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Abstract

Proteomic patterns derived from mass spectrometry have recently been put forth as potential

biomarkers for the early diagnosis of cancer. This approach has generated much excitement,

particularly as initial results reported on SELDI profiling of serum suggested that near perfect

sensitivity and specificity could be achieved in diagnosing ovarian cancer. However, more recent

reports have suggested that much of the observed structure could be due to the presence of

experimental bias. A rebuttal to the findings of bias, subtitled “Producers and Consumers”, lists

several objections. In this paper, we attempt to address these objections. While we continue to

find evidence of experimental bias, we emphasize that the problems found are associated with

experimental design and processing, and can be avoided in future studies.

Background

Proteomic patterns derived from mass spectrometry have recently been put forth as potential

biomarkers for the early diagnosis of cancer. Most of the attention has focused on the variant

of mass spectrometry known as SELDI-TOF (surface-enhanced laser desorption and ionization

time-of-flight) applied to samples derived from easily available biological fluids such as serum

or urine. This approach has generated much excitement, particularly in light of results initially

reported in The Lancet (Petricoin et al. 2002), suggesting that near perfect sensitivity and

specificity could be achieved in diagnosing ovarian cancer using serum samples. In addition to

publishing these initial results, the NCI/FDA Clinical Proteomics Program has also made the raw

spectra they used available on their web site: http:// home.ccr.cancer.gov/ ncifdaproteomics/

ppatterns.asp. The data from the initial study were soon followed by data from two further

SELDI serum studies on ovarian cancer, and most recently, by more high-resolution data derived

from a different type of mass spectrometry (Qstar-TOF). In all cases, the posted results match or

exceed those from the initial study. These latter datasets have now served as the basis for further

papers showing various ways in which ever better separation between cancers and controls can
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be achieved (e.g., Alexe et al. 2004, Zhu et al. 2003, Conrads et al. 2003,2004).

Recently, however, two groups (Sorace and Zhan 2003, Baggerly et al. 2004a) have indepen-

dently noted that much of the structure present may be due to experimental artifacts that could

be introduced, for example, by imperfect randomization of the order in which the samples were

run. If this interpretation is correct, then structure associated with bias could confound any

meaningful biological information contained in the spectra. In the presence of confounding, said

ovarian spectra cannot be accepted as proof that proteomic profiling can reliably be used for

cancer identification.

In response, the NCI/FDA group has issued a rebuttal (Petricoin et al. 2004) listing several

objections to the findings of bias. The rebuttal notes that these findings “highlight the dangerous

potential for error propagation that may arise if a disconnect is allowed to exist between the

data producers and the data consumers”. The authors suggest that in order to “prevent the dis-

semination of inaccuracies and speculative conclusions, we believe that the producers of genomic

and proteomic data should be intercalated more fully into the publication process, particularly

when the focus of the publication is the analysis of data that the submitting authors have not

generated”. This rebuttal has appeared in print as a commentary to the article of Sorace and

Zhan (2003), and we refer to it in this article as “Producers and Consumers”.

Our goal is to address the points made in “Producers and Consumers”, specifically those that

relate to issues raised in Baggerly et al. (2004a). We do not dispute that one can mathematically

analyze these spectra and find algorithms which differentiate cancer and control spectra. Rather,

we contend that differences between cancer and control spectra can arise from factors that are

not biologically relevant if great care is not taken with the design of the study.

To clarify the notation, we note that there are three SELDI ovarian data sets under discussion:

• DS1: The initial data from the Lancet article,

• DS2: A second set of spectra derived from the same biological samples, but run on a

different chip type, and
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• DS3: A third set of spectra derived from new biological samples but run on the same chip

type as DS2.

All of the data are available from http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp.

Objections and Responses

We will now try to address the specific objections identified in “Producers and Consumers”. The

objections presented in “Producers and Consumers” that relate to points made by Baggerly et

al. (2004a) are itemized below. After each, we respond with emphasis on our main contention:

that the structure in these data are just as likely to reflect experimental bias as they are to

reflect meaningful biological patterns of protein expression.

1. Findings in the low M/Z range are dangerous.

The first group of objections relates to discussions about findings in the low m/z range of the

proteomic spectra, and thus primarily concern DS3.

Both Sorace and Zhan (2003) and Baggerly et al. (2004a) noted that it was possible to

perfectly separate cancer spectra from control spectra in DS3 using the intensities at just two

m/z values: 2.79 and 245.2. Both of these values are in regions of the spectra that can be very

unstable in a medium mass-range (m/z 0-20000) SELDI scan, so the strength of the separation

was taken as prima facie evidence of non-random processing (bias).

However, as noted in “Producers and Consumers”,

• it can be dangerous to read much into structure found at very low m/z values in these

scans, as such m/z values are outside the range of the calibrants used,

• if the cancer and control samples were randomized, then systematic biases associated with

machine jitter should be precluded,

• there may be structure in the low mass proteome which could generate separating structure,
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• extension of the presence of bias at 2.79 to the rest of the dataset or to other datasets is

“judgmentally biased”.

In general, we agree that using trusting intensities at m/z values outside of the calibration

range is a bad idea if one is seeking accurate classification. The m/z values will not be well-

measured, making later identification of the peptides involved harder, and we may be looking at

regions affected by matrix noise (small particles not associated with the samples themselves) if

we get to very low m/z values (as we do here). We note, however, that such values were used for

classification in both the initial Lancet publication and with the initial postings of the raw data.

Nonetheless, we think that attempts to classify spectra using readings “outside the range”

are valuable as negative tests, in part so that we can see how much better our predictions are

when we think that some structure should be present than when we think none exists. This is

the sense in which we made use of these low m/z intensities.

With respect to randomization in DS3, “Producers and Consumers” notes that “if the inves-

tigators would have contacted us, we could have elaborated, as previously stated on our website,

that the SELDI-TOF MS data was produced by randomly commingling cases and controls.

On any given 8 spot ProteinChip array, both cases and controls were applied in random spot

locations”. Thus, they maintain that the values at 2.79 cannot be due to bias.

In general, we agree that proper randomization of the type described should preclude biases

associated with a nonrandom sample distribution. However, whatever was previously stated, the

website now (Dec 2004) states that the samples “were not randomized so that we could evaluate

the effect of robotic automation” (emphasis ours). Further, we note that an identical comment

about randomly commingling cases and controls was made in the Lancet paper with regard to

DS1. One of the findings of Baggerly et al. (2004a) was that a subset of these samples had

clearly not been randomized. This finding was not addressed in “Producers and Consumers”.

Having discounted bias, “Producers and Consumers” concludes that the observed structure

must be due to real biology associated with the low-mass proteome, which is currently not well
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understood.

While we concede that the low mass proteome has yet to be fully explored, we note that

this explanation still seems odd with respect to the peak at 2.79. The signal is very weak, and

there are no other peaks nearby in the spectrum. Even a metabolite should have a mass on

the order of a single amino acid, and in this mass range there should be other artifacts present.

However, as the assumption that the low m/z findings must be biologically relevant rests on the

assumption that the data were randomized (addressed above), rejection of the prior assumption

negates the latter.

Then there is the issue of our judgement. In discussing the structure found in DS3, “Producers

and Consumers” notes that Sorace and Zhan’s (2003) interpretation of bias at m/z 2.79 is

extended to “the entire SELDI-TOF MS data set, including many other datasets that they did

not in fact analyze”, and that these “broad conclusions are judgmentally biased and scientifically

unfounded”.

We fail to see how extending the presumption of bias to the rest of the data set is judgmentally

biased or even avoidable. Certainly with DS3, if structure at 2.79 shows that the samples were

processed differently in some way, that difference should be expected to persist for all m/z values.

As to the latter part of the assertion regarding the other datasets, all three datasets are surveyed

in Baggerly et al. (2004a), and the assertions of bias there are based on the analysis of all three.

As our calculations are publicly available, we invite the scientific community to reproduce them

in sufficient detail to be satisfied that they are not “scientifically unfounded”.

There is a final semantic issue of whether we are confusing “noise” with “bias” in our in-

vestigations of the low m/z region. As we see it, areas where only “noise” (complete lack of

structure) is expected can, if they show such unexpected structure, suggest “bias”, e.g., in the

form of nonrandom sample allocation to spots or differential preprocessing.

The producers also raise other objections that encompass DS1 and DS2 as well.
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2. The SOP the producers follow with respect to calibration means that

the data are correctly calibrated.

“Producers and Consumers” notes that while Baggerly et al. (2004a) “wondered .. about our

calibration method, we adhere to strict SOPs whereby any TOF MS is calibrated at the beginning

of every analysis”.

We do not dispute that a strict SOP was followed for calibration. However, we believe that

the posted values are wrong. The posted spectra show m/z values corresponding to the default

calibration that ships with the SELDI software. To us, this mistake suggests an error in file export

rather than a failure to attempt calibration, but an error, nonetheless. We have encountered

this type of problem ourselves, when we meant to “apply” a calibration equation to all spectra

in a set. We accidentally clicked a bit early, and the calibration was applied only to the one

clicked spectrum. Consequently, we check both for consistency and for numbers associated with

the default settings.

As further evidence that a calibration problem exists, we note that in Conrads et al. (2003),

where the NCI/FDA Qstar spectra were first described, Figure 4 of that paper shows Qstar and

SELDI spectra derived from the same SELDI chip. The chips used for the Qstar experiment

were of the same type as those used in DS2 and DS3. In the Conrads et al. (2003) figure, the

maxima of the SELDI and Qstar spectra are roughly aligned, and we believe that the alignment

shown there is correct. However, if we superimpose the location of the biggest SELDI peak from

the Conrads et al. (2003) picture on a plot of the average cancer spectra from DS2 and DS3,

we note that the posted maxima are hundreds of units away. This is shown in Figure 1a of this

response. If we use the marked peaks in the Conrads et al. (2003) SELDI figure to supply an

external calibration for DS2 and DS3, the peak locations are aligned even at m/z values not used

in the calibration, as shown in Figure 1b.

One more indicator can be derived from the DS3 spectra. The overall maximum peak is

located at m/z 7966 in the average cancer spectrum. Due to the occurrence of multiple charge
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states (the peptide capturing 2 protons instead of 1), we would expect to see a corresponding

peak near m/z 3983. This peak is visible, but at m/z 3993.

The effect of using the default calibration is not slight. The m/z values for DS3 are off by

about 2.5% in the vicinity of the biggest peak, and the m/z values for DS2 are off by about 3.9%.

As the SELDI results are nominally accurate to within a few tenths of a percent, miscalibration

this severe can actively mislead investigators performing database searches based on the reported

m/z values.

3. One group can find transcendent structure, and another cannot.

“Producers and Consumers” notes that while Baggerly et al. (2004a) noted “the inability of

features to transcend separate data sets”, a second article by Zhu et al. (2003) “concluded that

transcendent features could be found”. The producers cite the latter publication as evidence

that DS2 and DS3 contain reproducible biological structure.

Baggerly et al. (2004a) assumed that the errors in calibration described above should preclude

the persistence of biological structure across datasets. We verified that the patterns supplied on

the NCI/FDA web site did not represent reproducible structure across DS2 and DS3. But, given

the offset, we did not conduct an exhaustive search. On the other hand, Zhu et al. (2003) noted

that when the 18 m/z values that were chosen to separate cancers from controls in DS2 were

used in DS3, perfect separation was observed even though DS3 had been treated as a blinded

test set.

This apparent contrast can in fact be easily resolved. The exact approach is detailed in

Baggerly et al. (2005), but the key point is simply that DS3 is so easy to correctly classify that

near-perfect separation results are obtained using 18 m/z values chosen completely at random.

Thus, biology is not required to explain the separation observed.

Further, when the patterns of protein expression at the 18 m/z values supplied are checked

in both DS2 and DS3, the directionality of expression changes for 13 of the 18: if expression

is higher in cancers in DS2, it is higher in controls in DS3. This suggests that a biological
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explanation is not only unnecessary to explain the findings in Zhu et al. (2003), it is actively

precluded.

4. The focus of the objections has been the SELDI data, not the Qstar

data.

The focus of the analysis in both Sorace and Zhan (2003) and Baggerly et al. (2004a) was on

the ovarian SELDI data. However, the producers feel that the more recent high-resolution Qstar

data is the current state of the art, and they suggest that more attention should be paid to the

better data.

This observed focus is not due to a lack of interest in the Qstar data, but rather to the

time lag associated with publication. However, as the Qstar ovarian spectra are derived from

SELDI chips, biases that affect these chips can affect the Qstar data as well, so understanding

how experimental design issues can affect the SELDI results is still relevant. We note that the

file names of the DS3 SELDI spectra are identical to the file names of the Qstar spectra, which

suggests to us that the DS3 chips were used in the Qstar experiment. If this is in fact the case,

biases affecting the DS3 chips are even more directly relevant.

Further, while the Qstar data are of higher resolution, they also show signs of experimental

bias. In Figure 2, we show a heat map of all of the Qstar spectra we have available, sorted by the

file names supplied, in the vicinity of m/z 8602. This value is identified in Conrads et al. (2004)

as being of use for distinguishing ovarian cancer patients from healthy controls, and a higher

level of expression is observed for the cancer patient spectra. However, there is also a visible

peak roughly 80 units lower in which expression is high for healthy women but for just half of

the cancer patients. As noted in Baggerly et al. (2004b), there is a simple explanation: all of

the controls were run before all of the cancers, and a machine breakdown preferentially affected

spectra run later in the process.

In response, Liotta et al. (2004) state that “the experimental design element that they high-
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light in their criticism was explicitly planned into the study we reported ... We have never claimed

or intimated that the samples were randomized and/or co-mingled in the initial experimental

design”. (Emphasis ours.)

In our view, however, claims of 100% sensitivity and specificity (as made in Conrads et

al. 2004) have meaning only if known sources of variation such as run order have been balanced

or randomized. Such claims can be actively misleading if one has chosen to completely confound

an effect of interest (cancers vs controls) with run order rather than to randomize.

Concluding Remarks

The producers have claimed that the consumers are mistaken as to the presence of bias. We

respectfully disagree. We are willing to revise our beliefs when features in the data that refute

our claims are presented. Until that time, we must repeat our initial position: No one disputes

that structure can be found in all of these datasets. However, the structure appears to be

associated with strong evidence of experimental bias. As such, the demonstration of structure

does not constitute proof that these spectra can be used for clinically meaningful tasks such as

the diagnosis of cancer.

We emphasize, however, that the problems described herein are associated with experimental

design and analysis techniques, and not with the proteomic technology. With careful design, bias

and confounding can be avoided.

In the context of design, we feel that the problems noted to date strongly suggest the need

for standards on incorporating information such as run order and clinical information into the

reporting of proteomic data. The Microarray Gene Expression Data Society (MGED) has de-

veloped such a standard for microarray data: the Minimum Information About a Microarray

Experiment (MIAME; Brazma et al. 2001, Spellman et al. 2002). Exactly what should be

supplied in the proteomic equivalent is, we believe, a productive area for debate. Indeed, this

was also the consensus of the participants at the Early Detection Research Network (EDRN)
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meeting on the analysis of SELDI/MALDI data (Seattle, 2004). In the interim, we note with

respect to SELDI that current versions of the Ciphergen software support exporting the data in

an XML format that could serve as a template for an eventual standard.
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Figure 1: (a) The average cancer spectra from DS2 and DS3, with the location of the maximum

peak from Conrads et al. (2003) shown. The posted spectra appear offset. (b) The corresponding

average spectra after using the labeled peaks in the Conrads et al. (2003) figure to recalibrate

the spectra. Agreement between DS2 and DS3 is now good throughout the region bracketed by

calibrants.
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Figure 2: A heat map of the Qstar spectra we have available, sorted by file name, in the vicinity

of m/z 8602. This m/z value is identified on the NCI/FDA website as useful for separating

healthy women from ovarian cancer patients, and this separation is visible. However, roughly

80 Da below, there is a peak that serves to separate the healthy women and the first half of the

ovarian cancer patients from the second half of the ovarian cancer patients.

15


