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ABSTRACT
Motivation: Mass spectrometry yields complex functional
data for which the features of scientific interest are peaks.
A common two-step approach to analyzing these data involves
first extracting and quantifying the peaks, then analyzing the
resulting matrix of peak quantifications. Feature extraction and
quantification involves a number of interrelated steps. It is
important to perform these steps well, since subsequent ana-
lyses condition on these determinations. Also, it is difficult to
compare the performance of competing methods for analyzing
mass spectrometry data since the true expression levels of the
proteins in the population are generally not known.
Results: In this paper, we introduce a new method for feature
extraction in mass spectrometry data that uses translation-
invariant wavelet transforms and performs peak detection
using the mean spectrum. We examine the method’s perform-
ance through examples and simulation, and demonstrate the
advantages of using the mean spectrum to detect peaks. We
also describe a new physics-based computer model of mass
spectrometry and demonstrate how one may design simu-
lation studies based on this tool to systematically compare
competing methods.
Availability: MATLAB scripts to implement the methods
described in this paper and R code for the virtual mass spectro-
meter are available at http://bioinformatics.mdanderson.org/
software.html
Contact: jefmorris@mdanderson.org
Supplementary information:

Please
provide the
URL to
access the
supplement-
ary
material.

1 INTRODUCTION
Mass spectrometry is being used increasingly to detect
disease-related proteomic patterns in complex mixtures of
proteins derived from tissue samples, or from more easily
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obtained biological fluids such as serum, urine or nipple
aspirate fluid (Paweletz et al., 2000, 2001; Wellmann et al.,
2002; Adam et al., 2002, 2003; Zhukov et al., 2003; Schaub
et al., 2004). These proteomic patterns can potentially be
used for identifying biomarkers for early diagnosis, prognosis,
monitoring disease progression or response to treatment, or
identifying which patients are most likely to benefit from
particular treatments.

The mass spectrometry instruments most commonly used in
clinical and biological applications rely on a matrix-assisted
laser desorption and ionization (MALDI) ion source and
a time-of-flight (TOF) detection system. A typical dataset
arising in MALDI–TOF contains tens or hundreds of spectra,
with each spectrum containing tens of thousands of intensity
measurements representing an unknown number of protein
peaks. From a modeling viewpoint, these spectra can be
considered complex functional data in which the key fea-
tures of scientific interest are the peaks. While comprehensive
functional data analytic approaches are possible (Morris and
Carroll, 2004; Billheimer, unpublished report), a common
two-step approach focuses on the peaks. The first step involves
feature extraction and quantification, in which one identifies
the peak locations and quantifies each peak in each spec-
trum. This requires one to deal with several modeling issues
simultaneously, including calibration of the spectra, baseline
correction, normalization and denoising. Assuming that one
finds p peaks from n spectra, this yields a p × n matrix of
‘protein expression levels’. The second step consists of using
this matrix to search for proteins that may be differentially
expressed between experimental conditions or correlated with
clinical outcomes, perform unsupervised clustering or apply
supervised learning methods to perform discrimination and
classification.

In recent years, there has been a great deal of methodolo-
gical research on the second step of this approach, whereby
statistical data mining techniques are applied to the matrix of
expression levels. Much of this development has taken place
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in the context of microarrays, but in general the same methods
also may be applied to mass spectrometry proteomics. Hastie
et al. (2001) provide an excellent review of such methods.
However, the second step presumes the validity of the
first.

It is important to perform the first step well, since sub-
sequent analyses condition on these determinations. It has
been shown that the use of inadequate or ineffective methods
in the first step may make it difficult to extract meaningful bio-
logical information from these data (Sorace and Zhan, 2003;
Baggerly et al., 2003, 2004). There have been several recent
papers dealing with these issues (Yasui et al., 2003a; Baggerly
et al., 2003; Coombes et al., 2003; Malyarenko et al., 2005).

In this paper, we focus on the first step. We describe a
comprehensive approach for performing feature extraction
and quantification for mass spectrometry data. Our method
is easy to implement and algorithm-based and, as we will
show, it appears to perform very well in practice. We perform
peak detection on the average spectrum, which leads to greater
sensitivity and specificity while eliminating the difficult and
intrinsically error-laden step of matching peaks detected on
individual spectra. While conceptually straightforward, to our
knowledge, no existing software or papers take this approach.
Carpenter et al. (2003) mention the idea in passing, but they
focus their attention on ‘binning’ methods for data reduction.
We illustrate the advantages gained by using the average spec-
trum to detect peaks, through analysis of sample datasets and
more systematically, as described below.

We also introduce a simulation-based approach for sys-
tematically comparing different methods for analyzing mass
spectrometry data. Comparison of algorithms is complicated
by the fact that, in general, the true expression levels of the
proteins in the population are not known. In order to obtain a
gold standard against which one may compare methods, it is
necessary to simulate the data reliably. We have developed
a computer model, a ‘virtual mass spectrometer’, that is
based on the physical principles underlying the instrument
and can be used to generate realistic virtual spectra (Coombes
et al., 2004b). In this paper, we demonstrate how to design
simulation studies using this tool. The simulation study we
perform compares the peak detection performance of the fea-
ture extraction method described in this paper with a similar
method that performs peak detection on the individual spectra
rather than using the average spectrum.

The remainder of this paper is organized as follows. In
Section 2, we provide details on mass spectrometry, present a
conceptual model for mass spectrometry data and discuss the
specific issues arising in feature extraction and quantification.
In Section 3, we describe two methods for feature extraction
and quantification, one which operates on individual spectra
and the other in which the peak detection is performed on the
average spectrum. In Section 4, we describe the virtual mass
spectrometer and outline how to use it to conduct simulation
studies. Section 5 examines the method’s performance using

examples and a simulation study, demonstrating that using the
average spectrum for peak detection provides improved sens-
itivity and specificity compared to a similar approach based
on individual spectra. Discussion and conclusions are given
in Section 6.

2 ELEMENTS OF FEATURE EXTRACTION
AND QUANTIFICATION

To run an experiment on a MALDI–TOF instrument, the
biological sample is first mixed with an energy absorbing mat-
rix, which causes the mixture to crystallize as it dries. The
metal plate containing the crystallized sample is then placed
into a vacuum chamber and the crystal is struck with light
pulses from a nitrogen laser. The matrix molecules absorb
energy from the laser and transfer it to the proteins, caus-
ing them to desorb and ionize, producing a cloud of ionized
protein molecules. An electric field accelerates the ionized
proteins into a flight tube, where they drift until they strike
a detector that records the TOF. Knowing the length of the
tube and the applied voltage, researchers can use a quadratic
transformation to derive the approximate mass-to-charge ratio
(m/z) of the protein from the observed TOF. The spectral
data that result from this experiment consist of the sequen-
tially recorded numbers of ions (the intensities) arriving at the
detector coupled with the corresponding m/z values. Peaks
in the intensity plot represent proteins that are present in the
sample.

Feature extraction and quantification for these data involve a
number of steps that interact in complex ways. Some elements
of this process are elucidated by the following conceptual
model. Suppose we observe n spectra, each taken on the same
equally-spaced grid of length T of TOFs tj , j = 1, . . . , T . We
model the log-transformed intensities, since we find that this
transformation makes the data more symmetric and decouples
the relationship between the mean and variance. A model for
yi(tj ), the observed log spectral intensity for spectrum i at
TOF tj , is

yi(tj ) = Bi(tj ) + NiSi(tj ) + εij . (1)

The true signal, Si(t), consists of a sum of possibly over-
lapping peaks, each corresponding to a particular biological
molecule, e.g. a protein or a peptide. The approximate shapes
of peaks can be estimated empirically by simulating the phys-
ical process by which TOF mass spectrometers collect data
(see Coombes et al., 2004b), although here we do not attempt
to parametrically characterize the shapes of the peaks. The
normalization factor, Ni , is a constant multiplicative factor
to adjust for spectrum-specific variability, e.g. to adjust for
differing amounts of protein ionized and desorbed from each
slide. The baseline function, Bi , represents a systematic arti-
fact commonly seen in mass spectrometry data. This artifact
is believed to be attributable to a cloud of matrix molecules
hitting the detector in the early part of the experiment, or
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to detector overload (Malyarenko et al., 2005). Our only
characterization of this function is that it should be smooth.
In this paper, we assume that the errors are mean-zero
Gaussians with the variance a smooth function of t , i.e.
εij ∼ N{0, σ 2(tj )}.

The following steps are necessary to perform feature extrac-
tion and quantification with MALDI data. (1) Calibration
maps the observed TOFs tj , j = 1, . . . , T to a set of inferred
(m/z) ratios xj , j = 1, . . . , T . This step aligns multiple
spectra and yields molecular masses that can be used to ascer-
tain the protein identity of a peak of interest. (2) Filtering
removes the random noise, εij , typically electrical or chem-
ical in origin. (3) Baseline subtraction removes the baseline
artifact Bi(t). (4) Normalization corrects for systematic differ-
ences in the total amount of protein desorbed from the sample
plate, represented by Ni in Equation (1). (5) Peak detection
and quantification involves identifying the locations of peaks
in the true signal, Si(t), and then quantifying the intensity
of each peak for each spectrum, which is a rough surrogate
for the amount of the corresponding protein desorbed from
the sample. If the peak detection is done on individual spec-
tra, (6) then peak matching across the samples is necessary
to decide which peaks in different samples correspond to the
same biological molecule.

The various
steps have
been
numbered to
show the
sequence. To
avoid
ambiguity is
the number
(1) of step (1)
and equation,
model (1)
changed to
Equation pl.
confirm if the
change is
appropriate.

3 METHODS: FEATURE EXTRACTION AND
QUANTIFICATION

We now describe two methods for performing feature extrac-
tion and quantification. Both methods are based upon the
undecimated discrete wavelet transform (UDWT), and are
motivated by the conceptual model (1) presented in Section 2.
The first method operates on the individual spectra, while the
second uses the average spectrum for peak detection.

3.1 Peak detection using UDWT on individual
spectra (SUDWT)

The following steps are used to preprocess the spectra by
applying the UDWT-based method introduced in Coombes
et al. (2004c) to extract features from individual spectra.
We will refer to this method as the SUDWT (single spec-
trum undecimated discrete wavelet transform)-based peak
detection method.

(1) Ensure that the individual spectra are well calibrated.
Calibration is best performed experimentally, using a
sample containing a small number of proteins of known
mass. Throughout this paper, we will assume that all
spectra have been experimentally calibrated and, if
necessary, interpolated so that they can reasonably be
compared on a common time axis. If further calibration
is necessary, methods such as those described in Eilers
(2003, 2004) can be used to align the spectra.

(2) Denoise the individual spectra via wavelet regression
using the UDWT. We use the implementation in

version 2.4 of the Rice Wavelet Toolbox (RWT), which
is available at http://www-dsp.rice.edu/software/rwt.
shtml. The denoising works by computing the wavelet
coefficients for the observed signal, then performing
hard thresholding. In hard thresholding, all coefficients
less than a threshold value are set to zero, while all coef-
ficients greater than the threshold remain unchanged.
The threshold is the product of a thresholding para-
meter η and a robust estimate of the noise, the median
absolute deviation (MAD) divided by 0.67. Because
most signals can be represented by a small number
of wavelet coefficients, yet white noise is distributed
equally among all wavelet coefficients; this approach
denoises with minimal attenuation of the features of
the signal. This approach is similar to other wave-
let regression procedures developed in recent years.
However, unlike the decimated discrete wavelet trans-
form typically used in many of these methods, the
overcomplete UDWT is translation-invariant, which
leads to more effective denoising. We have found
that the choice of wavelet basis does not strongly
impact the denoising, although the choice of the
thresholding parameter η does. This denoising step
partitions the raw spectrum into estimates of the
denoised signal and a ‘noise spectrum’ containing the
noise residuals, εij .

(3) Estimate the noise level across the spectrum using a
median filter, i.e. by applying the MAD/0.67 estimate
to the estimate of the noise in a sliding window.

(4) Estimate and remove the baseline artifact, Bi(t) by
computing a monotone local minimum curve on the
denoised signal.

(5) Normalize the spectrum by dividing by the total ion cur-
rent, defined to be the mean intensity of the denoised
and baseline corrected spectrum. After these first five
steps, we are left with an estimate of the true sig-
nal, Si(t).

(6) Identify peaks on the denoised, baseline corrected and
normalized spectrum. First, find all local maxima and
the associated peak endpoints. Second, compute the
signal-to-noise ratio (S/N) at each local maximum by
taking the ratio of the intensity at the maximum to the
local noise estimate. Let φ be a S/N threshold. All local
maxima with S/N > φ are considered peaks.

(7) Match peaks across the spectra. First, pool the list of
detected peaks across the spectra, then combine the
peaks that differ in location by no more than δt clock
ticks or δm in relative mass. This results in a number of
‘peak bins’ defined across spectra. One may also spe-
cify a maximum total bin width in order to reduce the
chance of nearby peaks being incorrectly coalesced into
the same peak group. We label each unique peak group
by the m/z value at the midpoint of its peak bin.
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(8) Quantify the peaks for each individual spectrum using
the maximum log intensity within each peak group.

In Coombes et al. (2004c), this method was shown to
perform very well on sample datasets when compared to
other commonly-used peak detection methods (Fung and
Enderwick, 2002; Yasui et al., 2003a,b).

3.2 Peak detection using the UDWT on the mean
spectrum (MUDWT)

We now introduce an adaptation of this algorithm that uses the
average spectrum for peak detection. We refer to this method
as MUDWT (the mean-spectrum undecimated discrete wave-
let transform)-based peak detection method.

(1) Ensure that the individual spectra are well calibrated
and, if necessary, use interpolation to put all spectra on
the same time scale.

(2) Compute the mean spectrum, averaging over all raw
spectra.

(3) Apply steps 2–6 described in the SUDWT method to
denoise, baseline correct and find peaks in the mean
spectrum. This method finds all local maxima in the
average spectrum and identifies an interval containing
each peak. The left and right endpoints of the inter-
val are determined by the m/z values at the nearest
local minima to the left and right, respectively, of the
local maximum. If the local minima are not well defined
because there are multiple adjacent measurements with
identical minimum values, then the m/z value of the
identical value closest to the local maximum is used.
Keep only those peaks above the S/N threshold φ. The
noise reduction inherent in the averaging should allow
the use of a smaller S/N threshold than the SUDWT.
We label the individual peaks by the m/z value of the
local maximum in the mean spectrum.

(4) Quantify the identified peaks in the individual spectra.
First, denoise, baseline correct and normalize each
individual spectrum using steps 1–5 described in the
SUDWT method to get estimates of the true signals
Si(t). We generally recommend choosing a smaller
wavelet threshold parameter η when quantifying than
when detecting peaks to reduce bias in the quantific-
ations. Next, quantify each peak using the maximum
log intensity on the individual spectra within the inter-
val defining the peak on the average spectrum. This
approach allows the peak quantification to be robust to
slight misalignments across spectra.

Note that the peak detection algorithm is applied to the mean
spectrum based on the original raw spectra with no processing
other than calibration. This may seem surprising at first, but
there is a good reason why this works. A peak is something that
stands out above the noise and above the baseline, ideally in

multiple spectra. These properties should be preserved (and,
with respect to the noise, enhanced) in the mean spectrum.
The presence of baseline does not affect our ability to detect
the ‘bumps’ in the mean spectrum corresponding to peaks.

The success of the proposed method depends to an extent
on having the spectra reasonably well calibrated at the begin-
ning. This property can be assessed visually by preparing a
‘heat map’ of the raw spectra (Fig. 1). In this figure, the ver-
tical axis is an arbitrary ordering of the samples, the horizontal
axis represents time and the values displayed are the base-2
logarithms of the intensities. The largest peaks are easy to
see in these plots and it is easy to check that they are prop-
erly aligned across spectra. Minor inaccuracies in calibration
should not cause a problem: they simply result in peaks in
the mean spectrum that are somewhat broader than the peaks
found in individual spectra.

4 PERFORMING SIMULATION STUDIES IN
MASS SPECTROMETRY

Here we introduce a simulation-based approach for sys-
tematically comparing different methods for analyzing mass
spectrometry data. Data are simulated from a ‘virtual mass
spectrometer’, a computer-based model of a MALDI–TOF
instrument with ion focus delay we have developed that is
based on the physical principles underlying the instrument
(Coombes et al., 2004b). We describe in general how to use
this tool to perform simulation studies, and we set up a spe-
cific simulation study to compare the SUDWT and MUDWT
methods described in Section 3 with respect to peak detection.

4.1 A virtual mass spectrometer
When given a virtual sample, the virtual MALDI–TOF instru-
ment produces a virtual spectrum. The virtual sample consists
of a list of the molecular masses and abundances for a set of
proteins assumed to be present in the biological sample. The
abundance of a protein is the assumed number of molecules
of that protein that have been ionized and desorbed from
the sample. Given the initial velocities at which the ions are
desorbed from the plate, the virtual instrument simulates the
actual physical process the ions undergo as they are focused
from the sample plate to a first grid, accelerated through an
electric field produced by two charged grids and then allowed
to drift through a field-free tube from the second grid to the
detector, which records the number of ions striking it in a
fixed time interval. The actual TOFs for each ion are com-
puted using basic physics principles, then aggregated to form
the virtual spectrum. Virtual calibration samples consisting of
proteins on a grid of known masses are then run to obtain a
mapping of TOF to molecular mass and to map abundances
to expected peak intensities.

Many of the dials and settings on the virtual instrument are
the actual physical characteristics of a MALDI–TOF instru-
ment, including the distance from the sample plate to the first
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Fig. 1. Checking Calibration. Heat map of the logarithmic intensities of 60 spectra related to pancreatic cancer. Bright vertical lines are the
largest peaks, which are well-aligned across spectra.

grid D1, the distance D2 and voltage drop V1 between the
second grid, the length of the flight tube L, the delay time
until the electric field is produced δ and the time resolution of
the detector τ . These parameters can be set to mimic a partic-
ular instrument of interest. When struck with the laser, there is
a stochastic distribution of initial velocities at which the ions
are desorbed from the sample plate (Gluckmann and Karas,
1999; Karas et al., 2003), which we model with a Gaussian
distribution with mean µ and variance τ 2, following (Beavis
and Chait, 1991). The isotopic distributions of the organic ele-
ments comprising the proteins are modeled through Bernoulli
distributions. Isotopic prevalences are well known, so the
parameters of the Bernoulli distributions are well-informed
from the existing literature. Finally, we add an exponential
baseline curve and Gaussian noise to represent additive noise
factors.

Mass spectrometry data are highly structured. There is a
systematic relationship between the m/z values and the peak
characteristics—proteins at low m/z values yield tall, sharp
peaks while proteins at higher masses result in shorter, broader
peaks. The actual shapes of the peaks are affected by numerous
factors, including the isotopic distributions of the elements in
the proteins, the distributions of the initial velocities of the
ions as they are desorbed from the sample plate and the time
resolution of the instrument’s ion detector. Since our virtual
mass spectrometer is based on the key physical principles
underlying the instrument, our simulated spectra reflect these
characteristics. Note, however, that our virtual mass spectro-
meter does not model the ionization and desorption processes

and so the abundances for a peak correspond to the number
of molecules of the corresponding protein successfully ion-
ized and desorbed from the sample, and not to the number of
molecules of that protein actually present in the sample.

While any virtual instrument is based on simplifying
assumptions, we believe that this tool generates virtual spectra
that have characteristics similar to the spectra emanating from
a real MALDI–TOF instrument. Figure 2 contains a spectrum
from a real MALDI–TOF instrument at MD Anderson Cancer
Center, along with a virtual spectrum obtained from our tool
with matching instrument settings.

4.2 Virtual experiments
A typical MALDI–TOF experiment consists of taking samples
from a biological medium of interest (e.g. blood serum) from n

individuals, spotting them on a plate and running them through
a mass spectrometer. Ideally, these n samples represent a ran-
dom sample from a biological population of interest on whose
proteome we wish to make inference.

In order to run a virtual MALDI–TOF experiment, we
need to first characterize the virtual population from which
our samples will be drawn. This population consists of the
list of all detectable m/z values corresponding to proteins
present in the medium of interest for at least one sample in
the reference population, along with the abundance distribu-
tions for each protein across samples. Let p represent the
total number of detectable peaks present in the population.
For a given peak j of mass xj , we summarize its distribution
across samples by three quantities: πj , its prevalence or the
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Fig. 2. Real and Virtual Spectra. Plot of a true MALDI–TOF spectrum and a virtual MALDI–TOF spectrum from our virtual mass spectrometer.

proportion of samples in the population containing the protein
corresponding to this peak; mj and sj , the mean and standard
deviation log peak intensity across samples in the population
that contain the corresponding protein.

A virtual MALDI–TOF experiment is then conducted by
randomly generating n samples from the virtual population
then running these samples through the virtual mass spectro-
meter to obtain n spectra. Specifically, for each sample and
peak, we first determine whether the corresponding protein
is present by drawing a random Bernoulli(πj ), then if it is
present, we then generate the expected log peak intensity yj by
drawing a random Normal(mj , sj ). These log peak intensities
must then be mapped to numbers of molecules using a for-
mula obtained from the virtual calibration samples described
in Section 4.1 before being ‘fed’ into the virtual instrument.
This mapping is based on two empirical observations regard-
ing the virtual mass spectrometer. First, given a constant
number of molecules, the expected inverse log-intensity of
a peak is linearly related to the m/z value (Coombes et al.,
2004a). Second, the intensity of a peak in the virtual MALDI–
TOF instrument is linearly related to the abundance, i.e. the
assumed number of molecules of the corresponding protein
ionized and desorbed from the sample. The details of this
mapping are available as supplementary material from the
first author.

Statistical simulation studies can be performed by run-
ning a number of virtual experiments, then comparing the

performances of the methods across these experiments. The
known proteins and abundance distributions for each virtual
population can serve as a gold standard against which to eval-
uate the methods. The virtual populations can be determined
using real data, and the simulation study can be made more
robust to the population characteristics by averaging results
over multiple virtual populations.

4.3 Details of simulation study
We now describe the details of our simulation study to com-
pare the performance of the SUDWT and MUDWT methods
with respect to peak detection. We based our virtual popula-
tions on data from a pancreatic cancer study conducted at MD
Anderson Cancer Center, consisting of MALDI–TOF spectra
from the blood sera of 124 individuals, 83 with pancreatic
cancer and 41 without.

We applied the SUDWT method to these data, computed
the prevalence of each detected peak, then for each computed
the mean and standard deviation log intensity across those
samples for which it was detected. We fit a beta distribution to
the prevalences of the peaks and a multivariate normal distri-
bution to the vector {log(xj ), mj , sj }T across peaks. We found
these distributions fit the data well, and estimated the paramet-
ers of the beta to be (0.5, 0.5). For the normal distribution, we
got a mean vector (8.78, 9.34, 0.99)T and covariance matrix
�, with diagonal elements 0.536, 0.503 and 0.156, and off
diagonal elements −0.108, 0.104 and 0.057, respectively.
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We used these distributions to generate 100 virtual
populations, each containing 150 true protein peaks, for each
simulation scenario. Each peak’s true mass xj , prevalence πj

and mean and standard deviation mj and sj were obtained
by sampling from the distributions described above. For each
virtual population, we ran one virtual experiment by taking n

samples from the population and obtaining the corresponding
spectra. The virtual instrument’s settings were made to match
the settings on a MALDI–TOF instrument at MD Anderson
Cancer Center. The additive noise was assumed to be sta-
tionary with variance σ 2. We obtained nearly identical results
when allowing the variance to be more than t . Our use of
multiple virtual populations ensured that our simulation study
averaged over the different characteristics that can be present
in a given population.

We ran five simulation scenarios. The machine noise level
for the first, was chosen to be comparable to the pancreatic
dataset (σ = 66) and each experiment consisted of n = 100
samples. The second two simulations also used n = 100 but
the spectra had more or less noise (σ = 200 or σ = 22)
than the pancreatic data. The final two simulations had the
same noise level (σ = 66) as the pancreatic cancer data, but
had larger (n = 200) or smaller (n = 33) sample sizes per
experiment.

We applied the SUDWT and MUDWT methods to the
spectra from each virtual experiment and obtained a list of
found peak locations {x∗

S,j }, j = 1, . . . , p∗
S and {x∗

M ,j }, j =
1, . . . , p∗

M , with p∗
S and p∗

M being the number of peaks found
by the two methods. In preliminary studies, we determined
that a wavelet threshold level of η = 20 worked well for both
methods, and the tolerance settings δt = 7 and δx = 0.002
seemed optimal for the SUDWT method. So we kept these
parameters fixed for all simulations. Since we found that
the results were sensitive to the S/N threshold, we ran each
method using multiple thresholds. For the SUDWT, we used
thresholds of φ = 5, 10, 15, 20 and 40, and for the MUDWT,
we divided these quantities by

√
n to get a set of candidate

thresholds.

4.4 Summarizing simulation results
We assessed how well the two methods performed peak detec-
tion by comparing the lists of peaks found by the SUDWT
and MUDWT methods, x∗

S,j ; j = 1, . . . , p∗
S and x∗

M ,j ; j =
1, . . . , p∗

M , with the true locations of the protein peaks in the
virtual population, xj ; j = 1, . . . , p. We treated peak detec-
tion as a special type of classification problem, since each
m/z value on the spectrum had a true state (peak or not),
and the peak detection methods classified each m/z value
into one of the two states (peak or not). In order to devise
an automatic method for summarizing the results that took
into account the continuous nature of the m/z values x, we
defined a tolerance interval around each true peak inside of
which any found peak was considered a match. Specifically,
we considered a true peak at xi and a found peak at xj to be

a match if |xi − xj | < γxi , where γ = 0.003 is the tolerance
parameter.

For each simulation, we summarized the performance of
the peak detection by four measures, the sensitivity, the false
discovery rate (FDR), MM1 and MM2. The sensitivity is the
proportion of true peaks matching at least one found peak,
while the FDR is the proportion of found peaks not match-
ing any true peak. MM1 summarizes the proportion of found
peaks matching multiple true peaks and MM2 summarizes the
proportion of true peaks matching multiple found peaks.

We reported the mean and range for each of these quant-
ities, computed across the 100 virtual experiments. We also
reported a comparison proportion for each measure, which
is the proportion of the time the MUDWT outperformed the
SUDWT for a given dataset plus one half of the proportion of
the times they tied. We also reported the sensitivities split out
by prevalence and abundance groups to identify scenarios in
which each peak detection method seemed to outperform the
other.

5 RESULTS
We have summarized the performance of our method, demon-
strating the advantages of using the mean spectrum for peak
detection, first through examples and then through simulation
studies.

5.1 Examples
The noise in the mean spectrum decreases by

√
n. The first

dataset was described in our previous paper (Coombes et al.,
2004c). It consists of 24 spectra acquired from the same pooled
sample of nipple aspirate fluid. Figure 3a shows a portion of
one individual spectrum and the corresponding portion of the
mean over the 24 spectra. As expected, the scale of the noise
is decreased by about a factor of five. This claim is supported
on a global scale by a plot of the noise removed by applying
the UDWT to both an individual spectrum and to the mean
spectrum (Fig. 3b).

Peak finding on the mean spectrum appears to be more
sensitive. We compared the peaks found on the mean spec-
trum with the peaks that were first found in individual spectra
and then matched across the spectra. In the analysis of this
dataset reported in our previous paper using the SUDWT
method, we found 174 sets of matched peaks (Coombes et al.,
2004c). When we used the mean spectrum (MUDWT), we
found 227 peaks. The differences between the two collections
of peaks are the following: (1) Five of the matched-individual
peaks have no corresponding peak in the mean spectrum.
(2) Nineteen pairs of matched-individual peaks are collapsed
into a single peak in the mean spectrum. (3) Four matched-
individual peaks are resolved as double peaks in the mean
spectrum. (4) The mean spectrum contains 73 peaks that were
not found as individual matched peaks. Figure 4 contains
typical examples of each class of differences between the two
methods.
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Fig. 3. Noise Reduction in the Mean Spectrum. Plots of (a) one individual raw spectrum (lower curve) and the mean of 24 replicate spectra
(upper curve), and (b) the estimated noise removed by the UDWT in the mean of 24 spectra (top) and in one individual spectrum (bottom).
The noise is reduced in the mean spectrum by a factor of about 5.
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Fig. 4. Comparing Peak Detectors. Plots of the mean spectrum illustrating differences in peak finding methods. Bars above peaks indicate the
peak bins, defining regions where peaks in individual spectra were matched. Bars below peaks indicate the width of peaks found in the mean
spectrum. Dotted vertical lines join peaks found by both methods. In the upper left quadrant, two separate peak bins from the SUDWT at
1040 and 1060 Da show up as a single peak when using the average spectrum. In the upper right, three separate peaks found by the MUDWT
at 1920, 1935 and 1950 Da are combined into the same peak bin by the SUDWT. In the lower left, two peaks (2285 and 2445 Da) are found
by the SUDWT but not the MUDWT. In the lower right, the MUDWT finds a peak at 14 500 Da that is not found by the SUDWT.
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Fig. 5. Short Peak. Plots showing an arbitrarily chosen normal and cancer spectrum (top) and the mean spectra across 95 normal spectra and
121 ovarian cancer spectra (bottom) in the neighborhood of a significant peak at 8602 Da. This represents a protein that is more abundant in
cancer patients. This peak would be difficult to detect on individual spectra, but is easily detected in the mean spectra for cancer and normal
groups, and clearly would also be detected on the overall mean spectrum.

The examples shown in Figure 4 are representative of the
differences we have seen between the two methods. In most
cases, visual confirmation leads us to believe that using the
mean spectrum provides a list of peaks that is closer to the
truth.

Small, consistent peaks are easily seen in the mean
spectrum. If we see a small bump at the same location in
many spectra, our intuition suggests that it corresponds to a
real protein peak. If a small bump occurs extremely rarely,
however, then we think it is likely to be a spurious feature.
By contrast, a large bump that occurs even in one spectrum is
also believable. In our previous attempts to identify peaks in
individual spectra and match them across spectra, we adopted
ad hoc filtering rules along these lines, combining the number
of times a peak was found with its S/N ratio. Working with
the average spectrum automatically takes this idea into con-
sideration, allowing us to effectively borrow strength across
spectra.

To illustrate this idea, we considered a publicly available
dataset described in Conrads et al. (2004), and available at
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

This dataset contains spectra from serum samples of 216
women, 95 of whom were healthy and 121 with ovarian

cancer. The data were collected using a Qstar mass spectro-
meter, which combines a quadrupole ion source with a TOF
ion detector. The basic structure of the data is similar to that
produced by a MALDI–TOF instrument. The authors of the
initial study of this data found a peak near 8602 Da that
appeared to be more abundant in ovarian cancer patients than
in healthy women. They also pointed out that this peak never
achieved a (S/N) of greater than ∼1.5, which meant that it
would be filtered out by most peak finding algorithms applied
to the individual spectra. The peak clearly stands out in the
mean spectrum (Fig. 5). Given our earlier observation about
the noise levels, we would expect S/N to �1.5 ∗ √

100 ≈ 15
in the mean of either group of samples, making it easy to find.

The mean spectrum can find peaks present in a few samples.
Some may argue that a possible concern with using the mean
spectrum for peak finding is that proteins present in a small
subset of spectra may not be detected. Biologically, such pro-
teins may be important, especially if they are present only in
a small number of cancer samples (Coombes et al., 2004a).
We believe that peaks that are present at a moderately high
intensity will still be detected.

To support this claim, we computed a number of statist-
ical summaries for a set of pancreatic cancer spectra from an

9
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experiment conducted at MD Anderson Cancer Center. The
dataset contained MALDI–TOF spectra from the blood sera
of 124 individuals, 83 with pancreatic cancer and 41 without.
Figure 6 contains plots of the pointwise mean, maximum,
minimum, and 90th and 10th percentiles of these spectra.
There are large peaks in the maximum spectrum at 11 500
and 11 600 Da. These peaks are barely discernible in the 90th
percentile spectrum, but would be clearly detected on the mean
spectrum.

5.2 Simulation results
We ran each simulation using various choices for the S/N
threshold φ. Table 1 contains the mean sensitivity and
FDR across the 100 virtual experiments with n = 200 and
σ = 66 for φ ∈ {5, 10, 15, 20, 40} for the SUDWT and φ ∈
{5, 10, 15, 20, 40}/√200 for MUDWT. In general, we found
that the performance of both methods was sensitive to the
choice of φ. For the other simulation scenarios, we only report
the results for a single choice of φ, chosen as follows. We first
chose φ for the SUDWT by finding the value giving an FDR
closest to 0.10, allowing it to be slightly higher if there was
an accompanying large increase in sensitivity or making it
slightly lower if that caused little decrease in sensitivity. We
then chose φ for the MUDWT that gave the largest FDR less
than or equal to the FDR for the SUDWT. For n = 200 and
σ = 66, by this criterion we chose φ = 20 for the SUDWT
and φ = 40/

√
200 = 2.82 for the MUDWT. Across simula-

tions, the φ used for the SUDWT ranged from 15 to 40, while
the φ used for the MUDWT ranged from 2.82 to 4.

Table 2 contains the overall results for each simulation. The
MUDWT achieved better mean sensitivity than the SUDWT
for all simulation scenarios, and had higher sensitivity for at
least 97 out of the 100 virtual experiments in each scenario.
The FDR was slightly lower for the MUDWT method in most
cases, by design. The multiple match proportions (MM1 and
MM2, not shown) were comparable between the two methods.
As expected, peak detection was generally more difficult for
smaller sample sizes, and was also more difficult when the
noise level was σ = 200 compared to σ = 66.

Table 3 contains the sensitivities for the peaks sorted
into different prevalence and abundance groups. Recall that
prevalence is the proportion of samples in the population
expressing that protein. We classified each protein peak
as either extremely rare (πj < 0.05, 14% of peaks), rare
(0.05 < πj < 0.20, 16%), common (0.20 < πj < 0.80, 40%),
or prevalent (πj > 0.80, 30%). Not surprisingly, the
sensitivities increased as a function of the prevalence; more
prevalent peaks were easier to detect with both methods. There
was no evidence of improved sensitivity for the MUDWT
method for extremely rare or rare peaks, i.e. those present in
<20% of the samples. This was not surprising, since in these
cases the benefit of averaging over the n samples was partially
counteracted by the fact that the peak was absent in a vast
majority of the samples. For some simulation scenarios, the
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Fig. 6. Rare Peak. Plots of spectra obtained by pointwise applica-
tion of statistical functions to 60 spectra from a study of pancreatic
cancer. From top to bottom, the spectra are the maximum, 90th per-
centile, mean, 10th percentile and minimum. Note the occurrence of
large peaks in the maximum at 11 500 and 11 600 Da that are barely
present in the 90th percentile; these peaks are visible in the mean
spectrum. This demonstrates that the mean spectrum can be effect-
ive for identifying peaks even when the distribution of intensities
across the individual spectra is highly skewed.

Table 1. Mean sensitivity and FDR across 100 virtual populations for
different S/N thresholds, n = 200, σ = 66 simulations

SUDWT MUDWT
S/N Sensitivity FDR S/N Sensitivity FDR

5 0.75 0.46 0.35 0.88 0.52
10 0.75 0.26 0.71 0.88 0.49
15 0.75 0.15 1.06 0.88 0.45
20 0.74 0.12 1.41 0.87 0.37
40 0.70 0.09 2.82 0.85 0.11

SUDWT appeared to be more sensitive than the MUDWT for
these very rare peaks, although the differences were relatively
small in magnitude when compared with the advantages for
the MUDWT found elsewhere. For protein peaks that were
reasonably prevalent, the MUDWT method clearly domin-
ated. The MUDWT had much higher sensitivity for peaks
present in at least 20% of the population.

Abundance groups were defined based on the mean log2

intensities across samples containing the protein (<9, 9–9.5,
9.5–10 and >10). Sensitivity increased with abundance, as
expected. Use of the average spectrum had the most benefit for
less abundant proteins. In the lowest abundance group (which
accounted for 31% of the peaks), we found that the MUDWT
had a higher sensitivity than the SUDWT at least 95% of the
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Table 2. Overall results from the simulation study

Settings Method Sensitivity FDR

n = 100 SUDWT 0.75 0.09
σ = 66 (0.60, 0.85) (0.02, 0.26)

MUDWT 0.83 0.06
(0.75, 0.92) (0.00, 0.41)

Comparison 0.97 0.80
n = 100 SUDWT 0.58 0.25
σ = 22 (0.43, 0.69) (0.11, 0.41)

MUDWT 0.74 0.23
(0.61, 0.84) (0.10, 0.52)

Comparison 1.00 0.63
n = 100 SUDWT 0.70 0.08
σ = 200 (0.61, 0.80) (0.00, 0.17)

MUDWT 0.78 0.05
(0.69, 0.87) (0.00, 0.45)

Comparison 0.97 0.86
n = 33 SUDWT 0.73 0.09
σ = 66 (0.63, 0.84) (0.01, 0.20)

MUDWT 0.80 0.06
(0.74, 0.86) (0.00, 0.36)

Comparison 0.99 0.85
n = 200 SUDWT 0.75 0.12
σ = 66 (0.58, 0.87) (0.02, 0.46)

MUDWT 0.85 0.11
(0.75, 0.91) (0.00, 0.31)

Comparison 1.00 0.69

The top element in each box is the mean quantity over the 100 virtual experiments, and
the bottom interval is the range. The comparison proportion p measures the proportion of
the virtual experiments for which the MUDWT had higher sensitivity than the SUDWT
plus one-half the proportion for which the methods tied.

time, with mean sensitivity differences around 10–15%. We
also saw large gains from using the average spectrum in the
second and third abundance groups. There was less difference
between the SUDWT and MUDWT for the most abundant
proteins, which were quite easily detected by both methods.

To investigate the possibility of a prevalence-by-abundance
interaction, for the n = 100, σ = 66 simulations, we com-
puted the mean sensitivities for both methods sorted by groups
defined by both prevalence and abundance (Table 4). There
was strong evidence of an interaction. The greatest relat-
ive benefit for the MUDWT over the SUDWT occurred for
peaks with low abundance but high prevalence. For the low-
est abundance/highest prevalence group, which accounted for,
on average, 10% of the peaks, the SUDWT achieved a mean
sensitivity of 0.76, while the MUDWT achieved a mean sens-
itivity of 0.94. The MUDWT achieved higher sensitivity than
the SUDWT for this group in 86 of the 100 virtual popu-
lations; the SUDWT achieved higher sensitivity in 5 of the
100; and the two methods tied in 9 out of the 100. These
results agreed with our earlier claim that the benefit of using
the average spectrum is maximized for low intensity peaks
that are present across many spectra. Figure 7 shows one such
example. The peak at 2835 is not discernable from the noise in

the individual spectrum, but its reinforcement across spectra
makes it evident in the mean spectrum. This peak was detected
by the MUDWT method, but not the SUDWT method.

Conversely, the MUDWT tended to have lower sensitivity
than the SUDWT for the extremely rare (π < 0.05) peaks that
had high abundance. For the most abundant/least prevalent
group, accounting for, on average 2% of the total number
of peaks, the mean sensitivity was 0.52 for the SUDWT and
0.40 for the MUDWT. For this group, the SUDWT achieved
higher sensitivity than the MUDWT for 40 of the 100 virtual
populations; the MUDWT was higher for 7 out of the 100;
and the methods tied for 53 of the 100. While it was clear that
the SUDWT performed better for this subset of peaks, the
MUDWT still achieved at least as high a level of sensitivity
for 60 of the 100 virtual populations.

6 DISCUSSION
The two-step analysis approach we have discussed in this
paper has the advantage of reducing the dimensionality of
the data in a scientifically meaningful way, since the peaks
represent the proteins, the scientific units of interest in the
data. Because subsequent analyses are performed only on the
detected peaks, it is crucial to use effective methods for the
first step of this approach, feature extraction and quantifica-
tion. In this paper, we have introduced a feature extraction
and quantification method (MUDWT) which appears to work
very well in simulated and real data examples.

Averaging is a fundamental principle underlying many stat-
istical methods. We put this simple idea to work in order to
improve peak detection for mass spectrometry data, which
to our knowledge has not been done in existing literature or
software. We have demonstrated in real data examples and
through our simulation studies that use of the mean spectrum
leads to increased sensitivity for peak detection. This effect is
especially strong for the low intensity peaks, which are fre-
quently the peaks in which biomedical investigators are most
interested. There may be a slight tradeoff for some of the rarest
peaks, specifically when the prevalence is <1/

√
n, although

our simulation studies suggest that this difference is small
compared to the improvements seen elsewhere.

Another advantage of the MUDWT method is that peaks
can be detected and quantified without having to apply peak-
matching algorithms across samples. This step is necessary for
any method whereby peak detection is performed on the indi-
vidual spectra, since these individual peaks must somehow
be combined together across spectra. This process is difficult
and can lead to various errors, including combining together
of adjacent peaks corresponding to different proteins into the
same peak bins, as well as forming different peak bins for
peaks that correspond to the same molecule, but differ slightly
in m/z across samples (Fig. 4). Careful choice of the toler-
ance parameters, δt and δm, and limits on the bin widths can
decrease these problems, but they cannot eliminate them.
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Table 3. Sensitivity by prevalence and abundance groups

Settings Method Prevalence (π ) Mean Log Intensity (m)
<0.05 0.05–0.20 0.20–0.80 >0.80 <9.0 9.0–9.5 9.5–10 >10
(14%) (16%) (40%) (30%) (31%) (27%) (23%) (19%)

n = 100 SUDWT 0.43 0.74 0.81 0.82 0.68 0.75 0.78 0.82
σ = 66 (0.20, 0.75) (0.50, 0.96) (0.60, 0.93) (0.59, 0.95) (0.48, 0.90) (0.53, 0.95) (0.51, 0.94) (0.56, 1.00)

MUDWT 0.38 0.74 0.93 0.97 0.78 0.84 0.85 0.88
(0.16, 0.67) (0.54, 0.95) (0.78, 1.00) (0.89, 1.00) (0.60, 0.91) (0.68, 0.97) (0.68, 0.97) (0.70, 1.00)

p 0.25 0.49 1.00 0.99 0.97 0.89 0.84 0.78
n = 100 SUDWT 0.39 0.62 0.62 0.60 0.56 0.58 0.61 0.61
σ = 22 (0.09, 0.67) (0.08, 0.85) (0.39, 0.83) (0.41, 0.88) (0.37, 0.76) (0.30, 0.89) (0.38, 0.81) (0.36, 0.94)

MUDWT 0.39 0.66 0.81 0.84 0.70 0.73 0.75 0.78
(0.12, 0.63) (0.42, 0.88) (0.62, 0.94) (0.66, 0.97) (0.53, 0.85) (0.50, 0.86) (0.50, 0.86) (0.56, 0.91)

p 0.51 0.64 1.00 1.00 0.99 0.96 0.93 0.96
n = 100 SUDWT 0.33 0.59 0.78 0.82 0.58 0.69 0.75 0.83
σ = 200 (0.00, 0.65) (0.35, 0.84) (0.63, 0.92) (0.67, 0.98) (0.40, 0.75) (0.45, 0.86) (0.52, 0.95) (0.61, 0.97)

MUDWT 0.30 0.57 0.89 0.96 0.73 0.77 0.80 0.84
(0.07, 0.68) (0.29, 0.84) (0.73, 0.96) (0.87, 1.00) (0.55, 0.88) (0.61, 0.91) (0.63, 0.95) (0.56, 1.00)

p 0.40 0.40 0.95 1.00 0.98 0.86 0.78 0.54
n = 33 SUDWT 0.32 0.60 0.82 0.86 0.63 0.73 0.78 0.84
σ = 66 (0.11, 0.61) (0.38, 0.80) (0.66, 0.94) (0.73, 0.98) (0.47, 0.77) (0.47, 0.86) (0.56, 0.93) (0.67, 1.00)

MUDWT 0.32 0.62 0.91 0.98 0.75 0.80 0.83 0.85
(0.11, 0.57) (0.33, 0.83) (0.80, 1.00) (0.90, 1.00) (0.57, 0.88) (0.58, 0.93) (0.70, 0.95) (0.68, 1.00)

p 0.51 0.54 0.95 1.00 0.96 0.86 0.77 0.59
n = 200 SUDWT 0.48 0.76 0.79 0.80 0.69 0.73 0.78 0.82
σ = 66 (0.16, 0.78) (0.50, 1.00) (0.62, 0.93) (0.55, 0.97) (0.49, 0.84) (0.52, 0.91) (0.54, 0.94) (0.48, 1.00)

MUDWT 0.44 0.81 0.92 0.97 0.81 0.85 0.87 0.90
(0.19, 0.78) (0.54, 0.96) (0.85, 1.00) (0.89, 1.00) (0.71, 0.96) (0.69, 0.97) (0.68, 0.97) (0.71, 1.00)

p 0.38 0.70 0.97 0.98 0.98 0.89 0.86 0.79

The sensitivities for peaks in different prevalence and abundance groups are given, along with the proportion of peaks in each prevalence group. The first number in each box is the mean
sensitivity for the indicated method in that prevalence group across the 100 virtual experiments, while the interval on the second line indicates the range. The comparison proportion
p measures the proportion of the virtual experiments for which the MUDWT had higher sensitivity than the SUDWT plus one-half the proportion for which the methods tied.

Table 4. Interaction of prevalence and abundance

Prevalence Abundance (mean log2 intensity)
(p) <9.0 9.0–9.5 9.5–10 >10

<0.05 0.36/0.34 0.46/0.42 0.43/0.36 0.52/0.40
0.46 0.43 0.39 0.34

0.05–0.20 0.62/0.65 0.72/0.76 0.80/0.78 0.86/0.83
0.55 0.53 0.44 0.48

0.20–0.80 0.75/0.88 0.80/0.93 0.86/0.96 0.89/0.98
0.92 0.87 0.87 0.78

>0.80 0.76/0.94 0.83/0.96 0.86/0.99 0.87/0.99
0.91 0.87 0.87 0.80

Relative performance of SUDWT and MUDWT for detecting peaks in n = 100/σ = 66
simulation with different combinations of prevalence and abundance. The first row
in each cell contains the mean sensitivities across 100 virtual experiments for the
SUDWT/MUDWT methods. The second row contains the comparison proportion p,
measuring the proportion of the virtual experiments for which the MUDWT had higher
sensitivity than the SUDWT plus one-half the proportion for which the methods tied.

With the MUDWT, this procedure is avoided altogether
because peaks are unambiguously defined across samples
using the local maxima in the mean spectrum. Adjacent peaks
will not be coalesced as long as they have their own ‘bumps’

in the average spectrum, and slight variability in the peak
locations across spectra can still be accommodated by allow-
ing the peak location in the individual spectra to vary within
the interval determined by the flanking local minima in the
average spectrum.

In order to implement our MUDWT method, two paramet-
ers must be set, the wavelet threshold η and the S/N threshold
φ. We found that η = 20 and φ = 4 tended to work best
for our simulated data, but it is difficult to know how well
these settings will transfer to other datasets. For η, there
is a careful balance to strike since making it too small res-
ults in undersmoothing, which causes the procedure to find
many spurious secondary peaks, while making it too large
results in oversmoothing that may eliminate some of the low
intensity peaks. If φ is made much smaller than 4, we have
found in our simulations that the FDR is greatly increased
while few new true peaks are discovered. We recommend
starting with these levels, then visually inspecting plots of
the raw and wavelet smoothed average spectrum to check
whether it seems to be detecting features that appear to
be peaks. Automatic methods for selecting these paramet-
ers would be welcome and would make this method easier
to use.
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Fig. 7. Some Peaks. Four lines from one of the datasets from the sim-
ulation with n = 100 and σ = 66 are plotted here: the two ‘noisy’
grey lines are selected raw spectrum and the mean spectrum. The
dashed line is the wavelet-smoothed version of the individual spec-
trum, and the solid line is the wavelet-smoothed average spectrum.
The dots mark true peaks, while the triangles mark peaks found by
the MUDWT method and the stars mark peaks found by the SUDWT
method. The peak at 2835 had low abundance (m = 7.8, π = 0.40)
and was found by MUDWT, but not SUDWT. Peaks 2867 (m = 8.8,
π = 0.73) and 3004 (m = 9.0, π = 0.66) were found by both
methods. Peak 2928 was very rare (m = 8.2, π = 0.04) and went
undetected by both methods.

We saw evidence of undersmoothing with the MUDWT
when the noise level was low. To combat this problem, we
suggest combining together peaks that are highly correlated
with each other (e.g. r > 0.95) by summing their quanti-
fications. This largely eliminates the problem caused by
undersmoothing, since the secondary peaks should be very
highly correlated with each other if they correspond to the
same true protein peak. An added benefit of this practice is that
it will tend to combine information across peaks that eman-
ate from the same protein, including doubly-charged ions,
matrix adducts, different isotopes and other alterations that
are not expected to be biologically meaningful. This further
reduces the dimensionality of the data without resulting in a
loss of information, since if correlation is so high, there is very
little additional information contained in the redundant peaks.
Thus, we think that this practice will not allow us to miss out
on important alterations of proteins that are informative for the
underlying biological processes, e.g. phosphorylated proteins.

We have shown that using the average spectrum improves
peak detection for the method based on the UDWT algorithm
introduced by Coombes et al. (2004c). However, the idea
of using the mean spectrum for peak detection is general and
could be paired with other peak detection methods. We expect
that similar or greater relative improvements could be realized
when applying other peak detection methods to the average

spectrum instead of the individual spectra. Also, while this
paper focused specifically on mass spectrometry data, our
mean function, UDWT-based peak detection procedure could
be adapted to perform feature extraction for other types of
functional data for which the features of interest are peaks.

We have also described how to design simulation studies
based on the virtual mass spectrometer to compare competing
methods. While applied in this paper to assess peak detection,
the same procedure can be used to assess other types of per-
formance, e.g. comparison of different baseline correction or
normalization procedures or methods for detecting differen-
tially expressed proteins. It can also be used to perform power
calculations when designing studies. Since the virtual instru-
ment is based upon the key physical principles underlying the
real instrument, it yields data whose characteristics resemble
actual mass spectra.

There is still more work to do to improve the virtual instru-
ment, however. Common alterations of proteins, such as
matrix and sodium adducts or neutral losses of water, ammo-
nia or carbon, should also be incorportated into the modeling.
Also, causes of the baseline artifact need to be better under-
stood, so that a more realistic model for the baseline that is
based on the technology can be used in lieu of the exponential
curve used here. Malyarenko et al. (2005) have some insights
that may be useful in that regard. The virtual instrument may
also benefit by making the stochastic processes modeling the
ionization/desorption processes and the ion detection more
directly related to the science of the instrument.
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