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BIG PICTURE

Genomics/Bioinformatics (general)

As the generation, organization, and analysis of biological data
(initially genomic data)

Attracted lot of interest in different fields: Computer Science,
Physics, Engineering and of course Statistics

Statistical Genomics

Class of statistical methods for dealing with large biological data
sets

Goal: statistically identify significant changes in biological
processes to answer relevant biological questions.

High-throughput studies; get data matrix; mine the matrix for
information
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EXAMPLES

Changes in DNA sequence

Quantitative trait locus identification

Differential expression of genes (microarrays)

Changes in protein abundance (proteomics)

Cell and molecular based studies

And many many more.....
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ROAD MAP FOR TODAY

How to get data?

How to clean data?

In the context of Microarrays

Get data: Image Processing

Clean data: Pre-processing data

The literature is huge!
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MICROARRAY TECHNOLOGY

High-throughput assays for understanding molecular biology

Simultaneously measure expression levels for thousands of genes

By understanding how “gene expression” changes across multiple
conditions

Researches gain clues about gene functions

How genes work together to carry out biological functions

Many applications in a variety of studies; attracted considerable
statistical literature

Other techniques to measure gene expression
Serial analysis of gene expression (SAGE); cDNA library
sequencing; differential display; cDNA subtraction; multiplex
quantitative RT-PCR
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BASIC PRINCIPLES OF MICROARRAYS

Central dogma of molecular biology: “information transfer”
(Nguyen et al., 2003)

DNA⇒ mRNA −→ amino acid −→ protein −→ cell phenotype −→ organism phenotype

Different levels of gene expression

Transcription level: DNA → RNA (microarrays)

Protein level: mRNA → proteins (protein arrays)

Three primary information processes in functioning
organisms

Replication (duplication) - DNA

Transcription (copying) - RNA

Translation - Protein production
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CENTRAL DOGMA: DNA AND PROTEIN

http://www.ornl.gov/sci/techresources/HumanGenome/graphics/slides/images1.shtml
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DNA, GENES AND DNA TRANSCRIPTION

DNA
DNA in native state is double stranded

Complementary base pairing: A-T, G-C

...AAAAGCTAGTCGATGCTAG...
...TTTTCGATCAGCTACGATC...

RNA

Single stranded

Base pairing: A-U, G-C (same as DNA with T replaced with U)

DNA Transcription

Inside the nucleus. DNA strand encoding the gene copied (mRNA)

Section of one strand of DNA corresponding to the gene is copied
using base complementarity.
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CENTRAL DOGMA: RNA
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MICROARRAY TECHNOLOGIES

Basic Premise: if we know target mRNA sequence we can
build a probe for it using the complementary sequence.
Probe location tells us the identity of the gene.
Two variants:

Reverse transcription from mRNA to cDNA

cDNA Microarray technology; Duggan et al. (1999)

Synthesis of short subsequences (oligos)

Affymetrix (www.affymetrix.com); Genechips
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THE CDNA MICROARRAY TECHNOLOGY: OVERVIEW

http://www.accessexcellence.org/RC/VL/GG/microArray.html
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THE CDNA MICROARRAY TECHNOLOGY

Array fabrication: preparing the glass slide, obtaining the DNA
sequences and depositing (“printing”) the cDNA sequences

Sample preparation: processing and preparing the biological
sample of interest

Isolating total RNA (mRNA and other RNA’s) from tissue samples

Much variability comes from this step

cDNA synthesis and labeling: making and labeling cDNA’s from
experimental and reference samples.

Hybridization: applying the experimental and reference cDNA
mixture solution to the array.

Many sources of variation come from these processes.
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DATA COLLECTION: MICROARRAY QUANTIFICATION

Expression levels measured by spot intensities of Cy5 and Cy3
dyes

Intensities obtained by scanning array with confocal laser
microscope

Array scanned at two wavelengths: Cy5 and Cy3 tagged sample

Result: Two 16-bit TIFF images containing fluorescence
intensities of pixels

This is the raw data!
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OLIGONUCLEOTIDE (OLIGO) ARRAYS

Affymetrix GeneChip most popular commercially produced high-density
arrays; Genechips

Oligonucleotide: short sequence of nucleotides

Each gene (more accurately sequence of interest or feature) is
represented by multiple short (25-nucleotide) oligo probes.

Probes sequences are chosen to have good and relatively uniform
hybridization characteristics

A probe is chosen to match a portion of its target mRNA transcript that is
unique to that sequence.

Oligo probes can distinguish among multiple mRNA transcripts with
similar sequences
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GENECHIPS AND PROBES

A probe set is used to measure mRNA levels of a single gene.

Each probe set consists of multiple probe cells.

Each probe cell contains millions of copies of one oligo.

Each oligo is intended to be 25 nucleotides in length.

Probe cells in a probe set are arranged in probe pairs.

Each probe pair contains a perfect match (PM) probe cell and a
mismatch (MM) probe cell.

A PM oligo perfectly matches part of a gene sequence.

A MM oligo is identical to a PM oligo except that the middle nucleotide
(13th of 25) is intentionally replaced by its complementary nucleotide.
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ARRAY DESIGN

Shown are probe pairs, PM and MM
There are tens of thousands of probe sets per chip

http://www.affymetrix.com
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WHAT DO WE FINALLY GET: CDNA ARRAYS
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WHAT DO WE FINALLY GET: AFFYMETRIX ARRAYS

http://www.affymetrix.com
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WHAT DO WE FINALLY GET

Digital image: rectangular array of intensity values

Each intensity value corresponds to a pixel

Color Depth: is the number of bits used to store the intensity value
of one pixel

Color depth of 16 bits/pixel (common for microarray scanners)
means the intensity values of each pixel is an integer between 0
and 65,535 (= 216 − 1)

The number of pixels contained in a digital image is called
resolution
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COLOR DEPTH = 6; RESOLUTION = 128 X 128

(Adapted from Dan Nettleton’s JSM short course slides)
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COLOR DEPTH = 2; RESOLUTION = 128 X 128

(Adapted from Dan Nettleton’s JSM short course slides)
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COLOR DEPTH = 6; RESOLUTION = 32 X 32

(Adapted from Dan Nettleton’s JSM short course slides)
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IMAGE PROCESSING FOR CDNA ARRAYS

4 basic steps:

Array localization - locate the spots

Image segmentation - categorize each spot as foreground
(signal), background or other

Quantification - assign signal and background values to each spot

Spot quality assessment - compute measures of spot quality for
each spot

These steps use specialized software and can involve varying degrees
of human intervention.
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ARRAY LOCALIZATION

Mostly software driven

Ideally every spot should have shape of
a circle and all spots should have
consistent diameters

Users may

Aid software by outlining grids,
providing information about spot
size and the number of rows and
columns spotted on slide

Make manual adjustments to
improve upon automated spot
adjustments

(Adapted from Dan Nettleton’s JSM short course slides)
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ARRAY LOCALIZATION

Observed spots are hardly circular

Donut shape, sickle shape, oval or pear
shape, black holes inside spot

Image analysis software rectify the
spatial problems by capturing true
shape of spots

Other image analysis techniques use
distribution of pixels e.g. histogram

Hybrid approaches: combine both
spatial and distributional approaches (Adapted from McLachlan, Do and Ambroise, 2004)
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IMAGE SEGMENTATION

Segmentation technique to classify each pixel in
target area as foreground (spot
signal)/background

Spot signal is flourescence intensity due to target
molecules hybridized to probe sequences
contained in the spot (which is what we want to
measure) plus background flourescence (which
we would rather not measure)

Background is fluorescence that may contribute to
spot pixel intensities but is not due to target
molecules

Dust particles, stray fluorescent molecules,
fluorescence in the slide itself etc.

Background varies across slide so most softwares
attempt to measure local background by
quantifying pixel intensities around each spot.

Adapted from Yang et al., 2002
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QUANTIFICATION

Pixels in spot and background area used to compute intensities

Spot intensity: Some statistics representing intensities for all
pixels in spot area; similarly for background intensity

Mean: mean of pixel intensities

Median: median of pixel intensities

Mode: location of peak in histrogram of intensities

Area: number of pixels

Total: sum of pixel intensities

Many open questions still remain

Imaging software also output some spot quality statistics.

Different image analysis programs: GenePix, SPOT, ScanAlyze,
UCSF Spot and Imagene
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IMAGE PROCESSING FOR OLIGO ARRAYS

Affymetrix Genechips use propriety Affymetrix software

Genechip surface covered with square shaped cells containing
probes

Probes are synthesized on the chip in precise locations

Thus spot finding and image segmentation are not major issues
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ARRAY LOCALIZATION

8 x 8 = 64 pixels

Border pixels excluded

75th percentile of the 36 pixel intensities
corresponding to the center 36 pixels is
used to quantify fluorescence intensity
for each probe cell

These values are called PM values for
perfect-match probe cells and MM
values for mismatch probe cells

The PM and MM values are used to
compute expression measures for each
probe set
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AN EXAMPLE

Early experiment at MD Anderson; 4800
dots; 4 x 12 grid of 10 x 10 patches

Each pixel a 16-bit intensity
measurement; values between 0 and
65535

Each image 8 M in size

Nowadays more genes; more
resolution; greater size

Some image analysis software assume
8-bit (0 to 255); lose some gradation
information; damaging for analysis

Adapted from Baggerly et al., 2006
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AN EXAMPLE

Patch zoomed out

Replicate spotting of same genes; top half of patch replicated in the
bottom

Cy3 spots in rows 4 and 9 in column 7 are a replicate pair; some
confidence in assay
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AN EXAMPLE: ANALYSIS CAVEATS

“Dots” really not “dot-like”; rather rings of high intensity about lower-level
centers; true for both channels; surface tension dries cause clumping at
edges

Dots not equal size; automated procedure not possible; human
intervention

Some smearing at the lower left hand corner (green channel)!; affects
assessment of spot intensity
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AN EXAMPLE: ANALYSIS CAVEATS

Baggerly et al., 2006

One single spot zoomed out and side view

Ring shape visible ⇒ uneven hybridization

Measurements outside the spot not at 0 intensity ⇒ need some type of
background correction

Conclusion: need good image quantification algorithms
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PROCESSED DATA

IR = (mR
ij ) and BR = (bR

ij ) be n × p matrices containing spot and
background intensities of genes j = 1, . . . , p in samples (arrays)
i = 1, . . . , n from Cy5-channel(red) image

IG = (mG
ij ) and BG = (bG

ij ) corresponding matrices from
Cy3-channel(green) image

Many analysis based on:

Background corrected intensities:
R = (rij) = (mR

ij − bR
ij ) and G = (gij) = (mG

ij − bG
ij )

Intensity ratios: X = (xij) where xij = rij/gij

Most common: Log(X ) log ratio of intensities
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WHY LOG?

Makes variation of intensities and ratios of intensities more independent
of absolute magnitude

Evens out highly skewed distributions; gives more realistic sense of
variation

Approximates normal distribution; treats up- and down- regulated genes
symmetrically; helps visualize variation in both directions
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NORMALIZATION

Describes the process of removing (or minimizing) non-biological
(techincal) variation in the measured expression levels

Aim: Biological differences can be more easily detected

Typically, normalization attempts to remove global effects i.e.
effects shown by exploratory plots for a slide or multiple slides

Nothing to do with normal distribution

Not a panacea for bad data!
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SOURCES OF NON-BIOLOGICAL VARIATION

Dye bias: differences in heat and light sensitivity; efficiency of dye
incorporation

Differences in amount of labeled cDNA hybridized

Different amounts of mRNA

Different scanning parameters

Different technicians producing the arrays

Any process that induces systematic error
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NORMALIZATION METHODS

Several methods

Global mean methods

(Iterative) linear regression method

Curvilinear methods (e.g. Lowess)

Variance model methods

Basic idea: Try to get slope of ∼1 and a correlation of ∼1
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EXAMPLE: NORMALIZATION NEEDED

Courtesy Jonathen Wren
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EXAMPLE: NORMALIZATION NOT NEEDED

Courtesy Jonathen Wren
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FIRST STEP: M-A PLOTS

log2R vs log2G M = log2(R/G) vs A = log2(RG)/2 ‘

Essentially a rotation of the log plot so that the 45 degres line is now the horizontal axis;
Originally proposed for microarrays by Dudoit et. al. (2002, Statistica Sinica); M = Minus, A
= Average

Shows eventual non-linear and unwanted dependence between ratios and fluorescence
intensities; M is units of 2-fold change (if log base is 2) and A is in units of 2-fold increase
in brightness

Shows that using only ratios is a naive way to identify differentially expressed genes.
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M-A PLOTS

log2R vs log2G M = log2(R/G) vs A = log2(RG)/2 ‘

Using just the ratios or log ratios to visuzalize the data does not enable us to see the
systematic dependence of the ratio on intesity values

Ideally, if few genes expressed the cloud is centered around 0; if not then lowess

For two-channel arrays shown above; for one channel usual to plot pair of slides
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NORMALIZATION: GLOBAL

Normalization based on

log2R/G −→ log2R/G − c = log2R/(kG)

Common choices for k or c = log2k are

c = mean/median of log rations for a particular gene set (e.g. all
genes, or control or housekeeping genes)

Alternative: k =
∑

Ri/
∑

Gi ; total intensity normalization

Changes roughly symmetric at all intensities

Not intensity/spatial dependent
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NORMALIZATION: INTENSITY-DEPENDENT

Run a smoother through the MA plot, shifting the M value of the
pair (A,M) by c=C(A), i.e.

log2R/G −→ log2R/G − c(A) = log2R/{k(A)G}

One estimate of c(A) is made using the LOWESS function of
Cleveland (1979)

LOcally WEighted Scatterplot Smoothing

First proposed for microarrays by Yang et al. (2002)

Global LOWESS use implicit assumptions that, when stratified by
mRNA abundance,

Only a minority of genes are expected to be differentially expressed
or,

any differential expression is as likely to be up-regulation as well as
down-regulation

VEERA & DO, MD ANDERSON CANCER CENTER STAT 675/ GS010103 SPRING 2007



LOGO

NORMALIZATION: PRINT-TIP

Both intensity-dependent variation and spatial bias can be
significant sources of systematic error

Global methods do not correct for spatial effects produced by
hybridization artifacts or print-tip or plate effects during microarray
construction

Can correct for both print-tip and intensity dependent bias by
performing LOWESS fits to the data within print-tip groups, i.e.

log2R/G −→ log2R/G − ci(A) = log2R/{ki(A)G}

where ci(A) is the lowess fit to the MA plot for the i th grid only (i th
print group), i = 1, . . . , I (= number of print tips)

Also called sub-array normalization
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LOCAL SMOOTHING AND REGRESSION

LOWESS is a form of a local smoother

Classical (global) regression: draws a single line to the entire set
of points

Local regression: draws a curve through noisy data by smoothing.

Linear (or polynomial) function of the predictor(s) is created in a
local neighborhood, points are weighted

As you move through values of the predictor, the neighborhood
moves as well

Lot of active research in the general area of smoothing
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EFFECTS OF LOCATION NORMALIZATION

Before normalization After print-tip group normalization

(Courtesy Yee Hwa Yang)
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NORMALIZATION CONTINUED...

The LOWESS lines can be run through many different sets of points;
each strategy has its own implicit set of assumptions, justifying its
applicability

What genes to use

All genes on the array

Housekeeping genes: genes whose expression does not change
over a variety of conditions.

Controls: Spiked controls (e.g. plant genes) or genomic DNA
titration series; regulate amount of spike-in relative to the amount of
control.

Different arrays often do not show identical signal distribution of M
values: various technical reasons (e.g. labeling efficiency, amount of
labelled RNA, scanner settings, etc...)

Need to normalize the signal between chips: multiple possibilities, one
often used: ”scale normalization”
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SCALE NORMALIZATION

Assume: All slides have the same spread in M

True log ratio is µij where i represents different slides and j
represents different spots

Observed is Mij , where Mij = aiµij

Robust estimate of ai is

MADi

I
√∏J

k=1 MADi

where MADi = medianj{|yij − median(yij)|}

Could instead make same assumption for print tip groups (rather
than slides)

Scale normalization changes scale of data; affects fold change
calculations
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AN EXAMPLE

Un-normalized Print-tip normalization Print tip & scale norm.

Point: location normalization takes out non-linear effects

(Courtesy: Darlene Goldstein)
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ANOTHER EXAMPLE

Before

After

(Courtesy: Darlene Goldstein)
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QUANTILE NORMALIZATION

Bolstad et. al. (2003; Bioinformatics) propose quantile normalization for
microarray data; most commonly used in normalization of Affy data

Goal: to give same empirical distribution of intensities to each array i.e.
after quantile normalization the histogram of intensities on each array
will be identical

Target distribution is found by averaging the quantiles for each of the
arrays in the dataset

An intensity is transformed in the following manner:

x∗ij = F−1{Gj(xij)}

where xij is measurement i on array j , Gj is the distribution function for
array j , and F−1 is the inverse of the distribution function to be
normalized.
In practice, Gj estimated using the empirical distribution function and F
is the average distribution across all arrays in the data set.
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DETAILS OF QUANTILE NORMALIZATION

Very easy to implement

Find the smallest log signal on each channel

Average the values from step 1

Replace each value in step 1 with the average computed in step 2

Repeat steps 1 through 3 for the second smallest values, third
smallest values,..., largest values

Quantile normalization changes expression over many slides i.e.
changes the correlation structure of the data, may effect subsequent
analysis.
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AN EXAMPLE

Boxplot of log signal means after quantile normalization

(Courtesy Dan Nettleton)
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ANOTHER EXAMPLE

Original log means After quantile normalization

(Courtesy Dan Nettleton)
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OLIGO ARRAYS PRE-PROCESSING: RMA

RMA = Robust Multichip Analysis (Irizarry et. al., Bolstad et. al.)

Implemented in R package: affy

Other alternatives:

MAS 5.0: Affymetrix

Model Based Expression Index (MBEI): Li-Wong method,
implemented in dChip

vsn (Huber et al., Rocke)

plier, plier+16 (Hubbell, new Affymetrix)

gcrma (Irizarry et al.)

For a comprehensive list go to:
http://affycomp.biostat.jhsph.edu/
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RMA - I

Use only PM, ignore MM (variant: gcrma)

Background correct PM on raw intensity scale

Quantile Normalization of yij = log2(PM− BG)

Assume additive model (on log2 scale):

yij = βi + αj + εij

where (i , j) indexes array and probe respectively
βi = gene expression of the probe set on array i
αj = probe affinity affect for the j th probe in the probe set
εij = residual for the j th probe on the i th GeneChip

Estimate (βj , αj) = chip and probe effect using a robust method

Median polish: quick

Robust linear model: yields quality diagnostics
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RMA - II

The parameters in the above equations are unidentifiable. Need
constraint

∑
αj = 0

Perform Tukey’s Median Polish on the matrix of yij values with yij in the
i th row and j th column. Basically, entails iteratively normalizing row and
column medians to 0 until convergence.

Let ŷij denote the fitted value for yij that results from the median polish
procedure

Let α̂j = ŷ.j − ŷ.. where ŷ.j =
∑

i yij/I and ŷ.. =
∑

i
∑

j yij/IJ where (I, J) =
number of arrays and probes

Let β̂i =
∑

j yij/J

Then, β̂i ’s are the RMA measure of expression for array i
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RMA - III

RMA ignores MM values

MM values have information about both signal and noise; Typically
30% higher than MM; Subtracting them might lead to negative
expression values; log?

Using it without adding more noise is challenging and is a topic of
current research (gcrma)

Hope: possible to improve the BG correction using MM, without
having the noise level increase greatly

Multi-chip: to put each chip’s measurements in the context of similar
values

Robust: to provide summaries that really improve over the standard
ones by down-weighting outliers

Conclusions of Irizarry et al: RMA was arguably the best summary in
terms of bias, variance and model fit
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FINAL COMMENTS: NORMALIZATION

Reduces systematic (not random) effects; makes it possible to compare
several arrays

There are many variations and extensions of the methods covered today.
Its a still emerging field.

Normalization affects the final analysis but not often clear which strategy
is the best; normalization introduces more variability

Two-step procedure vs. integrated normalization and analysis?

Preprocessing can improve the quality of analysis, remove technical
effects

But bad data IS bad data!
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FINAL DATA FOR ANALYSIS

What statisticians work with: Gene Expression Matrix

Samples Gene 1 Gene 2 · · · Gene p
1 X X · · · X
2 X X · · · X
...

...
...

...
...

n X X · · · X

X = Gene expression intensities (some form)

p = Number of genes (usually in thousands)

n = Number of samples (micorarrays) (n � p)

Y (tissue type/phenotype) = 0 if Normal; 1 if Cancer (binary)

Z = Design variables for controlled experiments (e.g. Drug A/B) OR
Covariates
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FINAL THOUGHTS

Before complex statistical analysis some other preprocessing
issues need to be addressed

Few basic issues affecting quality of data to be analyzed (not
covered today)

Variation: within and between arrays; identify areas of
experimentation that require improvements

Design of experiments: understand “biology”
Careful design on experiments; Kerr and Churchill (2001) examined
variation due to array, dye, treatment (variety), gene and labeling
design; ANOVA models for cDNA normalization
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GENE EXPRESSION VARIATION

“Biological” versus “Technological”

Need replication!; three kinds

Spot to Spot
Depositing probes for same genes multiple times on the array

Assesses within array variation

Array to Array
Multiple hybridizations using same mix of RNA source

Assesses between array variation

Subject to Subject
Sample multiple individuals

Assesses biological variation
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MICROARRAY DATA: STATISTICIAN’S VIEW

Experimental design

Choice of sample size; assignment of experimental conditions to
arrays

Signal extraction

Image analysis; gene filtering; probe level analysis for oligo arrays;
normalization

Data analysis

Gene selection; clustering and classification of biological samples
and genes; dimension reduction

Validation and interpretation

Comparisons across platforms; use of multiple datasets

A last two points will be covered throughout the course
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MORAL OF THE STORY

Microarray data: powerful tools to understand basic
biological processes

Opened a plethora of interesting methodological statistical
problems

Small n large p problems

Careful review of procedures generating data; errors
propagated

Still evolving: new biology and new data analysis
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LIST OF RESOURCES

http://www.bioconductor.org: Open source software for the
analysis of genomic data sets based upon R.

http://www.affymetrix.com; www.dchip.org: Information
about Affymetrix arrays and technology; alternate expression measures
for Genechip data.

http://affycomp.biostat.jhsph.edu;
rmaexpress.bmbolstad.com: Benchmarking tool for comparing the
performance of alternate expression measures for Genechip data; also
windows GUI for RMA procedure.

http://www.stat.berkeley.edu/∼terry/zarray/: cDNA
arrays

Of course our very own:
http://bioinformatics.mdanderson.org
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