Functional Data Analysis for Accelerometer Data

Jeffrey S. Morris
University of Texas M.D. Anderson Cancer Center, Houston, TX

Steve Gortmaker
Harvard School of Public Health, Boston, MA

Other collaborators: Louise Ryan, Brent Coull, and Cassandra Arroyo
Accelerometers

• **Accelerometers**: small motion sensors that digitally record minute-by-minute activity levels
 – Increasingly used in large surveillance studies and intervention trials to objectively monitor activity
 – Children, older adults, Alzheimer patients
 – Revolutionizing the field of physical activity research

• Yield complex functional data
 – Activity level profiles
Some Accelerometer Profiles

Chid 1, Day 1

Chid 1, Day 2

Chid 2, Day 1

Chid 2, Day 2

8/4/2005 Johns Hopkins Biostatistics Grand Rounds
Analyzing Accelerometer Data

- **Major challenge:** How to analyze these data?
- **Standard strategy:** Extract simple summary measures from the profiles, then analyze these
 1. Average daily activity level
 2. Proportion of time with activity levels corresponding to sedentary (<3 MET), moderately vigorous (3-6 MET), and vigorous (>6 MET) activities
- **Benefit:** simplifies data into recognized form.
- **Limitations** of these approaches:
 - Do not make full use of information in functional data
 - Cannot effectively deal with incomplete profiles
Case Study: Planet Health

- **Planet Health**: Boston-area school based intervention
 - Subset of children in study wore accelerometer for 4-8 days
 - 550 profiles from 112 children from 5 schools, 1440 measurements/profile
 (Heatmap)

- Lots of *missing data*
 - Measurement coded as *missing* for time periods for which child was inactive for at least 30 consecutive minutes
 - We focus on profiles >50% complete from 9am-8pm
 - 292 profiles from 106 children
Heatmap

Accelerometer Data
Accelerometer Data

• Other measurements:
 – **Child-level covariates**: school, race, gender, age, weight, height, BMI, triceps skinfolds, avg hrs of TV/day
 – **Day-level covariates**: day of week, calendar date

• **Questions of Interest**:
 1. How do activity levels vary throughout day, across schools, across different days of the week, over time from early to late Spring, and across various child-level covariates?
 2. What proportion of variability in activity levels is from day-to-day and child-to-child? How many days per child?
Linear Mixed Models

Linear Mixed Model (Laird and Ware, 1982):

\[
Y_{N \times 1} = X_{N \times p} \beta_{p \times 1} + Z_{N \times m} u_{m \times 1} + e_{N \times 1}
\]

- **Fixed effects** part, \(X\beta \), accommodate a broad class of mean structures, including main effects, interactions, and linear coefficients.
- **Random effects** part, \(Zu \), provide a convenient mechanism for modeling correlation among the \(N \) observations.
Statistical Challenges

1. Data are irregular functions
2. Jointly model functional effects of multiple covariates
3. Account for correlation between profiles from same child
4. Incorporate information from incomplete profiles
Functional Data Analysis

• Functional Data:
 – Ideal units of observation: curves
 – Observed data: curves sampled on fine grid

• Increasingly encountered in scientific research.

• FDA Approach (Ramsay and Silverman 1997):
 – Treat functions as single entities, rather than a collection of observations
Functional Mixed Model

\[Y(t) = \text{set of } N \text{ observed curves, stacked as rows.} \]

\[Y(t) = X B(t) + Z U(t) + E(t) \]

- \(Q \) and \(S \) are covariance surfaces describing the how the random effect curves/residual error processes vary across replicates.

- Variations of this model were used by Guo (2002) and Morris and Carroll (2004)
Functional Mixed Model
(Discrete version)

\[Y = N \text{-by-} T \text{ matrix containing the observed curves all sampled on a common equally-spaced grid of length } T, t. \]

\[
\begin{align*}
Y & = \begin{bmatrix} N 	imes p \\
N \times T
\end{bmatrix} X B + \begin{bmatrix} N 	imes m \\
p \times T
\end{bmatrix} Z U + \begin{bmatrix} \text{ } \\
N \times T
\end{bmatrix} E \\
U_i & \sim \text{MVN}\left(0, Q\right) \\
E_i & \sim \text{MVN}\left(0, S\right)
\end{align*}
\]

- \(B_{ij} \) is the effect of covariate \(i \) at location \(t_j \)
- \(Q \) and \(S \) are covariance matrices (\(T \times T \))
- Note: Some structure must be assumed on form of \(Q \) and \(S \) (discussed later)
Example: Model

Let Y be a 292×660 matrix containing 292 accelerometer profiles for each minute from 9am-8pm.

$$Y = XB + ZU + E$$

- $X = 292 \times 14$ matrix of covariates
 - School effects (5), gender, triceps skinfold, BMI, day-of-week (4), daylight savings time, avg TV hrs/day
- $B = 14 \times 660$ matrix of fixed effects functions
 - B_{ij} is effect of covariate i at time t_j
- $Z = 292 \times 106$ matrix indicating child for each profile
- $U = 106 \times 660$ matrix of random effect functions (1/child)
- $E = 292 \times 660$ matrix of residual errors
Functional Mixed Models

• **Key feature of FMM**: Does not require specification of parametric form for curves
• Guo (2002) fit FMM using splines
• Morris, et al. (2003) and Morris and Carroll (2004) use approach involving wavelet bases
 – Accommodates “spiky” functional data
 – Allows more general types of covariances
• **Wavelet Regression**: nonparametric regression technique that better preserves local features present in the curves.
Introduction to Wavelets

- **Wavelets**: families of orthonormal basis functions

\[g(t) = \sum_{j,k \in \mathbb{Z}} d_{jk} \psi_{jk}(t) \]

\[\psi_{jk}(t) = 2^{-j/2} \psi(2^{-j/2} t - k) \]

\[d_{jk} = \int g(t) \psi_{jk}(t) \, dt \]

- **Discrete Wavelet Transform (DWT)**: fast algorithm \(\{O(T)\} \) for obtaining \(T \) empirical wavelet coefficients for curves sampled on equally-spaced grid of length \(T \).

- **Linear Representation**:
 \[d = y \ W' \]

 - \(W' = T \)-by-\(T \) orthogonal projection matrix

- **Inverse DWT (IDWT)**:
 \[y = d \ W \]
Wavelet Regression

- **Wavelet Regression** – 3 step process
 1. Project data into wavelet space
 2. Threshold/shrink coefficients
 3. Project back to data space
- Yields *adaptively regularized* (plot) nonparametric estimates of function
- Morris, et al. (2003) extended to nested functional model (Bayesian)
Adaptive Regularization

Regularization by Local Linear Smoothing

Adaptive Regularization by Wavelet Shrinkage
Wavelet-Based FMM:
General Approach

1. Project observed functions Y into wavelet space.

2. Fit FMM in wavelet space.
 (Use MCMC to get posterior samples)

3. Project wavelet-space estimates (posterior samples) back to data space.
Wavelet-Based FMM: General Approach

1. Project observed functions Y into wavelet space.

2. Fit FMM in wavelet space
 (Use MCMC to get posterior samples)

3. Project wavelet-space estimates (posterior samples) back to data space.
Wavelet-Based FMM

1. **Project** observed functions Y **to wavelet space**

 - Apply DWT to rows of Y to get wavelet coefficients corresponding to each observed function

 \[
 D = Y W'
 \]

 \[
 \begin{align*}
 D &\in N \times T \\
 Y &\in N \times T \\
 W' &\in T \times T
 \end{align*}
 \]

 - Projects the observed curves into the space spanned by the wavelet bases.
Wavelet-Based FMM: General Approach

1. Project observed functions Y into wavelet space.

2. Fit FMM in wavelet space (Use MCMC to get posterior samples)

3. Project wavelet-space estimates (posterior samples) back to data space.
Projecting FMM to Wavelet Space

\[
Y_{N \times T} = \underbrace{X_{N \times p} B_{p \times T}}_{N \times m} + \underbrace{Z_{N \times m} U_{m \times T}}_{N \times T} + \underbrace{E_{N \times T}}_{N \times T}
\]

\[
U_i \sim MVN(0, Q)
\]

\[
E_i \sim MVN(0, S)
\]
Projecting FMM to Wavelet Space

\[
\begin{align*}
Y_{N \times T} & \overset{T \times T}{\mathbb{W}'} = \overset{N \times p}{X} B_{p \times T} + \overset{N \times m}{Z} U_{m \times T} + \overset{N \times T}{E} \\
U_i & \sim \text{MVN}(0, Q) \\
E_i & \sim \text{MVN}(0, S)
\end{align*}
\]
Projecting FMM to Wavelet Space

\[
Y_{N \times T} = X_{p \times T} B_{T \times T} W'_{N \times m} + Z_{m \times T} U_{T \times T} W'_{N \times T} + E_{N \times T}
\]

\[
U_i \sim MVN(0, Q)
\]

\[
E_i \sim MVN(0, S)
\]
Projecting FMM to Wavelet Space

\[
\begin{align*}
Y & \\
W' & = \\
N \times T & = \\
X & \\
B & \\
p \times T & = \\
T \times T & \\
N \times m & = \\
Z & \\
m \times T & = \\
T \times T & \\
U & \\
W' & = \\
N \times T & = \\
E & \\
W' & \\
\end{align*}
\]

\[
U_i W' \sim MVN(0, WQW')
\]

\[
E_i W' \sim MVN(0, WSW')
\]
Projecting FMM to Wavelet Space

\[\mathbf{D} = \mathbf{X} \mathbf{B}^\star + \mathbf{Z} \mathbf{U}^\star + \mathbf{E}^\star \]

\[\mathbf{U}_i^\star \sim MVN(0, \mathbf{Q}^\star) \]

\[\mathbf{E}_i^\star \sim MVN(0, \mathbf{S}^\star) \]
Adaptive Regularization via Shrinkage Prior

Mixture prior on B_{ijk}^*:

$$B_{ijk}^* = \gamma_{ijk}^* N(0, \tau_{ij}) + (1 - \gamma_{ijk}^*) \delta_0$$

$$\gamma_{ijk}^* = \text{Bernoulli}(\pi_{ij})$$

- Nonlinearly shrinks B_{ijk}^* towards 0, leading to adaptively regularized estimates of B_i.

- τ_{ij} & π_{ij} are regularization parameters
 - Can be estimated from the data using empirical Bayes
 - Extend Clyde&George (1999) to functional mixed model
Model Fitting

- Let Ω be a vector containing ALL covariance parameters (in Q^* and S^*).

MCMC Steps

1. **Sample from $f(B^*|D,\Omega)$:**
 Mixture of normals and point masses at 0 for each i,j,k.

2. **Sample from $f(\Omega|D,B^*)$:**
 Metropolis-Hastings steps for each j,k.

3. **If desired, sample from $f(U^*|D,B^*,\Omega)$:**
 Multivariate normals.
Wavelet-Based FMM: General Approach

1. **Project** observed functions Y into **wavelet space**.

2. **Fit FMM** in wavelet space
 (Use MCMC to get posterior samples)

3. **Project** wavelet-space estimates
 (posterior samples) **back to data space**.
Wavelet-Based FMM

3. **Project** wavelet-space estimates (posterior samples) **back to data space**.

- Apply IDWT to posterior samples of B^* to get posterior samples of fixed effect functions B_i for $i=1,\ldots, p$, on grid t.
 - $B = B^* W$
- Posterior samples of U, Q, and S are also available, if desired.
- Can be used for any desired Bayesian inference
Incomplete Profiles

• Lots of missing data (Missing Data)

Example of incomplete profile

• WFMM can only be applied to complete profiles (with no missing regions)
 – 95 of the 292 profiles complete from 9am-8pm

• How do we incorporate information from other 197 incomplete profiles?
Heatmap of Missingness
(Black=missing)
Missingness vs. Time-of-Day

Proportion of profiles observed for that minute

8/4/2005

Johns Hopkins Biostatistics
Grand Rounds

Accelerometer Data
Approach: Incomplete Profiles

1. First fit model to *complete profiles*, get posterior distribution samples for model parameters.

2. Use these to estimate *predictive distributions* for the incomplete profiles *(fig)*
 - Borrow information about what the curves in these regions look like.
 - Account for child-specific and day-specific covariates.

3. Regress missing data on the observed data to obtain *imputation distribution* for missing regions *(fig)*
 - Borrow information from nearby times in incomplete profiles.
 - Makes predictions for missing regions “connected” with observed.

4. Supplement WFMM with step to *stochastically impute* values for missing data.
 - Inference appropriately accounts for uncertainty in imputation
Incomplete Profile

![Graph showing MET levels over time.](image)
Predictive Distribution

$$\mu_i(t) = E\{Y_i(t) | Y^C\} = \int Y_i(t) f\{Y_i(t) | X, Z, \Theta\} f(\Theta | Y^C)d\Theta$$

$$\Sigma_i(t_1, t_2) = COV \{Y_i(t_1), Y_i(t_2) | Y^C\}$$
Imputation distribution

\[
\mu_{i|M|O} = \mu_{i|M} + \sum_i M,O (\sum_i^{O,O})^{-1} (Y_i^O - \mu_{i,O})
\]

\[
\sum_i M|O = \sum_i M,M - \sum_i M,O (\sum_i^{O,O})^{-1} \sum_i O,M
\]
Incomplete Profiles
Missing Data in the WFMM

- **Problem:** Imputation distribution in data space, modeling done in wavelet space
- **Solution:** Project imputation distributions into wavelet space

\[
M_i(t) = \begin{cases}
Y_i(t) & \text{if } t \text{ observed} \\
\mu_i^{M|O}(t) & \text{otherwise}
\end{cases}
\]

\[
V_i(t_1, t_2) = \begin{cases}
0 & \text{if either } t_1 \text{ or } t_2 \text{ observed} \\
\Sigma_i^{M|O}(t_1, t_2) & \text{otherwise}
\end{cases}
\]

- Add step to MCMC whereby “missing” wavelet coefficients \(D_{ijk} \sim N(M_{ijk}^*, V_{ijk}^*) \)

\[
M_i^* = M_i W' \\
V_i^* = WV_i W'
\]
Model

Let Y be 292×660 matrix containing 292 accelerometer profiles for each minute from 9am-8pm.

$$Y = XB + ZU + E$$

- $X = 292 \times 14$ matrix of covariates
 - School effects (5), gender, triceps skinfold, BMI, day-of-week (4), daylight savings time, avg TV hrs/day
- $B = 14 \times 660$ matrix of fixed effects functions
 - B_{ij} is effect of covariate i at time t_j
- $Z = 292 \times 106$ matrix indicating child for each profile
- $U = 106 \times 660$ matrix of random effect functions (1/child)
- $E = 292 \times 660$ matrix of residual errors

(short results)
(Bayesian Inference)
Statistical Inference in FMM

- Prior distributions made “uninformative”
 - Exception: *smoothing parameters*, which can be estimated from the data using an “empirical Bayes” approach.

- We use MCMC to draw samples from posterior distributions of $B_i(t)$ functions and covariances.

- For each covariate effect, we compute 90% pointwise credible intervals at each value of t.

- We also computed 90% credible intervals, aggregating data within following time intervals:
 1. All day (9am-8pm)
 2. Morning (9am-11:30am)
 3. Lunch (11:30am-12:30pm)
 4. Afternoon (12:30-2:15pm)
 5. Going home (2:15pm-3pm)
 6. After school (3pm-5:30pm)
 7. Early evening (5:30pm-7pm)
 8. Late evening (7pm-8pm)
Selected Results: School Effects

- School schedules evident in effects
 - Spikes every 48min (changing classes)
 - 3 lunch periods
 - School out at 2:15pm

- Not so evident in individual curves
Selected Results: **BMI Effect**

- **BMI** coded as continuous factor (mean-centered)
- **BMI effect positive** *(post prob < 0.0005)*
 - Higher BMI, more energy expenditure
- **Not present in raw activity levels**
 - Artifact of conversion from acceleration to energy scale?
Selected Results: **DST Effect**

- DST – April 6th
- More active after DST (overall 8%, \(p=0.062 \))
- Especially strong:
 - As school is letting out (2:15-3:00, 25%, \(p=0.03 \))
 - In early evening (5:30-7:00, 30%, \(p=0.01 \))
- Note: Sunset was
 - 5:10-6:15 before DST
 - 7:15-8:10 after DST
Selected Results: TV hours/day

- TVhrs coded as continuous factor (standardized)
- TVhrs effect negative (-1.3% per sd, $p=0.03$)
 - More TV, less active
 - 3:00-5:30, -2.6%, $p=0.02$
 - 7:00-8:00, -3.6%, $p=0.008$
- Positive effect over lunch
 - +2.7%, $p=0.03$
 - More TV, on average more active over lunch
Some Results

- **School #5:**
 - Spikes every 48min (changing classes)
 - 3 lunch periods
 - School out at 2:15pm
- **BMI effect positive**
 - More energy expenditure
- **Daylight Savings Time**
 - More active after DST
 - Especially 2-3pm, 5-7pm
- **Avg hrs TV/day**
 - More TV=less active
 - Especially 3-5pm, 7-8pm
 - More active at lunch
Results: Covariance Analysis

- Variability: **91%** day-to-day, **9%** child-to-child
 - Important to have many days per child
- Study variability as function of t
 - Child-to-child variability: **school day** > **after school**
 - Day-to-day variability: **after school** > **school day**
 - Relative day-to-day variability after school: **95-99%**
- Less children, more days, save $$$?
 - But adherence a major limitation
- Would be nice to get more schools, too.
Results: Bouts

• Can compute posterior predictive probabilities of bouts for children
Results: Bouts

- Can compute posterior predictive probabilities of bouts for children
- **Model-based** predictive probabilities not far from *empirically-estimated* probabilities
- May want heavier tails
Conclusions

• Found some interesting results in Planet Health
 – School schedules, DST, Day of Week, TV hours
 – Day-to-day variability large – need lots of days/child
 – Raw vector magnitudes instead of estimated METs?

• Functional mixed models promising method for analyzing accelerometer data
 – Makes use of all of the data
 – Can detect effects that vary over time
 – Can accommodate incomplete profiles
 – After the fact, one can perform inference that averages within different time periods of interest
 – Can still look at probabilities bouts, but as function of time
Acknowledgements

• Statistical Collaborators on work related to WFMM: Raymond J. Carroll, Louise Ryan, Phil Brown, Marina Vannucci, Kevin Coombes, Keith Baggerly, Naisyin Wang, Brent Coull, and Cassandra Arroyo.

• Thanks to Dick Herrick for assistance in optimizing the code for the method, and for converting the Matlab code to C++.