had a depth of coverage ≥200 in the targeted sequencing data. Among
them, 564 somatic mutations were also detected in the targeted sequencing data,
resulting in a true positive validation rate of 95.3%.

To remove the confounding effects due to different sequencing coverages, we
implemented a random read downsampling strategy to achieve similar sequencing
depths (<10% standardized difference) for each exon across the three patient
populations. We repeated downsampling for 10 times and called somatic mutations
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independently and used consensus mutations (those called in ≥8 times) for further
analyses.

Clustering of patient samples by common SNP status. For all TCGA and
Chinese samples, we obtained the read coverage information of exonic common
SNPs in the dbSNP (build 147) using bam-readcount (https://github.com/genome/
bam-readcount) for each normal sample. The minimum base quality was set to 15,
and our analysis included 168,275 common SNPs with the coverage of ≥8 in each
sample. We recoded the genotypes into 0, 1, 2 based on the wild-type/hetero-
zygous/homozygous status of the SNPs. The WES samples were hierarchically
clustered by the “dendextend” package in R33.

Bioinformatic analysis on mutation data. To identify significantly mutated genes,
somatic mutations were annotated using Oncotator34. MutSigCV (V1.4)19 was
applied to identify significantly mutated genes with default covariate tables. Genes
with q (FDR)< 0.1 were considered to be significantly mutated. We performed
survival analyses using the “survival” package in R35. Kaplan–Meier survival
analysis curves and the univariate Cox regression model were used to test for
survival differences between groups (capped at 3 years). We tested for the mutual
exclusivity between two patient populations using CoMEt36, which uses a Markov
chain Monte Carlo algorithm to compute the marginal probability of observing
pairs of alterations. We used Genotype Query Tools37 to calculate the fixation
index for each SNP site reported by the 1000 Genomes Project (phase 3) between
southern Han Chinese (CHS) and the European super population (EUR). The SNP
status of rs113671272 in Chinese and Vietnamese patients with WES was inferred
from off-target reads with a minimum of 3 read coverage. To examine the SNP
effects on the gene expression, we obtained the genotypes of rs113671272 in TCGA
samples from ICGC whole-genome sequencing data, and obtained the mRNA
expression level of NFE2L2 (based on the longest transcript uc002uli.3) from Fire
Browser (http://firebrowse.org, version 2016_01_28). Integrating both genotype
and expression data, our analysis included 12 cancer types in which each com-
parison group (samples with or without the SNP) contained at least three samples,
and the SNP effect on gene expression was assessed by paired Wilcoxon rank-sum
test. The cancer samples with NFE2L2 somatic mutations were excluded from the
analysis.

Propensity score adjustment. We collected and obtained clinical characteristics
(age at diagnosis, gender, tumor stage, smoking history, and alcohol consumption
history) for all ESCC samples. We then employed a propensity score analysis to
identify genes that preferentially showed higher mutation frequencies in one race
group. For a comparison between Asian and Caucasian patient groups, we first
calculated the propensity score using logistic regression with “race” as the
responsible variable. We used the matching weight scheme16 continuously to
assign weights for each sample based on the propensity scores to search for balance.
When the standardized difference of the weighted propensity scores between two
race groups was smaller than 10%, we considered the clinical characteristics
balanced between the propensity score weighted samples. We then compared gene
mutation frequencies between the two race groups by supplying the weights to a
weighted chi-squared test, and calculated P-values and FDRs. Any gene with
FDR≤ 0.1 was considered biased in the two groups. We confirmed the statistical
significance by randomly shuffling the race labels of the samples and repeated the
above procedures 100 times. We calculated the statistical significance by comparing
the number of significant features calculated from our real data to those from the
permutated data.

Data availability. The WES and targeted-sequencing data of Chinese ESCC
samples have been deposited in the NCBI Sequence Read Archive (SRA) under
Bioproject (accession number: PRJNA399748). The WES data of TCGA ESCC
samples are available from NCI Genomic Data Commons (https://portal.gdc.
cancer.gov/). All relevant data sets for this study are available from the authors.
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