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Protein levels and function are poorly predicted by genomic and transcriptomic analysis of

patient tumours. Therefore, direct study of the functional proteome has the potential to

provide a wealth of information that complements and extends genomic, epigenomic

and transcriptomic analysis in The Cancer Genome Atlas (TCGA) projects. Here we use

reverse-phase protein arrays to analyse 3,467 patient samples from 11 TCGA ‘Pan-Cancer’

diseases, using 181 high-quality antibodies that target 128 total proteins and 53

post-translationally modified proteins. The resultant proteomic data are integrated with

genomic and transcriptomic analyses of the same samples to identify commonalities,

differences, emergent pathways and network biology within and across tumour lineages. In

addition, tissue-specific signals are reduced computationally to enhance biomarker and target

discovery spanning multiple tumour lineages. This integrative analysis, with an emphasis on

pathways and potentially actionable proteins, provides a framework for determining the

prognostic, predictive and therapeutic relevance of the functional proteome.
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T
he Cancer Genome Atlas (TCGA) is generating compre-
hensive molecular profiles for each of at least 33 different
human tumour types (http://cancergenome.nih.gov). The

overarching goal is to elucidate the landscape of DNA and RNA
aberrations within and across tumour lineages and integrate
the information with clinical characteristics, including patient
outcome.

Previous studies have indicated only a partial concordance
between genomic copy number, RNA levels and protein levels in
both patient samples and cell lines1–3 at least, in part, because
protein levels and, in particular, phosphoprotein levels represent
an integration of the complex genomic and transcriptomic
aberrations accumulated in each tumour combined with
translational and post-translational regulation that cannot be
fully captured by genomic and transcriptomic analysis. Hence,
functional protein analysis using reverse-phase protein arrays
(RPPA), which are highly applicable to study the large numbers
of TCGA samples, was added to the TCGA effort to integrate
proteomic characterization of tumours with already available
genomic, transcriptomic and clinical information. The Clinical
Proteomic Tumor Analysis Consortium (CPTAC, http://
proteomics.cancer.gov/programs/cptacnetwork) is starting to use
mass spectrometry to analyse a large fraction of the human
proteome for a select subset of TCGA tumours. However, a

comprehensive mass spectrometry analysis across all TCGA
samples is not likely to be available in the near future. Thus, while
earlier TCGA analyses were primarily based on genomic and
transcriptomic characteristics4–10, the current study is driven by
proteomic processes within and across cancer types.

Here we report an RPPA-based proteomic analysis using 181
high-quality antibodies that target total (n¼ 128), cleaved (n¼ 1),
acetylated (n¼ 1) and phosphorylated forms (n¼ 51) of proteins
in 3,467 TCGA patient samples across 11 ‘Pan-Cancer’ tumour
types. The function space covered by the antibodies used in the
RPPA analysis includes proliferation, DNA damage, polarity,
vesicle function, EMT, invasiveness, hormone signalling, apop-
tosis, metabolism, immunological and stromal function as well as
transmembrane receptors, integrin, TGFb, LKB1/AMPK, TSC/
mTOR, PI3K/Akt, Ras/MAPK, Hippo, Notch and Wnt/beta-
catenin signalling. Thus, the function space encompasses major
functional and signalling pathways of relevance to human cancer.
The TCGA tumour types included are those with mature RPPA
data: breast cancer (BRCA, n¼ 747), colon (COAD, n¼ 334) and
rectal (READ, n¼ 130) adenocarcinoma, renal clear cell carci-
noma (KIRC, n¼ 454), high-grade serous ovarian cystadenocar-
cinoma (OVCA, n¼ 412), uterine corpus endometrial carcinoma
(UCEC, n¼ 404), lung adenocarcinoma (LUAD, n¼ 237), head
and neck squamous cell carcinoma (HNSC, n¼ 212), lung
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Figure 1 | HER2 RPPA correlations with copy number and mRNA. (a) Histogram of Spearman’s rank correlation (r-values) for 206 pairs of proteins and

matched mRNAs across all tumour types. The black curve represents the background of r values using 28,960 random protein-mRNA pairs in the same

data set. (b) Crosstab identifying HER2-positive tumours by copy number, mRNA expression and protein expression across 11 tumour types. Cutoffs are

defined in Methods. BRCA and UCEC are subdivided for clinical relevance regarding HER2 protein levels. Total sample numbers with analyses for all three

platforms (CNV, mRNA and protein) are indicated in parentheses. Percentages Z10% are highlighted (red). (c) Relationship between HER2 copy number

and HER2 protein level by RPPA across all tumour types (n¼ 2,479). The box represents the lower quartile, median and upper quartile, whereas the

whiskers represent the most extreme data point within 1.5� inter-quartile range from the edge of the box. Each point represents a sample, colour coded by

tumour type or subtype. As expected, HER2 amplified samples have much higher HER2 protein levels than non-amplified samples. (d) Relationship between

HER2 mRNA and protein expression across all tumour types (n¼ 2,479). Each protein represents a sample, colour coded by tumour type or subtype.

Spearman’s correlation between HER2 protein and mRNA is 0.53.
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squamous cell carcinoma (LUSC, n¼ 195), bladder urothelial
carcinoma (BLCA, n¼ 127) and glioblastoma multiforme
(GBM, n¼ 215)4–10. We show that the functional proteome
gives important, independent insights into TCGA data that are
not captured by genomics or transcriptomics. Although samples
predominantly cluster by tumour lineage, we also show that part
of the tissue dominant effects can be removed computationally to
elucidate common processes driving cellular behaviour across
tumour lineages. We present proteins and pathways that correlate
with outcomes within certain tumour lineages and we identify
multiple protein links and proteins that are associated with
pathway activation. Taken together, the data and analytical
resources presented in this manuscript are aimed at facilitating
future research for targeted therapies that span multiple tumours.

Results
Correlations between protein and other data types. Protein data
for 3,467 samples across 11 diseases were compared with mRNA,
miRNA, copy number and mutation data for the same samples.
A novel approach, called ‘replicates-based normalization’ (RBN,
Methods), mitigated batch effects facilitating creation of a single
Pan-Cancer protein data set merging samples across six different
batches. The RBN output is equivalent to all 3,467 samples being
run in a single batch. In contrast to random (trans) protein:
mRNA pairs (mean Spearman’s r¼ � 0.006), almost half of
matched (cis) protein:mRNA pairs in the RBN set demonstrated
correlation beyond that expected by chance (mean Spearman’s
r¼ 0.3) in both the overall Pan-Cancer data set (t-test
Po2.2e� 16, n¼ 206 matched protein:mRNA pairs) and within
particular diseases (Fig. 1a, Supplementary Fig. 1, Supplementary
Data 1,2). Approximately 44% of matched (cis) protein:mRNA
pairs had a correlation 4¼ 0.3. For micro-RNAs, as expected,
(trans) protein:miRNA correlations were much weaker with a
mean positive Spearman’s r¼ 0.07 and a mean negative
Spearman’s r¼ � 0.07 (Supplementary Data 3). In contrast,
(trans) protein:protein correlations, including phosphoproteins,
were higher (mean positive Spearman’s r¼ 0.15, mean negative
Spearman’s r¼ � 0.13, Supplementary Data 4). Detailed
protein:protein and phosphoprotein:protein correlations across
the total data set and in particular diseases are available at the
TCPA portal11. The results show, not surprisingly, that matched
(cis) mRNA:protein correlations were the highest on average
(r¼ 0.3), followed by (trans) protein:protein correlations
(rE±0.15), whereas (trans) protein:miRNA correlations were
lowest on average (r¼±0.07).

A similar analysis for CNV versus protein fold change showed
a mean fold change of 1.05 for amplifications and 0.95 for
deletions in cis (Supplementary Data 5,6). Mutation versus
protein (cis) analysis showed a mean fold change of 1.2 for
mutations that increased expression, and 0.9 for mutations that
decreased expression (Supplementary Data 7,8), showing that
mutations, in general, are associated with greater average fold
changes than copy-number variations, perhaps due to nonsense-
mediated RNA degradation. Complete tables are available at:
(http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/
RPPA).

HER2 analysis as an example. We then focused on HER2 as an
illustrative example. A comparison of relative HER2 (ERBB2)
protein levels across tumour types illustrates the potential utility
of a pan-cancer proteomic analysis. While the overall HER2
protein:mRNA correlation was 0.53 (P¼ 5e� 177), the correla-
tion was 0.61 (P¼ 1e� 69) in BRCA, where HER2-targeted
therapy has been demonstrated to be effective (Spearman’s
correlations Fig. 1, Supplementary Data 1). Importantly, phos-
phoHER2Y1248 protein:mRNA correlation was 0.552 (P¼ 3

e� 54) and HER2:phosphoHER2Y1248 protein:protein correla-
tion was 0.67 (P¼ 4e� 98) in breast cancer consistent with ability
of RPPA to capture both total and phosphoprotein levels from
TCGA samples (n¼ 2,503 for overall and n¼ 674 for BRCA
correlations and P-value computations using t-distribution test
and adjusted for multiple hypotheses testing using Benjamini
Hochberg adjustment. n¼ 2,479 in Fig. 1). On the basis of cor-
relations with DNA, RNA and protein levels in HER2-positive
breast cancers, HER2 protein levels were defined as elevated if the
relative HER2 level was Z1.46 (see Methods) (Fig. 1b–d). We
also set a cutoff at the relative protein level of 1.00 (which is
approximately equivalent to 3þ staining on clinical immuno-
histochemistry analysis of the breast cancer samples and repre-
sent the top 12% of patient samples, see Methods). Using either
cutoff, 10–15% of breast cancers demonstrated elevated HER2 by
DNA copy number, RNA and protein consistent with clinical
data12,13 (Fig. 1b). On the basis of those cutoffs, approximately
25% of serous endometrial cancers had coordinated elevation of
HER2 DNA, RNA and protein levels, an even higher frequency
than breast cancer. BLCA, colorectal cancer and LUAD
demonstrated a higher frequency of elevated protein levels than
predicted by mRNA and DNA levels. In an independent cohort of
26 LUAD cell lines using the same cutoffs, seven of the cell lines
had high HER2 protein levels, whereas only two cell lines had
high mRNA levels, consistent with our observation of elevated
protein levels occurring at a higher frequency than elevated RNA
levels (Supplementary Table 1, Supplementary Fig. 2)14.

Discordance between HER2 DNA copy number and protein
levels has been observed in multiple individual tumour types
previously15–20. Besides diversity in methodology, a number of
cancer-specific hypotheses including post-translational regulation
of HER2 expression, cytoplasmic HER2 localization16, intra-
tumoral heterogeneity of HER2 amplification19 or polysomy 17
(refs 17,20) have been suggested. This clearly contrasts breast
cancer, where HER2 levels are usually highly correlated at the
DNA, RNA and protein level21–24. With the advent of TDM1
toxin conjugate therapy (trastuzumab emtansine)25,26, the higher
frequency of elevated HER2 protein levels in BLCA, LUAD,
endometrial and colorectal cancers supports the (pre)clinical
exploration of TDM1, which binds HER2 to deliver a potent cell-
cycle toxin (a mechanism of activity independent from
trastuzumab, a drug with limited activity in endometrial cancer
in previous studies27) in these tumour lineages.

Unsupervised clustering analysis. Unsupervised clustering
identified eight robust clusters (Clusters A-H, Fig. 2a) when batch
effects were mitigated by RBN. Not surprisingly, RBN cluster
membership is defined primarily by tumour type with the
exception of cluster_E and cluster_F, which include multiple
diseases (Fig. 2b). Bladder cancer, however, did not generate a
dominant cluster but, rather, was co-located with other tumour
lineages in multiple clusters. To identify potential discriminators
of clusters, we compared the ability of proteins, RNAs, miRNAs
and mutations for each cluster to different samples from those
in all other clusters (top 25 discriminators, Supplementary
Tables 2–5, all the discriminators at http://bioinformatics.
mdanderson.org/main/TCGA/Pancan11/RPPA). Supplementary
Table 2 highlights the contribution of individual proteins in
driving the different clusters. Associations of specific mutations
and copy-number changes with the clusters were primarily based
on known associations of mutations and copy-number changes
with tumour lineage4–10.

Cluster_E includes 70% of basal-like breast cancers, the
majority of HER2-positive breast cancers (87%) and the largest
group of bladder cancers (35%), including many with amplified
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Figure 2 | Unsupervised clustering and analyses based on the RBN data set. (a) Heatmap depicting protein levels after unsupervised hierarchical

clustering of the RBN data set consisting of 3,467 cancer samples across 11 tumour types and 181 antibodies. Protein levels are indicated on a low-to-high

scale (blue-white-red). Eight clusters are defined. Cluster_A has been subdivided into two clusters (A1 and A2), based on the differences between BRCA

reactive and remaining luminal subtypes5. Annotation bars include tumour type (BRCA-basal separately indicated); purity and ploidy (ABSOLUTE

algorithm); stromal and immune scores (ESTIMATE algorithm); BRCA (PAM50 classification) and BLCA subtype; 16 significantly mutated genes and two

frequently observed amplifications. The statistical significance of correlations between the clusters and each variable is indicated to the left of each

annotation bar (n¼ 3,467, w2-test, Fisher’s Exact and ANOVA’s F test. See Methods). (b) Crosstab showing the number of tumour samples in each cluster.

(c–e) Kaplan–Meier curves showing overall survival of (c) the BRCA located in four separate clusters (A1, A2, E and F, n¼ 740), (d) KIRC in cluster_F

versus KIRC in other clusters (n¼454) and (e) BLCA in cluster_B versus BLCA in other clusters (n¼ 127). Follow-up was capped at 60 months due to

limited number of events beyond this time. Statistical difference in outcome between groups is indicated by P-value (log-rank test). A high-resolution,

interactive version of the heatmap with zooming capability, can be found at (http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).
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HER2 (Fig. 2a,b). Cluster_E is defined by TP53 mutations,
elevated HER2, cyclinB1 and Rab25 protein levels and low ER
and PR levels (Supplementary Table 2). Cluster_F includes
smoking-related, upper aerodigestive tract cancers (HNSC,
LUAD and LUSC) and subsets of other tumour types. Cluster_F
contains the majority of a ‘squamous cancer’ subset (94%),
Po0.0001, w2-test), recently identified through other Pan-Cancer
subtype analyses28. However, cluster_F also contains an equally
large number of non-squamous tumours, predominantly LUAD
(58% of the non-squamous tumours in cluster_F). Membership in
cluster_F is associated with TP53 mutations and elevated total
and phosphorylated EGFR (EGFRp1068 and EGFRp1173),
phosphorylated SRC (SRCpY527) and low ER and PR levels.
Although TP53 mutations are usually associated with copy-
number changes and a limited number of recurrent mutations in
cancer genes7, cluster_F is unexpectedly enriched in recurrent
cancer gene mutations (Supplementary Table 6). Within the
group of current smokers in cluster_F (Supplementary Fig. 3),
tumours with TP53 mutations show significantly higher rates of
co-mutations in the top-25 driver mutations (Methods,
Po0.0001, t-test, n¼ 162).

Hormonally responsive ‘women’s cancers’ (luminal BRCA,
OVCA, UCEC) form a major tumour super cluster. Basal-like
breast cancers and HER2-positive breast cancers are distinct from
luminal breast cancers, being located in cluster_E (the majority of
HER2 (87%) and basal-like (70%)) and cluster_F (subset of basal-
like (25%)). This is consistent with previous data suggesting that
HER2 and basal-like breast cancer are distinct from luminal breast
cancer5. In light of the recent identification of a ‘reactive’ breast
cancer subtype5, we split the luminal cluster into two (reactive
breast cluster_A1 and non-reactive ER-positive breast cluster_A2).

For some tumour lineages, localization to different clusters
reflects differences in prognosis. Breast cancers located in
different clusters demonstrate distinct outcomes: tumours in
cluster_E and cluster_F are associated with the worst outcome,
probably due to the inclusion of HER2-positive and basal-like
tumours. Reactive cluster_A1 shows a better outcome than
cluster_A2 (Fig. 2c). The poor outcome associated with KIRC in
cluster_F (Fig. 2d) may be due to the absence of VHL mutations
(Fisher’s exact test (FE), P¼ 0.008, n¼ 454), which has been
associated with a worse outcome in kidney cancer29. Bladder
cancers in cluster_B show worse survival compared with all other
BLCA, which may be due to associations with TP53 mutation (FE,
Po0.001) and cMYC amplification (FE, P¼ 0.042) (n¼ 127) (Fig. 2e).

We evaluated the concordance between RBN protein clusters
and mRNA clusters derived from the same sample set
(Supplementary Table 7). Most of the protein clusters predomi-
nantly corresponded to a single respective mRNA cluster despite
the mRNA clusters being defined with a pool of about 20,000
mRNAs, whereas only 181 proteins and phosphoproteins were
used to generate the protein clusters. Therefore, many of the
features defining the mRNA clusters were captured by just a few
proteins. This agreement between RNA- and protein-based
clustering provides validation of the quality of the protein data,
as well as the selection of protein targets in the arrays. However,
clusters E and F were noticeably different from their mRNA
counterparts. Unlike protein cluster_E that contains BLCA and
BRCA, bladder cancer formed a separate cluster in mRNA data,
distinct from HER2 and basal-like breast cancers. LUAD also
formed a separate mRNA cluster, distinct from the LUSC/HNSC
mRNA cluster, unlike protein cluster_F that contains LUAD as
well as LUSC and HNSC.

Reduction of tissue-specific proteomic signatures. Tumour
lineage represents the dominant determinant of protein clustering

using the RBN approach (Fig. 2). We, therefore, investigated
whether further transforming the RBN data to reduce tissue
signatures by median centering within tissue types (MC, see
Methods) would identify clinically or biologically relevant protein
patterns that span multiple tumour lineages (Fig. 3a). Using MC,
we obtained seven clusters (I-VII) that were no longer strongly
correlated with tumour lineage, as evident from the top annota-
tion bar in Fig. 3a (Supplementary Fig. 4), and from the tissue
versus cluster cross-tabulation (Fig. 3b). This allowed exploration
of molecular events that spanned multiple tissues, which was not
possible with the RBN approach. Supplementary Table 8 shows a
contingency table with the distribution of samples across RBN
versus MC clusters, highlighting the differences between the
clusters. Supplementary Tables 9–12 show the top 25 proteins,
mRNAs, miRNAs and mutations that discriminated different MC
clusters (full table available at http://bioinformatics.mdanderso-
n.org/main/TCGA/Pancan11/RPPA).

Cluster_I was primarily driven by phosphoPEA15, YB1, EEF2
and ETS1 proteins (Supplementary Table 9), which were
markedly elevated in a subset of colorectal tumours (18%).
Cluster_I exhibited enrichment of APC and KRAS mutations,
very few HER2 amplifications, but moderately high HER2 protein
levels (Fig. 3a, Supplementary Tables 9,12). It also had evidence
for suppressed DNA damage response, apoptosis, and mTOR and
MAPK pathway levels (Fig. 4b). Cluster_II was divided into two
further subclusters, one primarily driven by HER2 (IIa) and one
by EGFR (IIb) (Supplementary Table 9). Interestingly, a subset of
OVCA, UCEC, BLCA and LUAD samples that had HER2
amplification and HER2 protein levels comparable to breast
HER2þ samples were located in cluster_IIa, raising intriguing
opportunities for (pre)clinical investigation of HER2 targeted
therapy and particularly TDM1 therapy as noted above.
Cluster_IIa also had activated RTK and cell cycle pathways, but
suppressed hormonal signalling pathways (Fig. 4b). Similarly, a
subset of HNSC and lung samples that had EGFR levels
comparable to a subset of GBM samples (28%) was located in
cluster_IIb, warranting exploration of potential benefit from
EGFR pathway-targeted drugs30. Tumours in cluster_IIb were
enriched in EGFR mutations, contained few PTEN mutations, and
had elevated RTK pathway and suppressed mTOR pathway
signatures. Clusters III-VII consisted of a mixture of all tissue
types. Cluster_V was the most distinctive, exhibiting a strong
‘reactive’ signature5, with elevated MYH11, RICTOR, Caveolin1
and Collagen VI, and an activated EMT signature. Cluster_V also
exhibited low cell cycle, Wnt-signalling and DNA damage
response pathway signatures. Cluster_V contained the majority
of the breast reactive samples along with multiple other tumours
with a ‘reactive’ signature consistent with the reactive phenotype
being a pan-cancer characteristic. Cluster_III was the antithesis of
‘reactive’ cluster_V and was primarily driven by elevated BRAF,
ER-alpha and E-cadherin (Fig. 3a). In contrast to cluster_V,
cluster_III had low EMT, apoptosis and MAPK pathway
signatures, but high DNA damage and hormonal pathway
signatures. Patients in cluster_III may potentially benefit from
(pre)clinical hormone targeting therapies. Cluster_III also had
high beta-catenin levels, suggesting activation of the canonical
Wnt-signalling pathway. Cluster_IV also had high beta-catenin,
as well as activated AKT, MAPK and mTOR pathways, but
suppressed DNA damage, apoptosis, EMT and cell cycle
pathways. Cluster_IV and cluster_VII were antitheses. The high
levels of phosphoAKT and phosphoMAPK in cluster_IV,
suggested evaluation of (pre)clinical benefit from kinase-
targeted therapies. Cluster_VI showed high EMT, cell cycle,
apoptosis, mTOR and MAPK pathway signatures, also suggesting
further evaluation of kinase-targeted therapies. Cluster_VI had
low beta-catenin, consistent with suppressed Wnt-signalling.
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Cluster_VII also showed low beta-catenin, with suppressed AKT,
MAPK, mTOR and RTK pathways.

Interestingly, clinical outcomes correlated with MC cluster
membership, indicating the power to identify important tissue-

independent processes. COAD in cluster_V had better outcome
compared with COAD located in other clusters (Fig. 3g)
(n¼ 334), which may, in part, be due to depletion of mutations
in TP53 (6 versus 15%, Fisher’s Exact (FE) P¼ 0.05), APC (14
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versus 25%, FE P¼ 0.044) and KRAS (5 versus 16%, FE
P¼ 0.013), consistent with previous literature showing these are
associated with a worse outcome31–33. The poor outcome for
KIRC in cluster_VII may be partly due to enrichment of TP53
mutations (6 versus 0.8%, FE P¼ 0.005, n¼ 454) (Fig. 3c). In
contrast, KIRC in cluster_IV are associated with better prognosis
(Fig. 3e). For OVCA, membership in cluster_VII is associated
with improved survival (Fig. 3d). LUSC in cluster_V appear to
have worse prognosis, which may be related to elevated EMT
pathway activity compared with LUSC in other clusters
(Supplementary Fig. 5)34,35, as well as low E-cadherin protein
levels (Fig. 3f). Thus, reduction of tissue-specific signatures
reveals a number of processes that transcend tissue boundaries
and may represent cross-tissue biological, prognostic and
therapeutic opportunities.

Analysis of pathways and targets. To capitalize on the RPPA
data, we developed a series of pathway predictors (see Methods),
based on member proteins selected by literature review
(Supplementary Table 13). TSC/mTOR signalling, which
integrates information from the PI3K/Akt, Ras/MAPK and
LKB1/AMPK pathways36, was treated as a separate pathway,
as was the hormone_a (ER, pER and PR) and a series of
downstream components of the hormone signalling pathway
(hormone_b37–39). All proteins and genomic events with a
Spearman’s r40.3 or ro� 0.3 for association with the pathway
score are also presented (See methods, Fig. 4, Supplementary
Figs 6–9, Supplementary Table 13) providing additional
information on potential pathway membership.

In general in the RBN analysis, pathway scores were associated
with tumour lineage (Fig. 4a, Supplementary Fig. 10). In
Figure 4a,b, each cell in the heatmap represents the mean
pathway score for that cluster or tumour lineage. Blue represents
a suppressed pathway, red means an activated pathway and white
represents a score that does not differ across the set (see
Methods). As expected, individual RBN clusters (Fig. 4a) show
similar pathway scores to their dominant constituent tumour
lineages, for example, GBM is similar to cluster_H, KIRC is
similar to cluster_G, etc. However, as clusters E and F do not
consist of a single predominant lineage, their pathway score
pattern is not concordant with any one tumour lineage. Similarly,
the MC heatmap (Fig. 4b) shows that MC clusters, in which tissue
specific effects are removed, do not reflect a single tumour type.
This emergent phenotype illustrates the mitigation of tissue-
specific signatures by MC, and the emergence of new, pan-cancer
patterns that span multiple tumour types. In Supplementary
Fig. 10, the data are transformed so that the colour spectrum in
the heatmaps represents absolute values of pathway scores (where
only score magnitude is considered) and thus reflects ‘distance
from the global pathway mean’, rather than relative protein level

(see Methods). This emphasizes that both low (for example,
inhibitors) and high protein levels can be markers of pathway
activity. Thus in Supplementary Fig. 10, UCEC and HNSC have a
near identical hormone_a score, caused by a high (UCEC) and
low (HNSC) protein score, respectively. The pathway-based
analyses benefit hugely from the large data set providing sufficient
power to identify associations that could otherwise not be
robustly identified.

Focusing on individual pathway analysis (Fig. 4c–f,
Supplementary Figs 6–9), the high degree of correlation between
pathway members, including phosphoproteins, supports the
ability of RPPA to capture high-quality information including
phosphoprotein levels from TCGA samples. Unexpectedly, the
proteins driving the pathway signatures varied across individual
tumours and tumour lineages, as did the associated proteins and
genomic aberrations (Fig. 4, Supplementary Figs 6,8). This
suggests that intrinsic gene expression patterns or mutational
patterns provide important contributions to convergent func-
tional pathway output. The EMT signature, which may also
represent reactive stroma, showed the greatest variation, being
markedly elevated in GBM and reactive BRCA tumours
(Fig. 4c,e). Significant variation in EMT was also observed within
disease type and RBN clusters. For example, Cluster_F (HNSC,
LUAD, LUSC) showed a separation into distinct epithelial and
mesenchymal groups based on the EMT score and related protein
EMT markers. RTK and downstream signalling signatures were
elevated in GBM, likely due to EGFR amplification and activation
of downstream signalling events (Fig. 2). Endometrial, ovarian
and most breast cancers demonstrated a high hormone_a
signature (Fig. 4d,f). However, an elevated hormone_b signature,
indicative of functional downstream activation, was restricted
to luminal, reactive and HER2-positive breast cancers
(Supplementary Fig. 11) suggesting differential ‘wiring’ of
hormonal signalling across tumour lineages. HER2-positive
breast cancers, whether ER-positive or -negative, demonstrated
elevated levels of GATA3, INPP4B and AR (hormone_b
signature) suggestive of active downstream hormonal signalling
despite low levels of ER, pER and PR in many of the HER2-
positive tumours (Fig. 2, Supplementary Fig. 11). A subset of
endometrial cancers had massively elevated pAkt levels, likely due
to the high frequency of coordinated genomic aberrations in the
PI3K pathway, in particular, the loss/mutation of PTEN10,40,
which is consistent with responsiveness of endometrial cancers to
PI3K pathway inhibitors41,42.

We analysed a number of potentially actionable proteins
(n¼ 25, Fig. 5a,b), selected based on a literature review
(Supplementary Methods) for associations with proteomic and
genomic events as well as for potential ability of proteomics to
identify patients likely to benefit from targeted therapies. Luminal
breast cancers (including AR-positive triple-negative breast
cancers that cluster with luminal breast cancers) demonstrated

Figure 3 | Unsupervised clustering and analyses based on the MC data set. (a) Heatmap showing protein expression after unsupervised hierarchical

clustering of 3,467 cancer samples across 11 tumour types and 181 antibodies. Protein levels are indicated on a low-to-high scale (blue-white-red).

Seven clusters were defined. Cluster_II has been subdivided manually into two clusters (IIa and IIb) based on significant difference in expression

of the proteins of interest (HER2 and EGFR). Annotation bars include tumour lineage (BRCA-basal separately indicated), purity and ploidy (ABSOLUTE

algorithm); stromal and immune scores (ESTIMATE algorithm); BRCA (PAM50 classification) and BLCA subtype; 16 significantly mutated genes and

two frequently observed amplifications. Statistical significance of the correlations between the clusters and each variable is indicated left of the annotation

bars (n¼ 3,467, w2-test, Fisher’s Exact, and ANOVA’s F test. See Methods). (b) Crosstab showing the number of tumour samples in each cluster.

(c–g) Kaplan–Meier curves showing overall survival in (c) the KIRC in cluster_VII versus in all other clusters (n¼454), (d) OVCA in cluster_VII versus

in all other clusters (n¼412), (e) KIRC in cluster_IV versus in all other clusters (n¼454), (f) LUSC in cluster_V versus in all other clusters (n¼ 195)

and (g) COAD in cluster_V versus in all other clusters (n¼ 334). Follow-up has been capped at 60 months months, due to limited number of events

beyond this time. Statistical difference in outcome between groups is indicated by P-value (log-rank test). A high-resolution, interactive version of the

heatmap with zooming capability, can be found at (http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).
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selective elevation of AR, BCL2, FASN and pACC, suggesting
these molecules or their associated pathways as potential
therapeutic targets. The elevation of HER3 in KIRC may
represent a therapeutic opportunity. SRC is activated in all but
the hormone-responsive and bladder cancers, offering another
potential therapeutic opportunity. EGFR activity, in general,
parallels SRC activity, but in GBM is associated with NOTCH1

and HER3 activation, suggesting an interesting opportunity for
exploration of combination therapy in (pre)clinical studies.
PhosphoSRC, which is a downstream target of EGFR, was highly
expressed in a subset of HNSC tumours, suggesting that these
may be more sensitive to EGFR targeting strategies. As noted
above, HER2 levels are elevated in a subset of UCEC, BLCA,
BRCA and colorectal cancers and may represent responsiveness
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Figure 4 | Pathway analyses. Pathway analyses of the data set by RBN clusters, MC clusters and tumour type. For pathway predictor members see

Supplementary Table 13. (a,b) Heatmaps depicting mean pathway scores after unsupervised hierarchical clustering on tumour lineages and protein clusters

based on the (a) RBN and (b) MC data sets. The heatmaps were clustered on both axes. As expected, RBN clusters show a strong association with tumour

lineages, with very similar patterns between them, whereas MC clusters do not associate with any particular tumour lineage. (c–f) The heatmaps,

supervised on the sample axis, depict the protein levels of the pathway members and of proteins with a high correlation (r 40.3/ro�0.3, Spearman’s

correlation) to the pathway predictor across RBN clusters (c,d) and tumour lineages (e,f). The EMT pathway (c,e) and the hormone_a pathway (d,f) are

shown. Samples are first sorted by either cluster (c,d) or tumour lineage (e,f), then by pathway score (from low to high) within cluster or tumour lineage.

Dotplots (lower panel) represent the pathway score for each sample. Each box represents the lower quartile, median and upper quartile, whereas the

whiskers represent the most extreme data point within 1.5� inter-quartile range from the edge of the box. Annotation bars (selected from Fig. 2) are

included if statistically associated with the pathway score (Po0.05, Kruskal–Wallis test, n¼ 3,467). Pathway members are marked in red on the left hand

side. High-resolution images of the heatmaps can be found online (http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).
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to HER2-targeted therapy. MYC, which may become targetable
by emerging therapeutic approaches43, is selectively amplified and
expressed in high-grade serous ovarian cancer and may represent
an important target in this disease that currently lacks targeted
opportunities7.

To determine whether protein levels, including phosphopro-
teins, can predict patient outcome, we determined correlations
with overall survival (see TCPA)11 for a comprehensive
analysis) using Cox Proportional Hazards (CoxPH) models.
In the complete Pan-Cancer data set, 80 (including 24
phosphoproteins) of the 181 proteins demonstrated a significant
(corrected for multiple comparisons) correlation with outcome.
Importantly, 57 proteins, including 19 phosphoproteins, showed
a multiple comparison corrected correlation with outcome in
KIRC. However, with the exception of breast cancer (13
candidates), this approach showed five or fewer proteins
correlating with outcome in other tumour lineages. Why kidney
cancer shows such strong correlations is not completely
understood, but may reflect the maturity of the outcome data
in this data set44. For some of the other diseases included in the
Pan-Cancer data set, the associated outcome data are immature,

for example, the low number of events in the BRCA and
endometrial cancer data sets limits the ability to detect the
prognostic and predictive value of protein markers.

To extend the single-protein analysis available in TCPA, we
performed a formal training/test set analysis of pathways and
potentially actionable proteins. As indicated in Supplementary
Table 14, 17 predictors (four pathways, nine total proteins and
four phosphoproteins) passed a rigorous training/test set
approach and showed a robust correlation with outcome in at
least one disease. As expected from the analysis of single proteins,
most surviving correlations were in kidney cancer. Several
pathway predictors that survived the training/test set approach
demonstrated marked associations with patient outcome in the
overall sample sets (Supplementary Fig. 12). PhosphoSRC
(SRCpY416) and the transferrin receptor (TFRC) showed an
association in three diseases suggesting particular importance for
outcome. However, the effects of the TFRC on patient outcomes
were different across diseases suggesting an interaction with
lineage-specific events. TFRC expression was associated with a
significantly worse prognosis in LUAD and KIRC. These findings
have potential implications for clinical targeting using TFRC for
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Figure 5 | Analyses of selected potentially actionable proteins. (a,b) Heatmaps, supervised on the sample axis, depicting protein level of 25 proteins
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bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).
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targeted delivery of chemotherapy or other agents45. Comparing
the performance of the optimized cutoff approach with medians,
quartiles or tertiles, more often applied in literature, we note that
up to 50% of the predictions from the optimized cutoff approach
were confirmed using these alternative cutoffs. However, the
optimized cutoff approach, combined with a rigorous training
and test set evaluation, performed better in 17 out of 21 (81%)
cases (as indicated by lower P-values) compared with the use of
median, tertiles or quartiles.

Network visualization. On the basis of the availability of protein
data across a large number of samples, we used a probabilistic
graphical model approach46,47 without the inclusion of previous
knowledge to create an unbiased signalling network (Fig. 6, see
Methods). We used the relatively large number of samples per
tumour lineage to elucidate links in specific cancers and across
multiple cancers, inferring networks using tumour lineage-
specific samples. Interplay between nodes was quantified using
scores from the graphical model analysis (see Methods) that
identify links between nodes while controlling for the effects of all
other observed nodes. Several expected links were observed across
most tumour types, including pMEK with pERK, beta-catenin
with E-cadherin and pPKCdelta with pPKCalpha and pPKCbeta,
supporting the ability of RPPA analysis to yield high-quality
signalling information from TCGA samples. Other expected links

were seen in only a subset of tumours such as pAKT with
pPRAS40 and pTSC2 (TuberinpT1462), consistent with
differential wiring of signalling pathways in different cancers. A
number of other links such as MYH11 with RICTOR, cyclinB1
with FOXM1 and pACC with FASN were not expected and
warrant further exploration. The interplay between p85 and
PTEN is consistent with our demonstration that p85 is a key
determinant of PTEN stability40,48. The negative link between
pAKT and PTEN was expected, but the one between p85 and
claudin7 in LUSC was not and may be worthy of further
exploration. PI3K/AKT signalling does not link clearly to mTOR,
which appears to primarily be downstream of MAPK
signalling49–51. The relatively weak links in the PIK3K/AKT
pathway are striking given the degree of antibody representation
for this pathway in the RPPA analysis. Key nodes such as CDK1
unexpectedly linked a wide range of protein pathways. Overall,
the data suggest that the EGFR receptor family, together with the
linked MEK and MAPK pathways, is the dominant determinant
of signalling across the cancer lineages in the Pan-Cancer
analysis. Using independent data sets in breast cancer, ovarian
cancer and endometrial cancer, as well as published research,
many of the strongest protein links in the network could be
validated (Supplementary Fig. 13 and Supplementary Table 15),
supporting the notion that large RPPA-based protein data sets
can be used to ‘learn’ networks in an unbiased manner.
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Figure 6 | Unbiased data-driven signalling network. Unbiased signalling network based on a probabilistic graphical model analysis, visualizing all 11

tumour lineages individually. Interplay between nodes was quantified using scores from the graphical model analysis (see Methods) that identify links

between nodes whilst controlling for the effects of all other observed nodes. The strength of links is indicated by the thickness of the line while the colour
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Discussion
Cellular biology is effectuated in considerable part by proteins,
and, unfortunately neither DNA copy number nor mRNA
expression is able to faithfully predict protein level and in
particular the post-translational modifications of proteins that are
necessary for function (Fig. 1, Supplementary Fig. 1)1–3,52,53.
Hence, evaluation of the functional proteome offers the ability to
complement genomic and transcriptomic analysis in projects like
the TCGA for identification of biomarkers and elucidation of
underlying biological mechanisms both within and across
diseases. The availability of high-quality proteomic data across
large numbers of samples makes the case more compelling. In
sum, a proteomic view of TCGA data yields insights that cannot
be acquired through analysis driven solely by genomics or
transcriptomics. The high degree of correlation between proteins,
including phosphoproteins, in signalling pathways (Figs 2,4 and
6, TCPA11) supports the applicability of RPPA analysis to TCGA
samples. Further, the ability to construct de novo signalling
networks (Fig. 6) that capture many known relationships
supports the contention that proteomic data derived from the
RPPA analysis of TCGA samples can be used to inform system-
level analyses of signalling pathways and networks. Full
integrative analysis of the DNA, RNA and protein relationships
embodied in the several TCGA data sets will require additional
analysis, but a number of interesting observations are
immediately apparent.

Analysis of this large data set demonstrates that, in general,
tumour type and subtype are the dominant determinants of
protein levels. This observation highlights the risk inherent in
disease-specific studies that commonalities, differences and
themes that emerge across tumour types will remain undiscov-
ered. We therefore implemented a computational approach, MC,
to decrease the dominant effect of tissue-specific protein
expression. This approach allowed for the discovery of processes
that drive cellular behaviour across tumour types and made it
possible to identify tumour characteristics that warrant explora-
tion as therapeutic opportunities. The analysis of individual
therapeutically relevant proteins (for example, HER2, Figs 1
and 5) and pathways (Fig. 4) permitted classification of patient
samples based on pathway activity and therapeutic tractability
across different tumour types. The ability of the Pan-Cancer
analysis to identify the discordance between HER2 CNV, mRNA
expression and protein expression in colorectal and serous
endometrial cancers (Fig. 1) argues that a broad protein-based
analysis of patient samples across multiple diseases can highlight
potential therapeutic opportunities not obvious from studies
within single diseases or driven by RNA and DNA analysis alone.

The pathway analysis (Fig. 4, Supplementary Figs 6–9)
identifies multiple protein changes that are associated with the
same functional outcome (that is, pathway activation) in different
samples and tumour types (Fig. 4). A number of proteins and
genomic events correlate with pathway scores, developed using
proteins defined by literature review (Fig. 4, Supplementary
Figs 6–9). Although some of those relationships could be
identified by including members of upstream or downstream
signalling or interacting pathways, many of the associations
would not be predicted a priori, demonstrating that these
approaches offer the potential for discovery of novel pathway
connections. The ability to identify unexpected correlations was
particularly clear in the network analysis (Fig. 6). For example,
the strong links between MYH11 and RICTOR and between
ETS1 and pPEA15 across tumour types offer opportunities for
discovering new functional relationships. Some associations we
reported, such as that of the mTOR pathway with MEK and
MAPK, while supported by the literature49–51,54 do not currently
receive adequate consideration. Although molecular pathways

often seem ‘set in stone’, the identification of unbiased signalling
networks using large data sets can provide a powerful tool to
identify tissue-specific networks, as well as to demonstrate the
importance of ‘non-canonical’ interplay, allowing for re-
conceptualization of networks and the role they play in specific
diseases.

A major goal of the molecular characterization of tumours is
the identification of tumour subsets and specific aberrations that
can be used in the clinic as biomarkers and/or for targeted
therapy (either single-agent or in combination). A bird’s eye view
of the functional proteome of large sample sets encompassing
multiple tumour lineages may help to suggest potential
unexpected targets that are applicable to disease subsets or across
diseases. The ability to identify many biomarkers associated with
patient outcome (TCPA) and the ability of a set of biomarkers to
pass a rigorous training/test set approach (Supplementary
Table 14) suggest that additional Pan-Cancer analyses, as well
as mechanistic analyses, of the current proteomics study will
improve our ability to understand tumorigenesis and identify new
markers and targets.

Methods
Description of the protein data. Proteomic data were generated by RPPA across
3,467 patient tumours obtained from TCGA, including 747 breast (BRCA),
464 colon and rectal adenocarcinoma (COAD and READ), 454 renal clear cell
carcinoma (KIRC), 412 high-grade serous ovarian cystadenocarcinoma (OVCA),
404 uterine corpus endometrial carcinoma (UCEC), 237 lung adenocarcinoma
(LUAD), 212 head and neck squamous cell carcinoma (HNSC), 195 lung
squamous cell carcinoma (LUSC), 127 bladder urothelial carcinoma (BLCA) and
215 glioblastoma multiforme (GBM). Those were all the samples we could obtain
from TCGA and no samples were excluded. The result is, to our knowledge, the
largest and most diversified database of tissue protein levels yet available, an
unparalleled basis for rich functional analysis.

RPPA methodology has been described in refs 4–10 and is also provided in the
Supplementary Methods. In total, 181 high-quality antibodies targeting total
(n¼ 128), cleaved (n¼ 1), acetylated (n¼ 1) and phosphoproteins (n¼ 51) were
used (detailed in Supplementary Data 9). In the RPPA assay, antibodies to
phosphoHER2 and phosphoEGFR have been noticed to cross-react, especially
when the opposite molecule is present at very high levels. This mainly concerns
EGFRpY1068 (but not EGFRpY1173), which cross-reacts with overexpressed
HER2pY1248. Taking into account their favourable signal:noise ratio (10:1), useful
information is contributed by both if expressed differentially, and they are thus
both included. The antibodies encompass major functional and signalling pathways
of relevance to human cancer. Pathways included are proliferation, DNA damage,
polarity, vesicle function, EMT, invasiveness, hormone signalling, apoptosis,
immunological, stromal, TGFa/b, transmembrane receptors, metabolism, LKB1/
AMPK, TSC/mTOR, PI3K/Akt, Ras/MAPK, Hippo, Notch and Wnt/beta-catenin
signalling (Fig. 6 and Supplementary Fig. 14) with minimal redundant information
(Supplementary Fig. 15). Supplementary Fig. 16 shows a representative image of a
typical antibody slide.

The numbers of patient samples and antibodies are greater than those presented
in previous TCGA marker papers4–10 based on the availability of additional
samples as well as validation of additional antibodies. The detailed TCGA data sets
are available online (https://tcga-data.nci.nih.gov/tcga) and combined with a
number of visualization and analytic tools from TCPA (http://app1.bioinformatics.
mdanderson.org/tcpa/_design/basic/index.html). High-resolution images of all
heatmaps and the network are available online (http://bioinformatics.mdanderson.
org/main/TCGA/Pancan11/RPPA). Some key clinical variables are shown in
Supplementary Tables 16,17; extensive clinical information for all lineages is
available online (https://tcga-data.nci.nih.gov/tcga) and available in the various
TCGA marker papers4–10.

Protein correlations. To match the 181 antibodies available, 162 unique mRNAs
were selected from downloaded RNASeqV2 data (https://tcga-data.nci.nih.gov/
tcga), resulting in 184 matched and 24,282 random protein:mRNA pairs. Spear-
man’s rank correlations were computed on both the random and matched pairs,
with associated P-values (Supplementary Data 1,2 and at http://bioinformatics.
mdanderson.org/main/TCGA/Pancan11/RPPA). The r-values of the matched
pairs were plotted in histogram form; the r-values of the random pairs are
represented as a background curve (Fig. 1a, Supplementary Fig. 1). Student’s t-test
was used to compare the r-values of all matched pairs with the r-values of all
random pairs (mean matched pairs: 0.3; mean random pairs: � 0.006) and showed
a significant difference (Po2.2e� 16). For miRNA versus protein, because
the number of miRNAs and proteins were small, we computed all pair-wise
Spearman’s rank correlations with t-test P-values (Supplementary Data 3).
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For the CNV versus protein expression analysis, we divided the samples into
groups of amplified versus copy-number neutral and deleted versus copy-number
neutral, and computed the mean fold changes in protein expression. Similarly, to
compare mutation versus protein, we divided the samples into mutated versus
wild-type and computed the fold changes in protein expression. We then used t-
tests to evaluate statistical significance of the fold changes (Supplementary Data 5–
8 and at http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).

Furthermore, we computed all pair-wise protein:protein correlations using the
entire Pan-Cancer data set, in total 16,290 correlations (Supplementary Data 4 and
at http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA). The top
10% had a Spearman’s rank correlation coefficient magnitude of 0.3 or higher
(Bonferroni-adjusted Pr3.67e� 67). Consequently, we considered a correlation
magnitude of 0.3 or higher (sign independent) as a reasonable cutoff threshold for
the analysis presented in the pathway sections of this study (Fig. 4, Supplementary
Figs 6–10, Supplementary Table 13).

Discriminator selection. To detect the discriminating biomarkers for each cluster
(obtained by hierarchical clustering using the RPPA data normalized by either RBN
or MC), LIMMA55 was used for the continuous data (protein, mRNA, miRNA) by
comparing samples in each cluster with samples in all the other clusters together;
information gain56 was used to select the categorical discriminators (mutation).
The resulting data were sorted by decreasing order of the log-odds for the former
and by decreasing information gain for the latter method. The top 25 most
significant discriminators are shown in Supplementary Tables 2–5 (RBN) and
Supplementary Tables 9–12 (MC). The complete overview of protein, mRNA,
miRNA and mutation discriminators can be accessed online (http://
bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA).

BRCA and UCEC subdivision. For BRCA subtypes, first the reactive subtypes
were classified according to the method described in the TCGA marker paper5.
The other subtypes were then classified based on PAM50. For UCEC subtype
classification, serous samples were first selected based on the integrative cluster
(serous-like) reported in the TCGA marker paper10. Clinical histopathological
subtype (https://tcga-data.nci.nih.gov/tcga) was used in any remaining cases.

HER2 cutoffs. Normal tissues for the lineages studied in this paper have been
reported to have low or medium HER2 levels (http://www.proteinatlas.org/
ENSG00000141736/tissue/stainingþ overview)57. To identify the threshold of
HER2 mRNA and protein expression in breast cancer that could classify tumours
as HER2-positive, we obtained PAM50 classifications for all the TCGA breast
cancer samples and divided them into two groups; HER2-positive and nonHER2-
positive samples. We used the conjunctive rule algorithm in Weka software58 to
determine the best HER2 total protein cutoff that separated the HER2-positive
from the nonHER2-positive samples based on HER2 (ERBB2) copy number. The
best protein threshold was found to be 1.46, which yielded 93% accuracy of
prediction and a receiver operator characteristic (ROC) area under the curve
(AUC) of 0.81. We did a similar analysis using HER2 mRNA and found a best
cutoff of 14.26 (in log2 frame), which yielded an accuracy of 93% and a ROC AUC
of 0.82. In addition to trastuzumab, other drugs targeting HER2 have entered
clinical trials, such as TDM1, for which HER2 expression on the cell surface is
sufficient to achieve preferential binding to the cell and therapeutic impact. Since
data for TDM1 response are not readily available, a threshold of HER2 expression
that may be sufficient to expect a response could not be calculated. We therefore
compared samples in which HER2 was amplified versus not amplified, aiming to
find a threshold that might be reasonable to test. Using the dot plots, a protein
threshold of Z1.00 was adopted, approximately equivalent to 3þ on
immunohistochemistry of clinical samples in breast cancer. The crosstab in Fig. 1b
gives the breakdown of percentage of samples above these thresholds for each
tumour. If a tumour lineage had more than 10% HER2-positive samples according
to any of the cutoffs, this is indicated in red.

General heatmap section. A two-way unsupervised hierarchical clustering
analysis was used to discover the groups of biological objects sharing common
characteristics59,60, and a two-dimensional heat map was drawn to visualize protein
expression patterns. We used Ward linkage as the agglomeration rule and
1-Pearson correlation as the dissimilarity metric. On the basis of protein expression
patterns and guided by the clustering dendrogram, we divided the RBN data set
into eight clusters and the MC dendrogram into seven clusters. As seen in the RBN
heatmap, most clusters represented one major disease. Exceptions were clusters_E
and _F. On the basis of the recent TCGA marker paper5, the hormone-responsive
breast cancer cluster (cluster_A) in the RBN dendrogram was further divided into
two subclusters, A1 (reactive breast cancers) and A2 (remaining luminal breast
cancers). On the basis of marked enrichment with clinically relevant proteins,
cluster_II in the MC dendrogram was further divided into two subclusters,
cluster_IIa (HER2 elevated) and cluster_IIb (EGFR elevated). Hierarchical
clustering analysis was performed using R, version 2.15.1 (http://www.r-project.
org/). Heatmaps were generated using an NGCHM R-package59. Annotation bars
were added to the heatmap that included tumour lineage, purity and ploidy;
stromal and immune scores; BLCA subtype and PAM50 classification (BRCA).

Significantly mutated genes (present in more than 5% of tumours in the data set,
resulting in 16 genes) are included as are the two most frequently observed
amplifications. Statistical significance for the annotation bars on top of the various
heatmaps was calculated by w2-test (tumour lineage, mutations and amplifications),
ANOVA’s F test (purity, ploidy stromal and immune score) and Fisher’s exact test
(PAM50 and BLCA subtypes). Data are missing for BLCA subtype (15/127), BRCA
subtype (52/747) and HER2 and MYC amplification (64/3,467).

Batch effects removal. The 3,467 RPPA Pan-Cancer samples were run in six
batches in total, resulting in potential batch effects on merging the sets. Batch
effects in RPPA data are a known concern, even when controlling for critical
materials such as the treated glass slides, antibodies, enzymes and suppliers62.
A new algorithm, replicates-based normalization (RBN), was therefore developed,
using replicate samples run across multiple batches to adjust the data for batch
effects. The underlying hypothesis is that any observed variation between replicates
in different batches is primarily due to linear batch effects plus a component due to
random noise. Given a sufficiently large number of replicates, the random noise is
expected to cancel out (mean¼ zero by definition). Remaining differences are
treated as systematic batch effects. We can compute those effects for each antibody
and subtract them out. In one batch, many samples with duplicates in the other five
batches were run and could therefore serve as anchor for all batches. The number
of duplicate samples with each batch varied between 71 and 207. This batch was
designated ‘anchor’ batch and was used unchanged. We then computed the means
and s.d. values of the common samples in the anchor batch and each of the other
batches. The difference between the means of each antibody in the two batches and
the ratio of the s.d. values provided an estimate of the systematic effects between
the batches for that antibody (both location-wise and scale-wise). Each data point
in the non-anchor batch was adjusted by subtracting the difference in means and
multiplying by the inverse ratio of the s.d. values to cancel out those systematic
differences. Whether RBN could successfully integrate batches, while preserving
known biological variation, was tested on TCGA breast cancer samples. As breast
cancer subtypes (luminal, HER2-positive and basal-like) are well established13, we
expected the subtypes from different batches to cluster together. Without RBN, the
batches clustered by batch. After RBN, the batches clustered by subtypes spanning
multiple batches (Fig. 2). Details of these experiments have been published
previously63.

Reducing tissue differences to cluster across tumours. Using RBN, batches of
RPPA data could be merged successfully. However, as protein levels of different
tumours are (usually) quite distinct from each other, most samples clustered by
tumour lineage (Fig. 2). Normal cells differentiate into different tissues by turning
on or off different sets of genes. When cells become malignant, they retain many
tissue-specific expression characteristics. We hypothesized that tissue-specific
effects exist because of those expression differences and equalizing the median
expression of genes across tumours might reduce those effects. A gene that is
turned off in all the samples of a tumour lineage will have little variation in
expression, similar to a gene that is always turned on, which will also have little
variation, but an overall high level. To compare across tumour lineages, we started
with the batch-corrected RBN data and took sets of all samples belonging to each
tumour lineage. We subtracted the median protein expression across all the
samples from a single lineage (median centering, MC), making the median
expression of all proteins within any given tumour equal to zero. That removed the
fixed, bias component from that tissue lineage but retained the variable component
found in each tumour. Since the tissue-specific component had been removed, we
could then compare the variable component (which was relative in scale) in each
tumour sample across different tissues. That allowed for the comparison between
samples with high/low expression in one tumour and samples with high/low
expression in another tumour, such as HER2 or EGFR expression. Basal-like breast
cancer was treated as a separate tumour lineage from the other breast cancer
samples due to its expression profile being so different that it did not merge with
any other tumour or even other breast samples during RBN clustering.

Tumour purity and ploidy. We obtained tumour purity and ploidy data based
on the ABSOLUTE algorithm64 from TCGA Pan-Cancer working group.
We calculated stromal and immune scores based on the ESTIMATE algorithm
using the TCGA Pan-Cancer gene expression data set (syn1695373, https://
www.synapse.org/#!Synapse:syn1695373 (ref. 65)).

Pathway analysis. For each pathway, members, illustrated in Supplementary
Table 13, were predefined based on a Pubmed literature search on review articles
describing the various pathways in detail. RBN RPPA data were median-centred
and normalized by s.d. across all samples for each component to obtain the relative
protein level. The pathway score is then the sum of the relative protein level of all
positive regulatory components minus that of negative regulatory components in a
particular pathway. We averaged antibodies targeting different phosphorylated
forms of the same protein with r 40.85 (Pearson’s correlation). The pathway
scores are visualized in the bar just above the heatmap and as a dotplot below the
heatmap (median and inter-quartile range indicated, Fig. 4c–f, Supplementary
Figs 6–9). Subsequently, for each version of the pathway scores (RBN or MC

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4887

12 NATURE COMMUNICATIONS | 5:3887 | DOI: 10.1038/ncomms4887 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA
http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA
http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA
http://bioinformatics.mdanderson.org/main/TCGA/Pancan11/RPPA
https://tcga-data.nci.nih.gov/tcga
http://www.proteinatlas.org/ENSG00000141736/tissue/staining&plus;overview
http://www.proteinatlas.org/ENSG00000141736/tissue/staining&plus;overview
http://www.proteinatlas.org/ENSG00000141736/tissue/staining&plus;overview
http://www.r-project.org/
http://www.r-project.org/
https://www.synapse.org/#!Synapse:syn1695373
https://www.synapse.org/#!Synapse:syn1695373
http://www.nature.com/naturecommunications


derived), a Spearman’s rank correlation test was performed between each pathway
score and every protein. If the r was 40.3 or o� 0.3, the protein was included in
the heatmap. Regardless of the r, pathway members for the given pathways were
included. Annotation bars (from Fig. 2) were included if they were statistically
significantly associated with the pathway (Po0.05, Kruskal–Wallis test, n¼ 3,467),
corrected for multiple testing66. Tumour lineage and cluster were included to
facilitate interpretation. For each pathway heatmap (RBN or MC), the samples
were first sorted by the alphabetic order of either cluster or tumour, and then by
the increasing order of a pathway score.

Using the heatmap method described above, two additional summary heat
maps for the pathway scores (RBN and MC) were generated (Fig. 4a,b) to provide
an overall view of the relationships between tumours, unsupervised clusters and
pathways. Mean pathway scores were calculated for each tumour as well as cluster
variables, and the combined mean pathway scores were standardized for each
pathway across all tumour and clusters. In both the individual pathway plots and
the heatmap summary plots, hierarchical clustering was based on Pearson’s
correlation-based distance matrices67 and Ward linkage. The dynamic heat maps
were generated using the R-package NGCHM61. Each cell in the heatmap
represents the mean pathway score of all the samples in that cluster or tumour
lineage, with blue representing a suppressed pathway, red representing an activated
pathway and white representing neither.

Supplementary Fig. 10a,b shows a similar measure of pathway activity, but on
the absolute scale. The Supplementary Figure is derived as follows. First, the RPPA
data set (either RBN or MC normalized) is globally scaled so that the protein
expression level measurements have zero mean and unit s.d. over all samples. Next,
for each cluster and tumour lineage, we calculate the mean (scaled) protein
expression level for each protein. We then convert these means to their absolute
value (as low or high mean protein levels could both be markers of pathway
activity), obtaining an absolute mean protein level for each protein in each cluster
or tumour lineage. Finally, for each pathway, we calculate the average of the
absolute mean levels over the proteins that participate in the pathway. This value is
designated the differential pathway activity score, as it indicates the deviation from
the mean expression of a pathway in a given cluster or tumour lineage, and can
thus be seen as a proxy for pathway activation/deactivation.

Actionable protein analysis. The analysis focused on the potential ability of
proteomics to predict response to proteins currently of increased interest, due to
proposed targetability or potentiality as a drug target in the drug development
stage. The list of proteins is not exhaustive, but rather includes many different
processes and pathways with varying importance in different tumour lineages
included in this study. In the Supplementary Methods, registered trials targeting
many of these proteins are included.

To visualize the expression pattern of these 25 proteins, heatmaps were
generated61 using the RBN data set (Fig. 5). Proteins were ordered by unsupervised
hierarchical clustering and samples were ordered by cluster (disease) membership
and within each, ordered by unsupervised hierarchical clustering. Ward’s method
and 1-Pearson correlation were used as a dissimilarity metric and linkage.

Network analysis. Networks were estimated using statistical models known as a
probabilistic graphical models (specifically Gaussian graphical models)47. These
models use an undirected graph or network to describe probabilistic relationships
between variables. In contrast to pair-wise correlation analysis, the networks are
rooted in a global, multi-dimensional approach that identifies links between nodes
while controlling for the effects of all other observed nodes.

Statistical inference of networks is a so-called ‘high-dimensional’ problem
because network descriptions require a large number of parameters relative to
available sample sizes (especially at the disease or cluster level). This motivates a
need for regularization to learn sparse, parsimonious networks and thereby control
over-fitting. We used l1-penalization for this purpose, specifically via an algorithm
known as graphical lasso46, as implemented in the R-package huge68. A parameter
l that controls the strength of penalization was set by 10-fold cross-validation in all
cases. To prevent artefacts that can arise due to duplicated nodes, related nodes that
were relatively highly correlated were merged before network analysis. In each such
case, only one of the set of correlated nodes was used for network inference and the
remaining merged nodes are shown in white. Since protein levels are measured in
arbitrary units (depending on affinity and avidity of specific antibodies), for each
network the data were standardized before applying the graphical lasso, such that
each protein had zero mean and unit variance.

Outcome analysis. A training test approach was adopted for survival analysis. In
each of the 11 tumour lineages, samples with survival data available were randomly
divided into training (2/3) and test (1/3) sets with balanced events in both sets. The
training set was used to obtain an optimized cutoff, which was ‘locked’ (that is,
used without change) on the test set. Essentially, samples were sorted based on the
protein expression of the interesting gene or pathway score. Each possible cutoff in
the middle 60% of samples was checked using a Cox’s regression model. The cutoff
with lowest P-value was chosen as the optimized cutoff. In the test set, samples
were divided into high and low groups according to this optimized cutoff by either
percentage or absolute value. Then the hazard ratio, Wald’s test P-value and

Kaplan–Meier survival curves of the two groups were examined by Cox’s regression
analysis. Only the predictors that were successfully validated in the test set are
shown in Supplementary Table 14. Kaplan–Meier survival curves were generated to
illustrate the survival differences in the four significant pathways using the whole
sample set (Supplementary Fig. 12).

References
1. Myhre, S. et al. Influence of DNA copy number and mRNA levels on the

expression of breast cancer related proteins. Mol. Oncol. 7, 704–718 (2013).
2. Park, E. S. et al. Integrative analysis of proteomic signatures, mutations, and

drug responsiveness in the NCI 60 cancer cell line set. Mol. Cancer Ther. 9,
257–267 (2010).

3. Shankavaram, U. T. et al. Transcript and protein expression profiles of the
NCI-60 cancer cell panel: an integromic microarray study. Mol. Cancer Ther. 6,
820–832 (2007).

4. Cancer Genome Atlas N. Comprehensive molecular characterization of human
colon and rectal cancer. Nature 487, 330–337 (2012).

5. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast
tumours. Nature 490, 61–70 (2012).

6. Cancer Genome Atlas Research N. Comprehensive genomic characterization
defines human glioblastoma genes and core pathways. Nature 455, 1061–1068
(2008).

7. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian
carcinoma. Nature 474, 609–615 (2011).

8. Cancer Genome Atlas Research N. Comprehensive genomic characterization of
squamous cell lung cancers. Nature 489, 519–525 (2012).

9. Cancer Genome Atlas Research N. Comprehensive molecular characterization
of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

10. Cancer Genome Atlas Research N et al. Integrated genomic characterization of
endometrial carcinoma. Nature 497, 67–73 (2013).

11. Li, J. et al. TCPA: a resource for cancer functional proteomics data. Nat.
Methods 10, 1046–1047 (2013).

12. Payne, S. J., Bowen, R. L., Jones, J. L. & Wells, C. A. Predictive markers in breast
cancer-the present. Histopathology 52, 82–90 (2008).

13. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish
tumour subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98,
10869–10874 (2001).

14. Cardnell, R. J. et al. Proteomic markers of DNA repair and PI3K pathway
activation predict response to the PARP inhibitor BMN 673 in small cell lung
cancer. Clin. Cancer Res. 19, 6322–6328 (2013).

15. Awaya, H., Takeshima, Y., Furonaka, O., Kohno, N. & Inai, K. Gene
amplification and protein expression of EGFR and HER2 by chromogenic in situ
hybridisation and immunohistochemistry in atypical adenomatous hyperplasia
and adenocarcinoma of the lung. J. Clin. Pathol. 58, 1076–1080 (2005).

16. Blok, E. J., Kuppen, P. J., van Leeuwen, J. E. & Sier, C. F. Cytoplasmic
overexpression of HER2: a key factor in colorectal cancer. Clin. Med. Insight
Oncol. 7, 41–51 (2013).

17. Caner, V. et al. No strong association between HER-2/neu protein
overexpression and gene amplification in high-grade invasive urothelial
carcinomas. Pathol. Oncol. Res. 14, 261–266 (2008).

18. Fleischmann, A., Rotzer, D., Seiler, R., Studer, U. E. & Thalmann, G. N. Her2
amplification is significantly more frequent in lymph node metastases from
urothelial bladder cancer than in the primary tumours. Eur. Urol. 60, 350–357
(2011).

19. Grob, T. J. et al. Heterogeneity of ERBB2 amplification in adenocarcinoma,
squamous cell carcinoma and large cell undifferentiated carcinoma of the lung.
Modern Pathol. 25, 1566–1573 (2012).

20. Slomovitz, B. M. et al. Her-2/neu overexpression and amplification in uterine
papillary serous carcinoma. J. Clin. Oncol. 22, 3126–3132 (2004).

21. Cuadros, M. & Villegas, R. Systematic review of HER2 breast cancer testing.
Appl. Immunohistochem. Mol. Morphology 17, 1–7 (2009).

22. Grimm, E. E., Schmidt, R. A., Swanson, P. E., Dintzis, S. M. & Allison, K. H.
Achieving 95% cross-methodological concordance in HER2 testing: causes and
implications of discordant cases. Am. J. Clin. Pathol. 134, 284–292 (2010).

23. Press, M. F. et al. HER-2 gene amplification, HER-2 and epidermal growth
factor receptor mRNA and protein expression, and lapatinib efficacy in women
with metastatic breast cancer. Clin. Cancer Res. 14, 7861–7870 (2008).

24. Yaziji, H. et al. HER-2 testing in breast cancer using parallel tissue-based
methods. JAMA 291, 1972–1977 (2004).

25. Barginear, M. F., John, V. & Budman, D. R. Trastuzumab-DM1: a clinical
update of the novel antibody-drug conjugate for HER2-overexpressing breast
cancer. Mol. Med. 18, 1473–1479 (2012).

26. Hurvitz, S. A. et al. Phase II randomized study of trastuzumab emtansine versus
trastuzumab plus docetaxel in patients with human epidermal growth factor
receptor 2-positive metastatic breast cancer. J. Clin. Oncol. 31, 1157–1163 (2013).

27. Fleming, G. F. et al. Phase II trial of trastuzumab in women with advanced or
recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology
Group study. Gynecol. Oncol. 116, 15–20 (2010).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4887 ARTICLE

NATURE COMMUNICATIONS | 5:3887 | DOI: 10.1038/ncomms4887 | www.nature.com/naturecommunications 13

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


28. Hoadley, K.A. et al. Multi-platform integration of 12 cancer types reveals cell-
of-origin classes with distinct molecular signatures. Cell. (In press) (2014).

29. Yao, M. et al. VHL tumor suppressor gene alterations associated with good
prognosis in sporadic clear-cell renal carcinoma. J. Natl Cancer Inst. 94,
1569–1575 (2002).

30. Vivanco, I. et al. Differential sensitivity of glioma-versus lung cancer-specific
EGFR mutations to EGFR kinase inhibitors. Cancer Discov. 2, 458–471 (2012).

31. Bacolod, M. D. & Barany, F. Molecular profiling of colon tumors: the search for
clinically relevant biomarkers of progression, prognosis, therapeutics, and
predisposition. Ann. Surg. Oncol. 18, 3694–3700 (2011).

32. Imamura, Y. et al. Specific mutations in KRAS codons 12 and 13, and patient
prognosis in 1075 BRAF wild-type colorectal cancers. Clin. Cancer Res. 18,
4753–4763 (2012).

33. Malhotra, P. et al. Alterations in K-ras, APC and p53-multiple genetic pathway
in colorectal cancer among Indians. Tumour Biol. 34, 1901–1911 (2013).

34. Bremnes, R. M. et al. High-throughput tissue microarray analysis used to
evaluate biology and prognostic significance of the E-cadherin pathway in non-
small-cell lung cancer. J. Clin. Oncol. 20, 2417–2428 (2002).

35. Zhang, H. et al. Clinical significance of E-cadherin, beta-catenin, vimentin and
S100A4 expression in completely resected squamous cell lung carcinoma.
J. Clin. Pathol. 66, 937–945 (2013).

36. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease.
Cell 149, 274–293 (2012).

37. Hodgson, M. C. et al. Decreased expression and androgen regulation of the
tumor suppressor gene INPP4B in prostate cancer. Cancer Res. 71, 572–582
(2011).

38. Liu, S. et al. Expression of autotaxin and lysophosphatidic acid receptors
increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 15,
539–550 (2009).

39. Prat, A. et al. Molecular characterization of basal-like and non-basal-like
triple-negative breast cancer. Oncologist 18, 123–133 (2013).

40. Cheung, L. W. et al. High frequency of PIK3R1 and PIK3R2 mutations in
endometrial cancer elucidates a novel mechanism for regulation of PTEN
protein stability. Cancer Discov. 1, 170–185 (2011).

41. Salvesen, H. B., Haldorsen, I. S. & Trovik, J. Markers for individualised therapy
in endometrial carcinoma. Lancet. Oncol. 13, e353–e361 (2012).

42. Slomovitz, B. M. & Coleman, R. L. The PI3K/AKT/mTOR pathway as a
therapeutic target in endometrial cancer. Clin. Cancer Res. 18, 5856–5864 (2012).

43. Horiuchi, D. et al. MYC pathway activation in triple-negative breast cancer is
synthetic lethal with CDK inhibition. J. Exp. Med. 209, 679–696 (2012).

44. Yuan, Y. et al. Assessing the clinical utility of cancer genomic and proteomic
data across tumor types. Nat. Biotechnol. Accepted (2014).

45. Daniels, T. R., Delgado, T., Helguera, G. & Penichet, M. L. The transferrin
receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin.
Immunol. 121, 159–176 (2006).

46. Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics 9, 432–441 (2008).

47. Rue, H. & Held, L. Gaussian Markov Random Fields: Theory and Applications
Monographs on statistics and applied probability Hiard Rue and Leonhard
Held Chapman and Hall/CRC 2005 ISBN-10: 1-58488-432-0 (2005).

48. Chagpar, R. B. et al. Direct positive regulation of PTEN by the p85 subunit of
phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 107, 5471–5476
(2010).

49. Memmott, R. M. & Akt-dependent, Dennis PA. and -independent mechanisms
of mTOR regulation in cancer. Cell Signal. 21, 656–664 (2009).

50. Serra, V. et al. RSK3/4 mediate resistance to PI3K pathway inhibitors in breast
cancer. J. Clin. Invest. 123, 2551–2563 (2013).

51. Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour
cell growth. Nature 441, 424–430 (2006).

52. Canel, M. et al. Overexpression of focal adhesion kinase in head and neck
squamous cell carcinoma is independent of fak gene copy number. Clin. Cancer
Res. 12, 3272–3279 (2006).

53. Myllykangas, S. et al. Integrated gene copy number and expression microarray
analysis of gastric cancer highlights potential target genes. Int. J. Cancer 123,
817–825 (2008).

54. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P.
Phosphorylation and functional inactivation of TSC2 by Erk implications for
tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).

55. Smyth, G. K. Limma: linear models for microarray data. In ‘Bioinformatics and
Computational Biology Solutions using R and Bioconductor’ (Springer, 2005).

56. Robnik-Sikonja, M. & Savicky, P. CORElearn: CORElearn—classification,
regression, feature evaluation and ordinal evaluation. R package version 0.9.41.
(2013).

57. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat.
Biotechnol. 28, 1248–1250 (2010).

58. Hall, M. et al. The WEKA data mining software: an update. SIGKDD
Explorations 11, 10–18 (2009).

59. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and
display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95,
14863–14868 (1998).

60. Hartigan, J. A. Clustering Algorithms (John Wiley & Sons, 1975).
61. Broom, B. NGCHM: Utilities for creating Next Generation Clustered Heat

Maps. R package version 0.5.1. (2013).
62. Neeley, E. S., Kornblau, S. M., Coombes, K. R. & Baggerly, K. A. Variable slope

normalization of reverse phase protein arrays. Bioinformatics 25, 1384–1389
(2009).

63. Hennessy, B. T. et al. A technical assessment of the utility of reverse phase
protein arrays for the study of the functional proteome in non-microdissected
human breast cancers. Clin. Proteomics 6, 129–151 (2010).

64. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human
cancer. Nat. Biotechnol. 30, 413–421 (2012).

65. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell
admixture from expression data. Nat. Commun. 4, 2612 (2013).

66. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. Royal Stat. Soc. Series 57, 12 (1995).

67. Coombes, K. R. ClassDiscovery: Classes and methods for ‘class discovery’ with
microarrays or proteomics. R package version 2.13.4. (2012).

68. Zhao, T., Iu, H., Roeder, K., Lafferty, J. & Wasserman, L. The huge Package for
high-dimensional undirected graph estimation in R. J. Machine Learning Res.
13, 4 (2012).

Acknowledgements
We acknowledge contributions from the TCGA Research Network and its TCGA
Pan-Cancer Analysis Working Group coordinated by J.M. Stuart, C. Sander and
I. Shmulevich. This study was supported by the National Institutes of Health (TCGA
CA143883 and CCSG grant P30 CA016672 to J.N.W. and G.B.M., NCI P50CA70907 to
J.D.M. and J.V.H., NCI U54 CA112970 to S.M.); and by the Chapman Foundations and
the Michael & Susan Dell Foundation (Lorraine Dell Program in Bioinformatics for
Personalization of Cancer Medicine) to J.N.W. Additional support was provided to S.M.
by the Cancer Systems Biology Center grant from the Netherlands Organisation for
Scientific Research. L.A.B. acknowledges support from the UTMDACC Physician
Scientist Award, LUNGevity Foundation, the North Carolina Chapter of National Lung
Cancer Partnership, and The Sidney Kimmel Foundation for Cancer Research.

Author contributions
R.A. and G.B.M. lead the analysis in the paper. G.B.M. supervised the project and
manuscript writing. R.A., P.K.S.N. and H.M.J.W. wrote much of the manuscript,
supplement and response to reviewers. J.N.W. edited the manuscript and response to
reviewers. M.S., G.B.M., P.K.S.N., Y.L., H.M.J.W., J.N.W., F.M.-B. and R.A. helped in
interpreting the results. F.Z., Z.J., W.L., S.L. and J.Y.-Y. performed analyses included in
the paper and in the response to reviewers. K.Y. and R.G.W.V. performed purity analysis.
J.L., H.L., B.M.B. and P.K.S.N. made the data and analyses available to the public at the
TCPA portal and at the project home page. E.G.S. and P.T.R. performed function space
analysis of the proteins. J.D.M., L.D., P.T., J.V.H. and L.A.B. provided unpublished lung
cancer cell line data for validation. S.M.H., F.D., N.S. and S.M. performed network
analyses under the supervision of S.M.H. and these authors contributed to writing parts
of the manuscript. Y.L. generated the RPPA data under G.B.M. supervision.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Akbani, R. et al. A pan-cancer proteomic perspective on The
Cancer Genome Atlas. Nat. Commun. 5:3887 doi: 10.1038/ncomms4887 (2014).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4887

14 NATURE COMMUNICATIONS | 5:3887 | DOI: 10.1038/ncomms4887 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications

	title_link
	Figure™1HER2 RPPA correlations with copy number and mRNA.(a) Histogram of Spearman’s rank correlation (rho-values) for 206 pairs of proteins and matched mRNAs across all tumour types. The black curve represents the background of rho values using 28,960 ra
	Results
	Correlations between protein and other data types
	HER2 analysis as an example
	Unsupervised clustering analysis

	Figure™2Unsupervised clustering and analyses based on the RBN data set.(a) Heatmap depicting protein levels after unsupervised hierarchical clustering of the RBN data set consisting of 3,467 cancer samples across 11 tumour types and 181 antibodies. Protei
	Reduction of tissue-specific proteomic signatures
	Analysis of pathways and targets

	Figure™3Unsupervised clustering and analyses based on the MC data set.(a) Heatmap showing protein expression after unsupervised hierarchical clustering of 3,467 cancer samples across 11 tumour types and 181 antibodies. Protein levels are indicated on a lo
	Figure™4Pathway analyses.Pathway analyses of the data set by RBN clusters, MC clusters and tumour type. For pathway predictor members see Supplementary Table™13. (a,b) Heatmaps depicting mean pathway scores after unsupervised hierarchical clustering on tu
	Figure™5Analyses of selected potentially actionable proteins.(a,b) Heatmaps, supervised on the sample axis, depicting protein level of 25 proteins that are (potentially) actionable based on the RBN data set. Proteins were ordered by unsupervised hierarchi
	Network visualization

	Figure™6Unbiased data-driven signalling network.Unbiased signalling network based on a probabilistic graphical model analysis, visualizing all 11 tumour lineages individually. Interplay between nodes was quantified using scores from the graphical model an
	Discussion
	Methods
	Description of the protein data
	Protein correlations
	Discriminator selection
	BRCA and UCEC subdivision
	HER2 cutoffs
	General heatmap section
	Batch effects removal
	Reducing tissue differences to cluster across tumours
	Tumour purity and ploidy
	Pathway analysis
	Actionable protein analysis
	Network analysis
	Outcome analysis

	MyhreS.Influence of DNA copy number and mRNA levels on the expression of breast cancer related proteinsMol. Oncol.77047182013ParkE. S.Integrative analysis of proteomic signatures, mutations, and drug responsiveness in the NCI 60 cancer cell line setMol. C
	We acknowledge contributions from the TCGA Research Network and its TCGA Pan-Cancer Analysis Working Group coordinated by J.M. Stuart, C. Sander and I. Shmulevich. This study was supported by the National Institutes of Health (TCGA CA143883 and CCSG grant
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




