Homework \#2

STAT675 (Rice University) or GS010103 (GSBS)
(a) Prove Theorem 3 from Slides of Week 4 (Feb 4th)

Consider the linear model where both β and τ are unknown. Then prove that the Jeffrey's joint prior is given by

$$
\pi(\beta \mid \tau) \propto \tau\left(X^{\prime} X\right)^{p / 2-1}
$$

(b) Prove Theorem 5 from Slides of Week 4 (Feb 4th)

Consider the linear model where both β and τ are unknown.

$$
\begin{aligned}
\pi(\beta \mid \tau) & \propto \operatorname{Normal}_{p}\left(\mu_{0}, \tau^{-1} \Sigma_{0}\right) \\
\pi(\tau) & \propto \operatorname{Gamma}\left(\delta_{0} / 2, \gamma_{0} / 2\right)
\end{aligned}
$$

Then prove that β is $\beta \mid y \sim \mathrm{~S}_{\mathrm{p}}\left(\mathrm{n}+\delta_{0}, \beta^{*}, \tilde{\mathrm{~s}}^{2}\left(\mathrm{X}^{\prime} \mathrm{X}+\Sigma_{0}^{-1}\right)^{-1}\right)$ where S_{p} is the p-variate Students t-distribution with $\left(n+\delta_{0}\right)$ degrees of freedom and the posterior of τ is $\operatorname{Gamma}\left\{\left(\mathrm{n}+\delta_{0}\right) / 2, \overline{\mathrm{~s}}^{2}\left(\mathrm{n}+\delta_{0}\right) / 2\right\}$, where

$$
\begin{aligned}
\beta^{*} & =\Lambda \mu_{0}+(I-\Lambda) \hat{\beta} \\
\Lambda & =\left(X^{\prime} X+\Sigma_{0}^{-1}\right)^{-1} \Sigma_{0}^{-1} \\
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
\bar{s}^{2} & =\left(n+\delta_{0}\right)^{-1}\left[Y^{\prime}(I-M) Y+\left(\hat{\beta}-\mu_{0}\right)^{\prime}\left(\Lambda^{\prime} X^{\prime} X\right)\left(\hat{\beta}-\mu_{0}\right)+\gamma_{0}\right] \\
M & =X^{\prime}\left(X^{\prime} X\right)^{-1} X
\end{aligned}
$$

