Wavelet-Based Preprocessing Methods for Mass Spectrometry Data

Jeffrey S. Morris
Department of Biostatistics and Applied Mathematics
UT M.D. Anderson Cancer Center
Overview

- Background and Motivation
- Preprocessing Steps
 - Denoising using Wavelets
 - Baseline Correction/Normalization
 - Peak Detection/Quantification
 - Working with Average Spectrum
- Virtual Mass Spectrometer
- Simulation Study
- Conclusions
Example: MALDI-MS

- **Central dogma**: DNA \rightarrow mRNA \rightarrow protein
- **Microarrays**: measure expression levels of 10,000s of genes in sample (amount of mRNA)
- **Proteomics**: look at proteins in sample.
 - Gaining increased attention in research
 - Proteins more biologically relevant than mRNA
 - Can use readily available fluids (e.g. Blood, urine)

- **MALDI-TOF**: mass spectrometry instrument that can see 100s or 1000s of proteins in sample
MALDI-TOF schematic

Raw Spectrum

UT Dallas 4-05-05
Statistical Issues for Mass Spectrometry Experiments

- **Experimental Design**
 - Blocking/RANDOMIZATION – reduce possibility of systematic bias polluting the data.

- **Preprocessing**
 - Remove systematic artifacts/noise from data
 - Extract meaningful features (protein signal) : \(n \times p \) matrix

- **Data Analysis/Discovery**
 - Analyze \(n \times p \) matrix
 - Find which features are associated with exp. cond.
 - Build/validate classifier based on sets of features
 - Cluster samples/features
 - Lots of existing methods available for this
Statistical Model for Spectrum

\[Y_i(t_j) = B_i(t_j) + N_i S_i(t_j) + e_{ij} \]
Statistical Model for Spectrum

\[Y_i(t_j) = B_i(t_j) + N_i S_i(t_j) + e_{ij} \]
Statistical Model for Spectrum

\[Y_i(t_j) = \underbrace{B_i(t_j)}_{\text{Baseline}} + \underbrace{N_i S_i(t_j)}_{\text{Protein Signal}} + e_{ij} \]
Statistical Model for Spectrum

\[Y_i(t_j) = \underbrace{B_i(t_j)}_{\text{Baseline Artifact}} + \underbrace{N_i}_{\text{Normalization Factor}} \underbrace{S_i(t_j)}_{\text{Protein Signal}} + e_{ij} \]
Statistical Model for Spectrum

\[Y_i(t_j) = B_i(t_j) + N_i S_i(t_j) + e_{ij} \]

- Baseline Artifact
- Protein Signal Normalization Factor
- Additive noise (detector)

\[e_{ij} \sim N\{0, \sigma^2(t_j)\} \]
Preprocessing

- **Goal:** Isolate protein signal $S_i(t_j)$
 - Filter out baseline and noise, normalize
 - Extract individual features from signal

- **Problem:**
 -Baseline removal, denoising, normalization, and feature extraction are interrelated processes.
 - Where do we start?
Denoising using Wavelets

- **First step:** Isolate noise using wavelets
 - **Wavelets:** basis functions that can parsimoniously represent spiky functions
 - Standard denoising tool in signal processing

- **Idea:** Transform from time to wavelet domain, threshold small coefficients, transform back.
 - **Result:** Denoised function and noise estimate
 - **Why does it work?** Signal concentrated on few wavelet coefficients, white noise equally distributed. Thresholding removes noise without affecting signal.

- Does *much* better than denoising tools based on kernels or splines, which tend to attenuate peaks in the signal when removing the noise.
Raw Spectrum
Denoised Spectrum
Noise

UT Dallas 4-05-05
Baseline Correction & Normalization

- **Baseline**: smooth artifact, largely attributable to detector overload.
 - Estimated by monotone local minimum
 - More stably estimated after denoising

- **Normalization**: adjust for possibly different amounts of material desorbing from plates
 - Divide by total area under the denoised and baseline corrected spectrum.
Baseline Estimate
Denoised, Baseline Corrected Spectrum
Denoised, Baseline Corrected, and Normalized Spectrum
Protein Signal

- **Ideal Form of Protein Signal:** Convolution of peaks
 - Proteins, peptides, and their alterations
 - **Alterations:** isotopes; matrix/sodium adducts; neutral losses of water, ammonia, or carbon

- Limitations of instrument used means we may not be able to resolve all peaks.

- Advantages of peak detection:
 - Reduces multiplicity problem
 - Focuses on units that are theoretically the scientifically interesting features of the data.
Peak Detection

- Easy to do after other preprocessing
- Any local maximum after denoising, baseline correction, and normalization is assumed to correspond to a “peak”.
- May want to require $\text{S/N} > \delta$ to reduce number of spurious peaks.
 - We can estimate the noise process $\sigma(t)$ by applying a local median to the filtered noise from the wavelet transform.
 - Signal-to-noise estimate is ratio of preprocessed spectrum and noise.
Peak Detection

3326 locations, 81 peaks
Peak Detection (zoomed)
Raw Spectrum with peaks
Peak Quantification

Two options:
1. **Area under the peak**: Find the left and right endpoints of the peak, compute the AUC in this interval.
2. **Maximum intensity**: Take intensity at the local maximum (may want to take log or cube root)

Theoretically, AUP quantifies amount of given substance desorbed from the chip.

But it is very difficult to identify the endpoints of peaks
Peak Quantification

The maximum intensity is a practical alternative
- No need for endpoints, should be correlated with AUP
- Physics of mass spectrometry shows that, for a given ion with m/z value x, there is a linear relationship between the number of ions of that type desorbed from plate and the expected maximum peak intensity at x.

Problem with both methods:
Overlapping peaks that are not deconvolvable
- Local maximum at t contains weighted average of information from multiple ions whose corresponding peaks have mass at location t.
- Major problem – short of formal deconvolution, have not seen simple solution to this problem.
Peak Matching Problem

- If peak detection performed on individual spectra, peaks must be matched across samples to get $n \times p$ matrix.
 - Difficult and arbitrary process
 - What to do about “missing peaks?”

- **Our Solution:** Identify peaks on mean spectrum (at locations $x_1, ..., x_p$), then quantify peaks on individual spectra by intensities at these locations.
Advantages/Disadvantages

- **Advantages**
 - Avoids peak-matching problem
 - Generally more sensitive and specific
 - Noise level reduced by \sqrt{n}
 - Borrows strength across spectra in determining whether there is a peak or not (signals reinforced over spectra)
 - Robust to minor calibration problems
- **Disadvantage**
 - Tends to be less sensitive when prevalence of peak $< 1/\sqrt{n}$.
Noise reduced in mean spectrum
Noise reduced in mean spectrum
Peak detection with mean spectrum
Sample Spectrum

![Sample Spectrum Diagram]

- **Found by both**
- **Found by MUDWT only**
- **Not found**

Intensity vs. m/z
Simulated spectra

- Difficult to evaluate processing methods on real data since we don’t know “truth”
- Have developed a simulation engine to produce realistic spectra
 - Based on the physics of a linear MALDI-TOF with ion focus delay
 - Flexible incorporation of different noise models and different baseline models
 - Includes isotope distributions
 - Can include matrix adducts, other modifications
MALDI-TOF schematic

Modeling the physics of MALDI-TOF

Parameters

- $D_1 =$ distance from sample plate to first grid (8 mm)
- $V_1 =$ voltage for focusing (2000 V)
- $D_2 =$ distance between grids (17 mm)
- $V_2 =$ voltage for acceleration (20000 V)
- $L =$ length of tube (1 m)
- $v_0 =$ initial velocity $\sim N(\mu, \sigma)$
- $v_1 =$ velocity after focusing
- $\delta =$ delay time

Equations

- $v_1^2 = v_0^2 + \frac{2qV_1}{mD_1} (D_1 - \delta v_0)$
- $t_{DRIFT}^2 = L^2 \left(\frac{2qV_2}{m} + v_1^2 \right)$
- $t_{ACCEL} = \frac{mD_2}{qV_2} \left(\frac{L}{t_{DRIFT}} - v_1 \right)$
- $t_{FOCUS} = \frac{mD_1}{qV_1} (v_1 - v_0)$
Simulation of one protein, with isotope distribution
Same protein simulated on a low resolution instrument
Simulation of one protein with matrix adducts
Simulated calibration spectrum with equal amounts of six proteins
Simulated spectrum with a complex mixture of proteins
Closeup of simulated complex spectrum
Real and Virtual Spectra
Using Virtual Mass Spectrometer

Input: virtual sample
- proteins and peptides desorbed from sample
- list of molecular masses w/ # of molecules

Output: virtual spectrum

Simulation Studies: virtual population
- Defines distribution of proteins in proteome from which you are sampling
- Assume p proteins; for each specify 4 quantities
 - major peak location (m/z of dominant ion)
 - prevalence (proportion of samples with protein)
 - abundance (mean # ions desorbed from samples w/ protein)
 - variance (var # of desorbed ions across samples w/ protein)
Simulation Study

1. Generated **100 random virtual populations** based on MDACC MALDI study on pancreatic cancer.
2. For each virtual population, generated **100 virtual samples**, obtained **100 virtual spectra**.
3. Applied preprocessing and peak detection method based on individual and average spectra.
4. Summarized performance based on **sensitivity** (proportion of proteins detected) and **FDR** (proportion of peaks corresponding to real proteins).

Tricky to do – see paper for details.
Simulation Results

Overall Results

<table>
<thead>
<tr>
<th></th>
<th>sensitivity</th>
<th>FDR</th>
<th>pv*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUDWT</td>
<td>0.75</td>
<td>0.09</td>
<td>0.03</td>
</tr>
<tr>
<td>(indiv. spectra)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUDWT</td>
<td>0.83</td>
<td>0.06</td>
<td>0.97</td>
</tr>
<tr>
<td>(mean spectrum)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pv=the proportion of simulations with higher sensitivity
Simulation Results
By Prevalence

<table>
<thead>
<tr>
<th>π:</th>
<th>$<.05$ (14%)</th>
<th>$.05-.20$ (16%)</th>
<th>$.20-.80$ (40%)</th>
<th>$>.80$ (30%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensitivity (SUDWT)</td>
<td>0.43</td>
<td>0.74</td>
<td>0.81</td>
<td>0.82</td>
</tr>
<tr>
<td>sensitivity (MUDWT)</td>
<td>0.38</td>
<td>0.74</td>
<td>0.93</td>
<td>0.97</td>
</tr>
<tr>
<td>pv (MUDWT)</td>
<td>0.25</td>
<td>0.49</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Simulation Results
By Abundance (mean log intensity)

<table>
<thead>
<tr>
<th>log(µ):</th>
<th><9.0 (31%)</th>
<th>9.0-9.5 (27%)</th>
<th>9.5-10 (23%)</th>
<th>>10 (19%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensitivity (SUDWT)</td>
<td>0.68</td>
<td>0.75</td>
<td>0.78</td>
<td>0.82</td>
</tr>
<tr>
<td>sensitivity (MUDWT)</td>
<td>0.78</td>
<td>0.84</td>
<td>0.85</td>
<td>0.88</td>
</tr>
<tr>
<td>pv (MUDWT)</td>
<td>0.97</td>
<td>0.89</td>
<td>0.84</td>
<td>0.78</td>
</tr>
</tbody>
</table>
Conclusion

Wavelet-Based Preprocessing:

Using Average Spectrum for Preprocessing:

Virtual Mass Spectrometer:

Website: http://bioinformatics.mdanderson.org/
- Contains code for preprocessing (Cromwell) and simulation engine, plus some publically available mass spectrometry data sets.
Open problems: Preprocessing

- Better calibration?
 - Internal validation
- Better baseline correction?
- Alternative methods for normalization?
- Quality control/quality assurance?
- Best approach for quantification?
Open problems: Virtual Mass Spectrometry Instrument

- Include more alterations
 - Adducts and neutral molecule losses
 - Multiply-charged ions
- Develop more realistic model for baseline artifact
- Generalize to other instruments?
Acknowledgements

- **Bioinformatics**
 - Kevin Coombes
 - Keith Baggerly
 - Jianhua Hu
 - Jing Wang
 - Lianchun Xiao
 - Spyros Tsavachidis
 - Thomas Liu

- **Proteomics (MDACC)**
 - Ryuji Kobayashi
 - David Hawke
 - John Koomen

- **Ciphergen**
 - Charlotte Clarke

- **Biologists (MDACC)**
 - Jim Abbruzzese
 - I.J. Fidler
 - Stan Hamilton
 - Nancy Shih
 - Ken Aldape
 - Henry Kuerer
 - Herb Fritsche
 - Gordon Mills
 - Lajos Pusztai
 - Jack Roth
 - Lin Ji

UT Dallas 4-05-05