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PATHOME: an algorithm for accurately detecting
differentially expressed subpathways
S Nam1,8, HR Chang2,8, K-T Kim3, M-C Kook4, D Hong1, CH Kwon1, HR Jung2, HS Park2, G Powis5, H Liang6, T Park7 and YH Kim2

The translation of high-throughput gene expression data into biologically meaningful information remains a bottleneck. We
developed a novel computational algorithm, PATHOME, for detecting differentially expressed biological pathways. This algorithm
employs straightforward statistical tests to evaluate the significance of differential expression patterns along subpathways.
Applying it to gene expression data sets of gastric cancer (GC), we compared its performance with those of other leading programs.
Based on a literature-driven reference set, PATHOME showed greater consistency in identifying known cancer-related pathways. For
the WNT pathway uniquely identified by PATHOME, we validated its involvement in gastric carcinogenesis through experimental
perturbation of both cell lines and animal models. We identified HNF4α-WNT5A regulation in the cross-talk between the AMPK
metabolic pathway and the WNT signaling pathway, and further identified WNT5A as a potential therapeutic target for GC. We have
demonstrated PATHOME to be a powerful tool, with improved sensitivity for identifying disease-related dysregulated pathways.
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INTRODUCTION
To obtain system-level descriptions of biological and cellular
events, transcriptome profiling, including recent RNA-sequencing
approaches,1 has generated large, unmanageable high-
throughput data sets.2 To make sense of these gene expression
data sets, researchers have developed various gene set analysis
(GSA) tools, such as DAVID3 and GSEA,4 in combination with prior
knowledge-based databases, such as the Kyoto Encyclopedia of
Genes and Genomes (KEGG),5 Gene Ontology,6 BioCarta,
PANTHER,7 MetaCyc,8 Molecular Signatures Database4 and
RegulonDB.9

Despite these diligent research efforts, the biologically mean-
ingful interpretation of findings from high-throughput gene
expression data remains a bottleneck.2 The persistence of this
congestion arises from the challenge of exploring the complex
relationships between cellular components,10 especially in the
context of functional molecular pathways. Pathway information as
it relates to a phenotype of interest (for example, a disease)
necessarily implies that a key molecular target should be
considered within the framework of its network. A network focus
enables us to more effectively infer key transcriptional changes
related to the specific phenotype by examining multiple down-
stream (or cross-talk) effectors of the target. However, the current
GSA11 tools utilize over-representation analysis,12 which reports
the enrichment of functional groups (for example, gene sets) for
the genes of interest. They compromise the connectivity in favor
of computational simplicity that is based on cellular components
and not their connectivity.3,4 In other words, current tools do not
analyze the wiring diagram of the interactions (for example,
activation, inhibition) in a functional molecular network.13

We have developed PATHOME (pathway and transcriptome
information), a novel computational algorithm for identi-
fying differentially expressed subpathways. Methodologically,
PATHOME has two benefits: It analyzes the regulation information
between nodes in the biological pathways and is applicable to a
small number of samples. PATHOME is not a permutation-based
approach that requires more samples in order to obtain a null
distribution for a statistical test. We demonstrated the utility of
PATHOME by applying it to gene expression data of gastric cancer
(GC), thereby identifying tumor-related dysregulated pathways
and novel therapeutic targets. Based on a reference set of known
cancer-related pathways, PATHOME showed greater sensitivity
and robustness than other leading methods in detecting
differential molecular signals. For the WNT signaling pathway
revealed only by PATHOME, we validated its involvement in
gastric carcinogenesis through experimental studies of both cell
lines and animal models. Our results further revealed a potential
therapeutic target, WNT5A. Thus, PATHOME represents a powerful
tool for inferring biologically interpretable patterns from gene
expression data.

RESULTS
Overview of PATHOME algorithm and study design
PATHOME takes the gene expression profiles of two comparison
groups (for example, cancer vs non-cancer tissue) and related
biological pathways from prior knowledge. In this study, we used
the KEGG pathway database as the source of prior knowledge.
PATHOME first decomposes the pathways into linear paths
(subpathways) from the top nodes to leaf nodes, and then
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employs simple statistical tests to evaluate the significance of
differential expression patterns along the subpathways (Figures 1a
and b). The interaction property between pathway members (for
example, activation or inhibition) is also considered (Figure 1c). A
detailed description of the PATHOME algorithm is provided in
Materials and methods.
To evaluate the performance and demonstrate the utility of

PATHOME, we applied it to publicly available gene expression data
sets of Asian GC (Table 1). Figure 2 summarizes our study strategy,

which consists of two stages: a discovery stage and a validation
stage. The primary aim of the discovery stage is to compare the
performance of PATHOME with those of DAVID3 and GSEA,4 two
leading GSA tools based on a reference set of known cancer-
related pathways. The data sets we used in this stage were one
Korean GC data set (GSE13861)14 and one Japanese GC data set
(GSE15081).15 A second aim of this two-stage strategy was to
select potential therapeutic targets in GC. Thus, based on
differential subpathways inferred from the discovery stage, we
further identified robust gene signatures by using independent
data sets at the validation stage. The data sets we used in this
stage were another Korean GC data set (GSE36968)16 and one
Chinese GC data set (GSE27342).17 Finally, through hierarchical
clustering analysis, transcription factor-binding site (TFBS) analy-
sis and expression pattern analysis from ArrayExpress,18 we
identified the target gene/pathway for experimental validation.

Performance comparison of PATHOME with other algorithms
The comparison sample groups in the first gene expression data
set (GSE13861)14 were 65 primary gastric adenocarcinoma frozen
tissue samples and 19 normal appearing gastric tissue samples.
With PATHOME, we identified 113 810 subpathways that belong
to 27 KEGG pathways (Supplementary Table 1) at a false discovery
rate (FDR) o0.05. To the same data set, we applied DAVID and
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Figure 1. Overview of PATHOME. (a) Gene expression data and
pathways are input to identify significant subpathways. The path-
ways are first decomposed to linear paths (subpathways) from top
nodes to leaf nodes. Two types of regulation information are
considered: activation (arrow-headed) and inhibition (blunt end-
headed). Nodes A and L refer to root nodes, and nodes D, G, K, N
refer to leaf nodes. Each subpathway is statistically tested for
significance of its selection. In the example, two subpathways are
selected and subsequently reconstructed for visualization.
(b) PATHOME consists of two steps: a selection of candidate
subpathways and a test of the selected subpathways. The selection
step determines whether a given subpathway complies with the
association rule (see c) between edge information and gene
expression. If the rule is satisfied in the subpathway, statistical tests
will be performed in the test step. (c) The rule associates regulation
(edge) information of adjacent entries with their expressions in
terms of the sign information of Pearson product-moment correla-
tion coefficients. The graphical edge type comes from regulation
information between the adjacent entries (here, ei,i+1 and ej,j+1 from
pairs Gi�Gi+1 and Gj�Gj+1, respectively) from KEGG pathway. The
edge type is coded to +1 (activation) or �1 (inhibition) according to
its head shape (arrow or blunt-ended). We used the sign information
of Pearson correlation product coefficient (here, ri,i+1 and rj,j+1) as an
edge type surrogate in the expression data. When the sign
information of the coefficient and that of the edge type are the
same, we say that the expression and the prior regulation
information are agreeable in an experimental group.

Table 1. Summary of gastric cancer-related transcriptome-wide
expression data sets used in this study

Data set Ethnic
group

Comparison group Profiling platform

GSE1386114 Korean 65 Tumor vs
19 non-tumor

Illumina Human
WG-6 v3.0

GSE1508115 Japanese 18 Relapse vs
38 relapse-free

Human Oligo Chip
30K

GSE3696816 Korean 24 Tumor vs
6 non-tumor

SOLiD Single-read
RNA-seq

GSE2734217 Chinese 80 Tumor vs
80 non-tumor

Affymetrix Human
Exon 1.0 ST array
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GSEA, using default parameter settings (the results are shown in
Supplementary Tables 2 and 3, at FDRo0.3). The comparison
groups in the second gene expression data set (GSE15081)15 were
the samples from 18 patients with GC who experienced peritoneal
relapse and 38 who did not experience peritoneal relapse.
At FDRo0.05, PATHOME reported 126 095 subpathways that
belong to 15 KEGG pathways (Supplementary Table 4). The
significant pathways identified by DAVID and GSEA are shown
in Supplementary Tables 5 and 6 (FDRo0.3), respectively. To
evaluate the performance of PATHOME, we used a set of
known cancer-related pathways19 as a reference standard for

comparing the three methods (see Table 2). PATHOME used a lower
significance cutoff (FDRo0.05) compared with that of the two
methods (FDRo0.3 for both methods). Despite the lower cutoff,
our method detected more differential cancer-related pathways.

Selection of potential therapeutic targets in the WNT signaling
pathway
Although other tools assess the overall enrichment of genes of
interest in a given pathway, the strategy of PATHOME is to
thoroughly inspect all possible paths in the pathway. Path
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Figure 2. Overview of the study design. The study consists of two stages (a discovery stage and a validation stage). The discovery stage
employed two independent gastric cancer data sets for methodological comparison. In this stage, we compared our method to two GSA tools,
GSEA and DAVID. From target-signaling subpathways inferred from the discovery stage, the validation stage aims to identify a small number
of genes with reproducible expression patterns through independent data sets, and further using clustering analysis and transcription factor-
binding site (TFBS) analysis, and expression pattern analysis from ArrayExpress.

Table 2. Performance comparison of three methods based on terms of cancer-related pathways identified in Vogelstein and Kinzler19

Reference standard19 KEGG pathway Title GSE13861 data set14 GSE15081 data set15

PATHOME DAVID GSEA PATHOME DAVID GSEA

HIF1 HSA04150 mTOR signaling X X X X X X
HSA05200 Pathways in cancer 0 X X X X X
HSA05211 Renal cell carcinoma X X X X X X

P53 HSA04115 P53 signaling X X X X X X
RB (cell cycle) HSA04110 Cell cycle X X 0 X X X
Apoptosis HSA04210 Apoptosis X X X X X X
GLI HSA04340 Hedgehog signaling X X X X X X
APC HSA04310 Wnt signaling 0 X X 0 X X
RTK HSA04012 ERBB signaling X X X X X X

HSA05200 Pathways in cancer 0 X X X X X
SMAD HSA04350 TGF-β signaling X X X X X X
PI3K HSA04012 ERBB signaling X X X X X X

HSA05200 Pathways in cancer 0 X X X X X
HSA04150 mTOR signaling X X X X X X
HSA04010 MAPK signaling 0 X X 0 X X
HSA04910 Insulin signaling 0 X X X X X
HSA04510 Focal adhesion 0 0 X 0 X X
HSA04062 Chemokine signaling 0 X X 0 X X
HSA04370 VEGF signaling X X X 0 X X

Abbreviations: APC, antigen-presenting cell; ERBB, v-erb-b avian erythroblastic leukemia viral oncogene; GLI, glioma-associated oncogene; HIF1, hypoxia
inducible factor; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; PI3K, phosphoinositide-3-kinase; RB, retinoblastoma; RTK,
protein-tyrosine kinase; TGF, transforming growth factor; VEGF, vascular endothelial growth factor. Note: X (not detected), 0 (detected).
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decomposition in Figure 1a allows PATHOME to detect a pathway
for which the enrichment analyses of other tools cannot report
significance.
To further demonstrate the utility of our method, applied

PATHOME to the identification of potential therapeutic targets
from within the results we had obtained. For this purpose,
PATHOME reported significant subpathways relating to WNT
signaling, MAPK signaling, insulin signaling, focal adhesion and
chemokine signaling (Table 2) in East Asians. Among these
identified pathways, we selected the WNT pathway as identified
uniquely by PATHOME for further cell line and animal studies for
accuracy validation. Although the two discovery data sets were
constructed from different comparisons of GC patients, the
PATHOME results strongly suggested that subpathways of the
WNT pathway were involved in the development of primary GC
and peritoneal cancer relapse. Using Cytoscape,20 we combined
the significant subpathways related to the WNT pathway from the
two data sets and visualized the combined subpathways of 62
genes (Figure 3a and Supplementary Table 7). At the validation

stage, we investigated whether the expression patterns in the
combined subpathways inferred from the discovery stage were
reproducible in another two independent data sets: our published
RNA-seq GC data set of Korean patients (GSE36968: 24 primary
cancer tissue samples vs 6 non-cancer samples)16 and another
microarray data set (GSE27342: 160 samples of paired gastric
tumor and adjacent normal tissues).17 We found that the
expression changes in the 62 genes of the combined subpathways
showed great concordance in terms of up- or downregulation
(relative to non-cancer samples) between GSE13861 and
GSE36968 (Fisher's exact text, Po0.007, Supplementary Table 8)
or between GSE13861 and GSE27342 (Fisher's exact text,
Po0.018, Supplementary Table 8), highlighting the reproduci-
bility of differential WNT subpathways identified. We arbitrarily
assigned the four data sets into either the discovery stage or the
validation stage. Because of the considerable concordance among
the data sets (Supplementary Table 8), this assignment yet
enabled us to work in the current study design in spite of the
heterogeneity of the origins of the data sets.

Figure 3. Selection of significant targets in the combined WNT signaling subpathways. (a) The combined differential subpathways of 62 genes,
visualized by Cytoscape. (b) Identification of the commonly up- or downregulated gene clusters in the hierarchical clustering analysis of the
four expression data sets (GSE36968, GSE13861, GSE15081 and GSE27342) in terms of the signed fold-changes for the 62 genes. The
eight genes with consistent changes across the four data sets are marked by red arrows (color coding: gray, missing data; red, upregulation;
green, downregulation)
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To pinpoint individual genes for further experimental valuation,
we performed hierarchical clustering analysis, TFBS analysis and
expression pattern analysis from ArrayExpress.18 The hierarchical
clustering analysis (Figure 3b) found that eight genes showed up-
or downregulation consistently across all four data sets used in
both stages (Figure 3b, indicated by the red arrows), among which
five genes (WNT5A, VANGL1, SFRP2, FZD1 and PLCB1) were
upregulated. We next focused on these five upregulated genes
(as potential drug-inhibition candidates) and evaluated their
TFBSs. Using the ENCODE transcription factor ChIP-Seq data21

and the evolutionarily conserved TFBSs,22 we examined the TFBSs
within upstream 2-kb regions from the transcription start sites of
the five genes. Interestingly, VANGL1 has two binding sites for
hepatocyte nuclear factor 4 alpha (HNF4α) according to the ChIP-
Seq data; whereas WNT5A and PLCB1 have binding sites for
HNF4α in terms of conserved TFBSs (Supplementary Figure 1A).
Thus, VANGL1, WNT5A and PLCB1 are potential target genes in the
WNT pathway through HNF4α-mediated transcriptional regula-
tion. To further confirm the potential regulation of HNF4α with
these three genes at the transcriptional level, we examined the
expression patterns of the four genes (HNF4α and VANGL1,WNT5A,
PLCB1) in various experimental data sets in a public expression
warehouse, ArrayExpress.18 We found that 27 out of 166 data sets
reported by ArrayExpress showed co-expression of the four genes
(Supplementary Figure 1B), which was statistically significant
(binomial distribution, Po1.2 × 10�14). Supplementary Figure 3
shows that gene expression of WNT5A, FZD1, PLCB1 and VANGL1
was detected in eight GC cell panels.
Our previous study showed that the loss of the energy-sensing

protein AMPK is a critical event in the initiation of GC; and that
both mRNA and protein levels of HNF4α can be inhibited by
metformin-mediated AMPKα activation in GC cells.16 Thus, the
above analyses revealed HNF4α-WNT5A as having a cross-talk
function between the AMPKα energy-sensing pathway and the
WNT signaling pathway. We hypothesized that a metformin effect
on HNF4α by an AMPKα-mediated mechanism could transcrip-
tionally downregulate the WNT pathway. To confirm this link, we
selected WNT5A for further experimental validation (described in
the following section).

Involvement of WNT pathway and associated antitumor
activity in GC
We first examined the basal protein expression level of several
WNT family members (including WNT5A) and WNT-related down-
stream genes in 14 gastric tumor cell line panels (Figure 4a).
Although WNT1 and WNT3 protein expression levels varied
between the GC cell lines, WNT5A showed a similar protein
expression level between gastric cell lines through immunoblot-
ting measurement. In addition, we examined the basal protein
expression level of WNT5A in xenograft tumors of 16 gastric tumor
cell lines, and found similar protein expression levels between
each xenograft model through immunohistochemistry (Figure 4b).
As described above, WNT5A contains several highly conserved

HNF4α-binding sites in its promoter region. Upon small interfering
RNA (siRNA)-HNF4α treatment, the WNT5A gene expression level
by real-time reverse transcription–PCR (RT–PCR) was downregu-
lated by greater than 50% and 85% on days 2 and 3, respectively
(Figure 4c), and the TCF4 gene expression level was 25%
downregulated on day 2. Meanwhile, the WNT5A protein level
showed 21% and 52% inhibition on days 2 and 3, respectively
(Figure 4d); whereas there was no difference in the protein level of
β-catenin, and HIF1α was downregulated by 70% (Figure 4d).
These results indicate that HNF4α as a transcription factor could
regulate the transcription of WNT5A. However, different quantita-
tion of knockdown and downregulation of gene expression level
and protein level for HNF4α and WNT5A is observed in our
experiments.

To investigate the functional relevance of WNT5A in gastric
tumors, we performed metformin treatment in the tumor cell
lines. Upon metformin treatment, both the NCI-N87 and AGS
gastric tumor cell lines showed anti-proliferation activities
(Figure 4e). While there were small changes in WNT1 and WNT3
protein levels, we observed 42% inhibition of WNT5A and 58%
inhibition of β-catenin protein expression level, with indifferences
seen for glycogen synthase kinase (GSK)3 protein levels in both
the NCI-N87 and AGS cell lines (Figure 4e), also, detected loss of
transcription factor (TCF) and lymphoid enhancer-binding factor
(LEF) protein expression level on days 2 and 3 (Figure 4e). The
WNT canonical signaling pathway acts by regulating cell
differentiation, cell growth and cell proliferation. We observed
the regulation of cyclin D1 and cyclin D2 protein levels through
WNT5A (Figure 4e). Moreover, we detected minimal effects on the
phosphorylated-calcium/calmodulin-activated protein kinase
(pCAMKII) protein level in WNT non-canonical signaling pathway,
as we observed 5 out of 14 gastric cell lines to have confirmed
pCAMKII protein detection. Potentially in GC, WNT5A does not
activate a CAMKII-dependent signaling cascade. However, we
observed different level of β-catenin protein expression inhibition
in comparison between metformin and knockdown of HNF4α
through siRNA. But in both metformin and siHN4α, decreased
level of HIF1α protein expression level was observed in our
previous16 and present studies, where β-catenin potentiates
transcription of HIF1α. Further studies are warranted to confirm
this supposition.
We silenced WNT5A expression using siRNA knockdown on the

two GC cell lines (NCI-N87 and AGS) and performed cell
proliferation assay. As shown in Figures 5a and b, siRNA-WNT5A
affected cell growth through apoptosis. As shown in Figure 5c,
siRNA-WNT5A affected protein translation of cell growth regulator
cyclin D1 in both cell lines.
To further evaluate our findings in a more biologically relevant

context, we performed xenograft experiments in mouse models.
Consistently, we found that the metformin treatment introduced
strong antitumor activity (Figure 6a, NCI-N87 and MKN-45 cell
lines, respectively). Importantly, we found the regulatory relation-
ship to be consistent with that observed in the cell line studies.
Upon metformin treatment vs non-treatment, the protein level of
WNT5A decreased in eight out of nine NCI-N87 xenograft animals
and in six out of eight MKN-45 xenograft animals. Also, the
detected β-catenin protein level decreased more than 45% in the
NCI-N87 and 25% in the MKN-45 animal models compared
with that in the mice without metformin treatment, taking the
mean of the ratio of protein expression levels (Figures 6b and c).
Furthermore, immunohistochemistry revealed a loss of WNT5A
protein expression in mice treated with metformin (Figure 6d). In
summary, these in vivo studies confirmed the involvement of
WNT5A signaling in the WNT pathway in gastric tumorigenesis
through HNF4α, highlighting the potential of WNT5A as a
therapeutic target in GC.

DISCUSSION
We developed a novel algorithm, PATHOME, for sensitively
detecting differentially expressed pathways. Biological pathways
consist of nodes and edges representing gene information and
regulation information (for example, activation, inhibition),
respectively. Current GSA methods for pathway (or gene set)
analysis, such as DAVID,3 GSEA,4 GoMiner,23 Onto-Tools24 and
GeneTrail,25 consider nodes only. In contrast, our method is able
to consider both types of information stored in the pathways,
thereby improving the sensitivity for detecting differential signals.
Disease occurs as a consequence of the dysregulation of a

complex interdependency among biological components.10 The
identification of biologically targetable components requires the
consideration of interdependency in terms of measurable
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statistical significance. Statistical significance is a metric by which
researchers can rank or sort the importance of connections within
biological cascades (equivalent to subpathways in our study).
Along that line, PATHOME considers all subpathways from KEGG
pathways, and tests each subpathway that is associated with
differential biological phenotypes (cancer vs normal tissue). Other
known tools consider whole pathways; whereas we have designed
PATHOME to inspect a greater part of the biological cascade,
given a set of pathways. As in Figure 1a, popular tools perform a
single test for the toy pathway, removing interconnectivities
among biological components. In contrast, PATHOME considers
five tests while assessing the interconnectivities for the pathway,

which indicates a more thorough search of the biological
pathways.
By applying PATHOME to GC gene expression data sets, we

demonstrated its advantages. First, based on a reference pathway
set, PATHOME detected more known cancer pathways than the
alternative tools we assessed (at a lower FDR). Second, focusing on
the WNT pathway that was uniquely detected by PATHOME, we
provided strong evidence for the involvement of this pathway in
gastric tumorigenesis through perturbation experiments in both
cell line and animal studies.
Combining the evidence from perturbation experiments in cell

lines and animal models through metformin, our results revealed a

Figure 4. WNT5A is a downstream target of HNF4α in gastric cancer (GC). (a) Immunoblotting detection of basal protein levels of WNT family
members and downstream genes of WNT pathway in GC cell lines. (b) Immunohistochemistry measurement of WNT5A in GC cell line
xenograft mouse models (+1= low; +2=mid and +3=high). (c) Decreased gene expression level of HNF4α, WNT5A and TCF4, RT–PCR
measurement on day 2 (white bar) and day 3 (black bar), in the NCI-N87 cell line silenced with HNF4α. (d) Immunoblotting of HNF4α, WNT5A
and HIF1α on days 2 and 3 in the NCI-N87 cell line silenced with HNF4α. (e) Growth inhibition was observed in GC cell lines (NCI-N87 and
MKN-45) upon metformin (square=non-treated (� ), circle=metformin (+)). Cells were counted from the day of metformin treatment (day 0).
*Po0.05. Immunoblotting of WNT family members and downstream genes treated with metformin in NCI-N87 and AGS GC cell lines for
5 days, and detection of cell cycle regulators. Immunoblotting was quantified using ImageQuant software normalized to β-actin (Molecular
Dynamics/GE Healthcare Biosciences). Control (Ctrl), non-targeting siRNA (siScr), Metformin (MET).

Analysis of differentially expressed subpathways
S Nam et al

6

Oncogene (2014), 1 – 11 © 2014 Macmillan Publishers Limited



cross-link between the AMPK metabolic pathway and the WNT
signaling pathway, with HNF4α-WNT5A regulation having a key
interaction in this link. A study performed by Kato et al.26

suggested an antitumor effect of metformin on cell-cycle
regulation in MKN-1, -45 and -74 GC cell lines. We also report a
potential metformin inhibitory effect in GC cells and xenograft
models. WNT5A is expressed in a variety of human tumors,
including those of the esophagus, stomach, pancreas, colon and
rectum, breast, lung, prostate gland, endometrial uterus and
embryo, as well as in melanoma, osteosarcoma, Ewing sarcoma,
neuroblastoma, skin basal cell carcinoma, skin squamous cell
carcinoma and leukemia.27 Kurayoshi et al.28 reported that the
WNT5A protein is highly expressed in advanced stages of GC and
that its expression correlates with a poor prognosis. In addition,
HNF4α and WNT signaling pathways are active members of the
same machinery that controls the transcription of differentially
zoned HNF4α-dependent genes in the liver, pancreas and biliary
tract.29 Even though WNT5A and HNF4α have been independently
reported to be associated with cancer,27 the link between HNF4α
and WNT5A, to our knowledge, was first suggested in GC.
Combining the evidence from the computational and perturba-
tion experiments in cell lines and animal models, we demon-
strated the oncogenic activity of WNT5A in GC and suggested
WNT5A as a potential therapeutic target. Further study is
warranted regarding the development of metformin therapeutic
options and WNT5A targeted therapies to address GC progression

within Asian patient populations. In Figure 6e, we propose cross-
talk between HNF4α/WNT pathway.
Despite successful application of PATHOME to GC, PATHOME

solely analyzes the linear decomposition of pathways into paths.
In the future, loops and loop-backs in the network need to be
considered in statistical network analysis. We also note that as the
HNF4α-WNT5A link is not annotated in the KEGG pathway
database, PATHOME consequently does not pick up the HNF4α-
WNT5A link.

MATERIALS AND METHODS
PATHOME algorithm
Overview. The goal of this algorithm is to identify a set of subpathways
that differentiate two experimental groups (for example, cancer vs non-
cancer) by considering both prior knowledge about mutual regulations
and experimental gene expression data. Here, we used the KEGG pathways
as prior knowledge, and assumed the KEGG pathways as a tree structure
for the PATHOME application. For computational simplicity, as shown in
Figure 1a, we broke down the KEGG pathway maps into each possible path
(subpathway) from the top node to the leaf node.30 A depth-first search
algorithm was used to decompose the pathway maps into all possible
paths. As our previous study indicated that the number of possible linear
paths (subpathways) was huge (~0.13 billion possible paths),31 we used a
selection step before the statistical significance test step to reduce the
number of tests (Figure 1).

Figure 5. Antiprolifeartion activity in the gastric cancer (GC) cell lines by knockdown of WNT5A. (a) Growth inhibition was observed in NCI-N87
and AGS by knockdown of WNT5A using siRNA-WNT5A (square= siRNA control (CT), triangle= siWNT5A). Cells were counted from the day of
siRNA treatment (day 0). (b) Two GC cell lines (NCI-N87 and AGS) knocked down using siWNT5A, and cells were fixed and analyzed for DNA
content using propidium iodide and fluorescence-activated cell sorting analysis. siWNT5A cells were compared with control cells. The
percentage of cells in each cell cycle was calculated. Apoptotic was observed in knockdown of WNT5A in both cell lines. (c) Inhibition of cyclin
D1, showing antiproliferative activity in both NCI-N87 and AGS transfected with siWNT5A.
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Figure 6. Antitumor activity associated with WNT5A inhibition in gastric cancer (GC) using animal models. (a) Antitumor activity after
metformin (MET) treatment on NCI-N87 and MKN-45 mouse xenograft models (in scid mice, n= 19 per cell type). Cells were subcutaneously
injected and grown for 15 days for the NCI-N87 model and 5 days for the MKN-45 model before treatment with MET. Tumor sizes were
measured and compared between mice treated with or without MET, shown by the growth curve (diamond=NT (non-treated), circle=MET),
*P-valueo0.05. (b) Immunoblotting of WNT5A and β-catenin tumors collected from NT and MET-treated mice. (c) Quantification of western
blot of figure (b). (d) Immunohistochemistry results showing WNT5A staining on xenograft models. The stain was scored as 0 to 3, weakly or
strongly positive cells. (e) Proposed mechanism of action of AMPK/HNF4α/WNT pathway, which can be utilized to target GC. Immunoblotting
was quantified using ImageQuant software normalized to β-actin (Molecular Dynamics/GE Healthcare Bioscience).

Analysis of differentially expressed subpathways
S Nam et al

8

Oncogene (2014), 1 – 11 © 2014 Macmillan Publishers Limited



The selection step (selection of candidate subpathways). As shown in
Figure 1c, the rule is defined to associate the regulation information of
adjacent entries with their expression correlation in terms of the sign
information of the Pearson product-moment correlation coefficients. If two
adjacent entries are connected by an edge that denotes activation (arrow-
headed edge), the expression correlation between the two entries is
assumed to be positive; if the two entries are connected by an edge that
denotes inhibition (blunt-ended edge), the expression correlation between
the two entries is assumed to be negative. This rule is applied separately to
each experimental group. In each group, we identify the consecutive
segment starting from the leaf node of each subpathway so that all the
edges of the segment should satisfy the association rule. That leads to the
determination of the segment (in the subpathway) that is to be statistically
evaluated in the test step. Assuming a subpathway with the number of
nodes (genes) p, the leaf node is assigned to index 1 (G1) and the root
node to index p (Gp). The two experimental groups are denoted as k (k= 1
or 2). If the edge (ei,i+1) between adjacent genes Gi and Gi+1 is denoted as
an activation edge in KEGG, ei,i+1 is encoded as +1. If the edge is
represented as an inhibition edge in KEGG, ei,i+1 is set to �1. The Pearson
correlation coefficient between the adjacent genes, Gi and Gi+1, is denoted
as rki,i+1 in group k (for example, k= 1 for one experimental group; k= 2 for
the other group). Thus, the association rule assumed in Figure 1c simply
satisfies that ei,i+1x rki,i+1 is positive. The length of the segment (lk) of the
k-th group in the subpathway under the rule is mathematically
represented as follows:

lk ¼ argmin
m

�
Xm
i¼1

I sgn rki;iþ1 ´ ei;iþ1

� �
¼ 1

� �
þ
Xm
i¼1

R sgn rki;iþ1 ´ ei;iþ1

� �� �( )

þ1;mA 1; :::; p� 1f g; R xð Þ ¼ 0; if xA 1f g
1; otherwise

� �

where sgn(·) is the sign function, and I(·) is the indicator function. The first
term � I(·) inspects the satisfaction of the association rule, keeping l k

progressing toward upstream. Inspecting the association rule from the leaf
node to the root node, the penalizing term R(·) stops progressing when the
association rule is not satisfied. Given the subpathway, we obtain the two
consecutive segments from the two groups (see details about l k in
Supplementary Figure 2). If both lengths of the two segments are greater
than three, we move to the test step for the subpathway.
PATHOME analyzes the interconnectivity between two adjacent nodes.

The interconnectivity measure, the Pearson product-moment correlation
coefficient, is obtained even in three samples in a group. PATHOME can be
applied to a small number of samples, such as three samples in a group.
Summarizing the first step, a candidate subpathway for the next step
should satisfy the following two conditions: (i) the two experimental
groups agree with the association rule between the expression correlation
and the edge information for the adjacent entries along the path; and
(ii) both consecutive segments for the two groups have at least four
elements (three consecutive edges) in order to filter a subpathway with
short segments.

The test step (statistical significance test). In this step, we identify the
subpathway for which the correlation difference between the two
consecutive segments for the two experimental groups is statistically
significant. As all the consecutive correlation coefficients, rki,i+1s, in the two
l consecutive segments meet their corresponding regulation information
(Figure 1), we do not need to further consider the sign information of the
Pearson correlation coefficient in this step. To improve the normality
approximation, we transform the absolute value (|rki,i+1|) of the Pearson
correlation coefficient into (0,∞) by taking the Fisher transformation, as
follows:

cki;iþ1 ¼
1
2
ln
1þ rki;iþ1

��� ���
1� rki;iþ1

��� ���A 0;1½ Þ:

If the lengths of the two segments are different, we set the minimum
(say, lmin) of lks as the length of the two segments to be compared. As a
result, we obtain {cki,i+1| k= 1, and i=1,..,lmin�1} and {cki,i+1| k= 2, and
i=1,..,lmin�1} in the given subpathway. Let μk represent the mean of cki,i+1
s in group k. We test the significance under the null hypothesis: H0: μ

1 = μ2.
That is, the alternative hypothesis suggests that the global mean of the
correlations of the expressions between the two groups are different. We
used a z-test statistic to measure significance. We also considered multiple
comparisons, and set the FDR at 0.05.32

Computational analysis of GC gene expression data sets
We obtained four GC data sets14–17 from Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/). We compared our method with two popular
GSA methods, DAVID3 and GSEA.4 For performance comparison, we used
the cancer-related pathways proposed by Vogelstein and Kinzler19 as a
reference standard. We used the three methods (PATHOME, DAVID and
GSEA) to examine the agreement between the reference standard and the
reported pathways. To examine the TFBSs in the genes of interest, we
extracted a 2-kb upstream region of each gene from the UCSC Genome
Browser, and obtained the HNF4A-binding site information from the TFBS
Conserved track and the Txn Factor ChIP track in the UCSC Genome
Browser.

Biological experiments
Cells and reagents. Human NCI-N87 and AGS derived from primary
tumors GC cells were obtained from the American Type Culture Collection
(ATCC; http://www.atcc.org/); and the MKN-1 and MKN-45 cell lines derived
from primary tumor and tumor site of liver metastasis, respectively,
were made available from Yonsei Cancer Center. SNU-1, -484 and -719 cell
lines derived from primary tumor, SNU-5, -16, -620, -601, -638, -668 cell
lines derived from ascites and SNU-216 cell line derived from tumor
site of lymph node metastasis were made available from the Korean
Cell Line Bank (http://cellbank_snu.ac.kr/). Monoclonal antibodies to
human HIF-1α and β-catenin were purchased from BD Transduction
Laboratories (BD Biosciences, San Jose, CA, USA); HNF4α, WNT1, WNT3,
GSK, TCF, LEF, pCAMKII (Thr 286), cyclin D1, cyclin D2 and β-actin were
purchased from Cell Signaling Tech. Inc. (Boston, MA, USA). WNT5A was
purchased from Abgent (San Diego, CA, USA) and metformin was
purchased from Sigma-Aldrich (St Louis, MO, USA).

Cell culture. Human NCI-N87, AGS, HS 746T, MKN-1, 45, SNU-1 -5, -16,
-620, -216, -484,-601, -638, -668, -719 GC cell line studies were analyzed
within 6 months of tissue resuscitation; the tissues were cultured in
RPMI-1640 (CellGro, Manassas, VA, USA) and 10% fetal calf serum (FCS;
Hyclone, ThermoScientific, Waltham, MA, USA) at 37 °C in 5% CO2. ATCC
used short tandem repeat profiling. Cells (2.5 × 105) were seeded and
incubated under normoxic conditions to 70–80% confluence and then
incubated in the presence or absence of metformin at 10mM concentra-
tion for up to 5 days according to the required time in the study.

Western blotting. Cells were grown under hypoxic conditions in the
presence or absence of 10mM metformin. The cells were washed twice in a
phosphate-buffered saline solution and western blotting was conducted,
as previously described.33 The tumors collected from xenograft mouse
models were divided into two pieces for immunoblotting and immuno-
histochemistry, as previously described.33 The blots were quantified using
ImageQuant software (Molecular Dynamics/GE Healthcare Biosciences,
Sunnyvale, CA, USA).

Real-time RT–PCR analysis. Total RNA was isolated from cell lysates using
the PARIS kit (Ambion/Applied Biosystems, Foster City, CA, USA) according
to the manufacturer’s protocol. Next, TaqMan quantitative RT–PCR was
performed on the ABI 7300 system using the TaqMan one-step RT–PCR
Master Mix kit and predesigned primer/probe pairs for HNF4α, WNT5A,
TCF4 and β2-microglobulin (Applied Biosystems). Normalization procedures
and analyses were carried out with β2-microglobulin using the 2(-delta-
delta C(T)) method as the internal reference,34 and using Applied
Biosystems GeneAmp 5700 SDS software. All measurements were
performed in triplicate.

siRNA transfection. siRNA SMARTpool sequences were obtained from
Dharmacon/Thermo Fisher Scientific (Waltham, MA, USA); and the cells
were transfected with 25 nM siRNA-HNF4α, siRNA-WNT5A and a siRNA
nontargeting control using Dharma-FECT 1 lipid transfection reagent. The
transfection medium was removed after 24 h and replaced with fresh
medium, and the cells were grown in 5% CO2 at 37 °C for an additional
48–72 h. RT–PCR and/or western blot analyses were performed to confirm
target knockdown by siRNA. The transfected cells were treated with
metformin and cultured under hypoxic conditions for an additional 18 h.

Immunohistochemical staining. Hematoxylin and eosin-stained slides
were reviewed and representative areas were selected for tissue
microarray. Normal mucosa and cancer tissues were selected, respectively.
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In the experiment, 2-mm diameter cores were taken from archival
paraffin-embedded blocks using a trephine apparatus (Superbiochips
Laboratories, Seoul, Republic of Korea). Tissue microarray blocks were
sectioned at a thickness of 3 μm, and these sections were then dried for 1 h
at 56 °C. Immunohistochemical staining was performed with the auto-
mated staining instrument BenchMark XT (Ventana Medical Systems, Inc.,
Tucson AZ, USA) as follows: the sections were deparaffinized and
rehydrated with EZ Prep (Ventana Medical Systems, Inc.) and washed
with Tris-buffered saline. The antigens were retrieved with heat treatment
in pH 8.0 Tris-EDTA buffer (CC1, Ventana Medical Systems, Inc.) at 95 °C for
30min for WNT5A. Endogenous peroxidases were blocked with 3% H2O2

for 10min at room temperature. Nonspecific-binding blocking was done
with a ready-to-use protein blocker solution (Ventana Medical Systems,
Inc.) for 20 min at RT. A primary antibody was applied to the slide section at
42 °C (WNT5A for 30min at 1:5000 dilutions (clone 6F2, Abgent, AO1264a)).
Then the sections were incubated with HPR multimer labeled secondary
antibody (ultraView Universal DAB detection kit, Ventana Medical Systems,
Inc.) for 20 min at RT and stained using ultraView universal DAB kit
(Ventana Medical Systems, Inc.) for 8 min and hematoxylin counterstain.

Interpretation of immunohistochemistry. We defined the intensity WNT5A
stain as follows: if no signal or only a faint equivocal signal was observed at
× 100 power, it was regarded as negative, 0; if more than 10% of tumor
cells showed clear nuclear signals at × 100 power, similar to those of the
foveolar epithelial cells, it was weakly positive, 1; if more than 10% of
tumor cells showed obviously stronger signals, at × 40 power, similar to
those of the chief cells for WNT5A, it was strongly positive, 2. The positivity
of the WNT5A stain was measured by the percentage of weakly or strongly
positive tumor cells. The stain was scored as 0 (negative) if weakly or
strongly positive cells were ⩽ 50%; and as 1 (positive) if they were >50%.
Representative results of WNT5A immunostaining for GC are shown in
Figure 5c.

In vivo antitumor study. Approximately 107 NCI-N87 and MKN-45 GC cells
in log cell growth were injected and subcutaneously suspended in 0.2 ml
phosphate-buffered saline in the flanks of severe combined immunodefi-
cient (scid) mice. The animals were weighed weekly and tumor diameters
were measured twice weekly at right angles (dshort and dlong) with
electronic calipers and converted to volume by the formula volume= [(
dshort)2 × (dlong)]/2. When the tumors reached volumes between 150 and
300mm3, the mice were stratified into groups of 10 animals, total 40
animals having approximately equal mean tumor volumes, and the
administration of metformin commenced at 250mg/kg per oral daily for
25 days. Control animals received vehicle (water) alone. Twenty-four hours
after the last metformin administration commenced, tumors were
collected for western blot analysis and for immunohistochemistry
preparation. When the tumor volume reached ⩾ 1500mm3 or became
necrotic, the animals were euthanized.

Statistical analysis. For the experiments on individual genes in this
section, Po0.05 was statistically significant based on a Student’s t-test or
z-test to compare the experimental group with the control group.
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