

Advanced Statistical Methods for the Analysis of Gene Expression and Proteomics

Lecture 3 – Multiple Comparisons and False Discovery Rate (FDR); Phage analysis

Yuan Ji

yuanji@mdanderson.org

Department of Bioinformatics and Computational Biology University of Texas M.D. Anderson Cancer Center

Outline

- Hypothesis test
- Multiple comparisons
- False discovery rate approaches
- Phage analysis hierarchical modeling and controlling FDR

Hypothesis test

- A hypothesis is a statement or claim about some unknown aspect of the state of nature.
- A test of a hypothesis is a procedure, based on sample information, that culminates in an inferential statement about the hypothesis and possibly, in some situations, in a decision as to what action to take.
- The hypothesis being tested is called the null hypothesis, and the set of other possible claims is called the the alternative hypothesis.
- Typically, one put the desirable claims in the alternative hypothesis.
- Notation: H_0 for null, and H_1 or H_A for alternative.

Examples

- One-sample t-test
- ▶ Two-sample *t*-test
- \blacktriangleright F-test
- The likelihood ratio test
- λ χ^2 -test
- ▶ The Fisher's exact test

All these known tests are based on theoretical proof.

General theory

- lacktriangle A set of data Y is observed.
- A probability model is assumed: $\mathbf{Y} \sim f(\mathbf{Y}|\boldsymbol{\theta})$.
- ▶ H_0 and H_1 are proposed as functions of θ .
- \blacktriangleright A pivotal statistics T(Y) must be developed
 - ightharpoonup T(Y) is a function of the data Y only;
 - ▶ T(Y) is "pivotal" its distribution does not depend on θ .
- Plugging in the observed data values, we can compute an observed value of $T(\mathbf{Y}) = t_0$.
- The P-value corresponding to $T=t_0$ is probability (under the distribution of T) at and beyond t_0 , in the direction of more extreme values.

Example – t-test

- Data: $Y = (Y_1, ..., Y_n)$
- lacksquare Model: Y_i 's are i.i.d. $N(\mu, \sigma^2)$. (so $m{ heta} = (\mu, \sigma^2)$)
- \blacktriangleright H_0 : $\mu=\mu_0$ vs. H_1 : $\mu
 eq \mu_0$ (e.g., $\mu_0=0$)
- Pivotal statistics:

$$T(\mathbf{Y}) = \frac{\bar{Y} - \mu}{S/\sqrt{n}}$$

where S is the sample standard deviation. $T(\mathbf{Y})$ follows a t-distribution with n-1 degrees of freedom.

• Under the H_0 ,

$$t_0(\mathbf{Y}) = \frac{\bar{Y} - \mu_0}{S/\sqrt{n}}$$

•

▶ P-value = $Pr(|T| > t_0)$ computed under the t-distribution with n-1 degrees of freedom

Hypothesis test

From a decision theoretic point of view, a hypothesis test is a decision rule that assignes one of the two actions, do not accept H_0 and accept H_0 , based on the observed data x.

- Suppose the observed data is $x=(x_1,\ldots,x_n)$, and $E(x_i)=\mu$.
- $H_0: \mu = 0 \text{ VS. } H_1: \mu = 1.$
- A test statistic is a function of the data: T=t(x) (T does not depend on μ).
- A test is is function of T (and therefore of x), $\phi(T(x))$, which takes values 0 and 1.
- The level of a test is the probability $Pr(\phi = 1|H_0)$, which is equivalent to type I error rate.
- The power of a test is the probability $Pr(\phi = 1|H_1)$.
- ▶ The type II error rate is the probability $Pr(\phi = 0|H_1)$.

Level of a test

- Usually, we use α to denote the level, which controls the probability of falsely reject the null hypothesis.
- For example, if we reject the null in a comparison of a new drug vs. a standard drug and conclude that the new drug is more effective, we want to be very sure about our conclusion.
- ▶ This require our test has a low level α , e.g., 0.05.
- $\alpha=0.05$ means that the probability of making a false conclusion that the new drug is more effective equals 0.05.
- For a single test, if we reject the null when p-value is less than 0.05, the test level $\alpha=0.05$.

Multiple tests

• Question: if we have two tests, and each test has level α , what is the probability of falsely rejecting at least one null hypothesis?

Multiple tests

- Question: if we have two tests, and each test has level α , what is the probability of falsely rejecting at least one null hypothesis?
- ▶ The answer is $1 (1 \alpha)^2$.
- When we have m tests, the probability of falsely rejecting at least one null hypothesis is $1 (1 \alpha)^m$.
- ▶ This quantity is called the familywise error rate (FWER).

Multiple tests

- Question: if we have two tests, and each test has level α , what is the probability of falsely rejecting at least one null hypothesis?
- ▶ The answer is $1 (1 \alpha)^2$.
- When we have m tests, the probability of falsely rejecting at least one null hypothesis is $1 (1 \alpha)^m$.
- ▶ This quantity is called the familywise error rate (FWER).
- Procedures that control the error rates of multiple tests are called multiple comparison procedures (MCPs).
- The most famous MCP is the Bonferroni procedure

Bonferroni procedure

- Suppose each test has level of α_c .
- With m tests, the FWER is $1 (1 \alpha_c)^m$.
- If we want to control FWER at α , by solving

$$1 - (1 - \alpha_c)^m = \alpha,$$

we have $\alpha_c = 1 - (1 - \alpha)^{1/m}$.

- Apply the Taylor expansion on $(1-\alpha)^{1/m}$ (assuming α is close to zero), we have $\alpha_c \approx \alpha/m$.
- Therefore, to control FWER at α , we reject each null when the p-value is less than α/m .

Multiple comparison in bioinformatics

Multiple comparisons are routinely encountered in Bioinformatics research.

- For each gene, we want to test the null hypothesis that the gene expression level is differentially expressed against the alternative hypothesis that the gene expression level is not.
- If we have 20,000 genes, we have 20,000 tests
- If we apply Bonferroni, we will reject each null when the p-value is smaller than 0.05/200000 in order to maintain FWER at 0.05 level.
 - Very few null will be rejected
 - We will not have much power comparisons.

False Discovery Rate

Reference: "Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing" by Benjamini, Y. and Hochberg, Y.

Suppose we have m tests and m_0 null hypotheses are true.

	Not reject	Reject	Total
True null	$oldsymbol{U}$	$oldsymbol{V}$	m_0
True alternative	S	S	$m-m_0$
	m - R	R	\overline{m}

- FWER equals $Pr(V \ge 1)$
- lacksquare FDR equals $E(oldsymbol{V}/oldsymbol{R})$

FDR and FWER

$$FDR = E(V/R), \qquad FWER = Pr(V \ge 1).$$

- If $\mathbf{R} = 0$, FDR = 0 by definition.
- Control of FDR implies control of FWER in the weak sense.

If
$$m_0=m$$
, $S=0$, $V=R$. So $E(V/R)=0Pr(V=0)+1Pr(V\geq 1)$.

- In general, controlling FWER implying controlling FDR
 - If $m_0 < m$ and V > 0, then $V/R \le 1$. Therefore, $1(V \ge 1) = 1 \ge V/R = Q$. Taking expectation of both sides we have $Pr(V \ge 1) \ge E(V/R)$.

Controlling FDR

Benjamini and Hochberg (1995) proposed the following procedure that will control the FDR at the level $\frac{m_0}{m}\alpha$

- \blacktriangleright For each test, obtain the p-value. We get P_1, P_2, \ldots, P_m .
- Let $\{P_{(1)}, P_{(2)}, \dots, P_{(m)}\}$ be the set of ordered p-values. Denote $H_{(i)}$ the null hypothesis corresponding to $P_{(i)}$.
- lacktriangle Specify q^* , the desired FDR value.
- Let k be the largest i for which $P_{(i)} \leq \frac{i}{m}q^*$.
- Reject all $H_{(i)}$ $i=1,2,\ldots,k$.

BH approach

The BH approach is a step-down procedure:

- \blacktriangleright Start from the largest p-value $P_{(m)}$.
- If $P_m > \alpha$, proceed to P_{m-1} ; otherwise, all the null hypothese are rejected.
- Given $P_{(m)}>\alpha$, if $P_{(m-1)}>(m-1)\alpha/m$, proceed to $P_{(m_2)}$; otherwise, all the null hypotheses $H_{(1)},\ldots,H_{(m-1)}$ are rejected.
- ▶ Continue on until the first time $P_{(k)} \leq k\alpha/m$ and reject all $H_{(i)}$ $i=1,\ldots,k.$

The above procedure will control the FDR at α (in fact at $\frac{m_0}{m}\alpha$).

An example

- Suppose we have a set of P-values {.0001, .0004, .0019, .0095, .0201, .0278, .0298, .0344, .0459, .3240, .4262, .5719, .6528, .7590, 1.000}
- ▶ Controlling the FWER at 0.05, the Bonferroni approach would use 0.05/15=0.0033, and would reject three hypotheses.
- ▶ Controlling the FDR at 0.05, we would start at 1.000 and proceed using BH.
- Turns out $p_{(4)}=.0095 \le 4/15 \times 0.05 = .013$ is the first time the condition is met. Therefore, the first four null hypotheses are rejected.

Bayesian hypothesis testing

- ▶ Let $\gamma = 0$ if H_0 is true and $\gamma = 1$ if H_1 is true.
- Assume $\gamma | p_0 \sim Bern(1-p_0)$ prior distribution
- Model:

$$oldsymbol{Y}|\gamma=0 \sim f_0$$

 $oldsymbol{Y}|\gamma=1 \sim f_1$

• Marginally, $\mathbf{Y} \sim f$ follows a mixture model:

$$f(y) = p_0 f_0(y) + (1 - p_0) f_1(y)$$

▶ The Bayes factor

$$B(\mathbf{Y}) = \frac{Pr(\gamma = 0|\mathbf{Y})/Pr(\gamma = 0)}{Pr(\gamma = 1|\mathbf{Y})/Pr(\gamma = 1)} = \frac{Pr(\gamma = 0|\mathbf{Y})/p_0}{Pr(\gamma = 1|\mathbf{Y})/(1 - p_0)}$$

If $p_0 = 1/2$, then B(Y) is decided by $Pr(\gamma = 0|Y)$, the posterior probability of null.

Bayesian multiple hypothesis testing

- Let $\gamma_i = 0$ if H_{0i} is true and $\gamma_i = 1$ if H_{1i} is true.
- Assume $\gamma_i|p_0 \overset{i.i.d}{\sim} Bern(1-p_0)$ prior distribution (Note: marginally γ_i 's are exchangeable but not independent)
- Model:

$$\mathbf{Y}_i | \gamma_i = 0 \sim f_0$$

 $\mathbf{Y}_i | \gamma_i = 1 \sim f_1$

Marginally, $\boldsymbol{Y}_i \sim f$ follows a mixture model:

$$f(y_i) = p_0 f_0(y_i) + (1 - p_0) f_1(y_i)$$

▶ The Bayes factor for the ith test

$$B_{i}(\mathbf{Y}_{i}) = \frac{Pr(\gamma_{i} = 0 | \mathbf{Y}_{i}) / Pr(\gamma_{i} = 0)}{Pr(\gamma_{i} = 1 | \mathbf{Y}_{i}) / Pr(\gamma_{i} = 1)} = \frac{Pr(\gamma_{i} = 0 | \mathbf{Y}_{i}) / p_{0}}{Pr(\gamma_{i} = 1 | \mathbf{Y}_{i}) / (1 - p_{0})}$$

Bayesian multiple hypothesis testing

- If $p_0 = 1/2$, then $B_i(\boldsymbol{Y}_i)$ is decided by $Pr(\gamma_i = 0|\boldsymbol{Y}_i)$, the posterior probability of *i*th null H_{0i} .
- Therefore, the important quantity is

$$\pi_i = Pr(H_{0i} \text{ is ture}|\boldsymbol{Y}_i) = Pr(\gamma_i = 1|\boldsymbol{Y}_1).$$

Bayesian FDR

In Bayesian multiple hypothesis testing, reject the ith test is $\pi_i > \pi^*$. The problem is to specify π^* so that the FDR is controlled at a desirable level.

- ▶ Genovese and Waserman (02); Newton et al. (04); Bro et et al. (04)
- The posterior expected number of false discoveries

$$FD(\pi^*) = \sum_{i=1}^{m} \pi_i I(\pi_i < \pi^*)$$

(why – Homework 2)

A Bayesian FDR procedure controls FDR at level α by rejecting H_{0i} if $\pi_i < \pi^*$ where

$$\pi^* = \max\{c : \frac{\sum_{i=1}^{m} \pi_i I(\pi_i \le c)}{\sum_{i=1}^{m} I(\pi_i \le c)} \le \alpha\}$$

Bayesian FDR

The previous approach is a step-up procedure.

- Sort the marginal posterior probabilities to obtain $(\pi_{(1)},\pi_{(2)},\ldots,\pi_{(m)}).$
- ▶ Starting from the $\pi_{(1)}$. If $\pi_{(1)}/1 > \alpha$, then do not reject any null hypothesis.
- ▶ Otherwise, if $(\pi_{(1)} + \pi_{(2)})/2 > \alpha$, then reject $H_{(1)}$ only.
- Otherwise, if $(\pi_{(1)}+\pi_{(2)}+\pi_{(3)})/3>\alpha$, then reject $H_{(1)}$ and $H_{(2)}$.
- ▶ Continue until the first time $\sum_{i=1}^{G} \pi_{(i)}/G > \alpha$, and reject $H_{(1)}, \ldots, H_{(G-1)}$.

Other approaches

- ▶ BUM (Beta-Uniform Mixture) (Pound and Morris, 2003)
- pFDR (positive FDR) (Storey, 2003; Storey et al., 2004)
- Correlation and FDR (Efron, 2007)
- and MANY MANY others

Question: If there are 1,000 ordered test statistics, and I can only reject at most 10 tests, what should I do?

Two case studies

- Phase display experiments
- Bayesian FDR based on test statistics

Phage display

- A bacteriophage is a virus that ONLY infects bacteria (not human)
- By infecting bacteria, phage "kills" bacteria
- Phage provides important information on which proteins and peptides are potential drug candidates.

Phage display

- A bacteriophage is a virus that ONLY infects bacteria (not human)
- By infecting bacteria, phage "kills" bacteria
- Phage provides important information on which proteins and peptides are potential drug candidates.
- Phage display is the process using a variety of phages in a phage library for peptide and protein screening
- The phage library is highly diversified. When exposed to a target tissue, some phage will bind with strong affinity
- If the phage binds to disease-causing molecules and changes their behavior, the peptide associated with the phage becomes a drug candidate

A nice introduction: http://www.dyax.com/phage/howitworks.asp

The mouse evacriment

The count data

$$\begin{bmatrix} X_{111} & \cdots & X_{1m1} \\ \vdots & \ddots & \vdots \\ X_{n11} & \cdots & X_{nm1} \end{bmatrix} \begin{bmatrix} X_{112} & \cdots & X_{1m2} \\ \vdots & \ddots & \vdots \\ X_{n12} & \cdots & X_{nm2} \end{bmatrix} \begin{bmatrix} X_{113} & \cdots & X_{1m3} \\ \vdots & \ddots & \vdots \\ X_{n13} & \cdots & X_{nm3} \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$Round 1 \qquad Round 2 \qquad Round 3$$

The count data

$$\begin{bmatrix} X_{111} & \cdots & X_{1m1} \\ \vdots & \ddots & \vdots \\ X_{n11} & \cdots & X_{nm1} \end{bmatrix} \begin{bmatrix} X_{112} & \cdots & X_{1m2} \\ \vdots & \ddots & \vdots \\ X_{n12} & \cdots & X_{nm2} \end{bmatrix} \begin{bmatrix} X_{113} & \cdots & X_{1m3} \\ \vdots & \ddots & \vdots \\ X_{n13} & \cdots & X_{nm3} \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$Round 1 \qquad Round 2 \qquad Round 3$$

- At each round of the experiment, one data matrix obtained.
 Three in total
- lacktriangleright n peptides measured for m tissues at K rounds
- ightharpoonup n=4200 , m=6 , and K=3
- $igwedge X_{ijk}$ is the observed counts the peptide i for tissue j at round k.

Data structure

- ▶ High dimensionality: n can be very large
- Complex correlations in the measurements
 - across tissues for the same peptide
 - across peptides for the same tissue
 - across rounds for the same pair of peptide and tissue
- Interested in the displaying patterns in the peptide counts across the three rounds

A visual display of the data

Main goal

- If a peptide binds to a tissue strongly, the value of its count increase over the three rounds because of the enrichment – ascending pattern
- If a peptide does not bind to a tissue, the value of its count
 - decrease as it drops out of the selected peptide samples
 - descending pattern
 - oscillate due to sampling variation oscillating pattern

Goal: To distinguish the three patterns

Challenges

- Mixture models are natural. Three patterns lead to three mixtures
- But mixtures of what?

Challenges

- Mixture models are natural. Three patterns lead to three mixtures
- But mixtures of what?
- A contingency table for each round
- However, three correlated tables relationship between the tables is of major interest

The Bayesian model

- \blacktriangleright Model each cell count X_{ijk} as a Poisson random variable
- Treat the round id k as a covariate and regress the count X_{ijk} on k.

$$X_{ijk} \sim Poi(\mu_{ij}e^{k\beta_{ij}})$$

(1)

The Bayesian model

- Model each cell count X_{ijk} as a Poisson random variable
- Treat the round id k as a covariate and regress the count X_{ijk} on k.

$$X_{ijk} \sim Poi(\mu_{ij}e^{k\beta_{ij}}) \tag{1}$$

Mixtures on the distribution of the slopes

$$p(\beta_{ij}) = \pi_1 \phi(\beta_{ij}|s_1, \tau_1^2) + \pi_2 \phi(\beta_{ij}|s_2, \tau_2^2) + \pi_3 \phi(\beta_{ij}|s_3, \tau_3^2)$$
(2)

The Bayesian model

- \blacktriangleright Model each cell count X_{ijk} as a Poisson random variable
- Treat the round id k as a covariate and regress the count X_{ijk} on k.

$$X_{ijk} \sim Poi(\mu_{ij}e^{k\beta_{ij}})$$
 (1)

Mixtures on the distribution of the slopes

$$p(\beta_{ij}) = \pi_1 \phi(\beta_{ij}|s_1, \tau_1^2) + \pi_2 \phi(\beta_{ij}|s_2, \tau_2^2) + \pi_3 \phi(\beta_{ij}|s_3, \tau_3^2)$$
(2)

The prior of the s_1 centered at a negative value; fix $s_2 = 0$; and the prior of the s_3 centered at a positive value.

The Bayesian model II

Full Bayes hierarchical modeling

- μ_{ij} is the baseline count for peptide i for tissue j. $\mu_{ij} \sim \mu_0 G(\alpha, 1/\alpha)$
- Hierarchical priors on the hyperparameters
 - Dirichlet prior for (π_1, π_2, π_3)
 - Normal priors for s_1 and s_3 ($s_2 = 0$)
 - Inverse gamma priors for all the variance parameters
 - **Inverse gamma prior for \mu_0**

Model fitting based on a hybrid of the Gibbs sampler and the Metropolis-Hastings algorithm.

$$[\mu_{ij} \mid N, \text{ rest}] \sim G(\sum_{k=0}^{2} N_{ijk} + \alpha, \frac{1}{1 + e^{\beta_{ij}} + e^{2\beta_{ij}} + \alpha/\mu_0}),$$

and

$$[\mu_0 \mid N, \text{ rest}] \sim IG(a_{\mu_0} + n, \frac{1}{1/b_{\mu_0} + \alpha \sum_{i=1}^n \sum_{j=1}^m \mu_{ij}})$$

$$[m{\lambda}_{ij} \mid m{N}, \; ext{rest}] \sim Multi\left(1; \; rac{\pi_1\phi_1}{\pi_1\phi_1 + \pi_2\phi_2 + \pi_3\phi_3},
ight. \ rac{\pi_2\phi_2}{\pi_1\phi_1 + \pi_2\phi_2 + \pi_3\phi_3}, \; rac{\pi_3\phi_3}{\pi_1\phi_1 + \pi_2\phi_2 + \pi_3\phi_3},
ight.$$

and

$$[\pi \mid N, \text{ rest}] \sim Dir(\pi_{1,0} + n_{\text{neg}}, \pi_{2,0} + n_{\text{zero}}, \pi_{3,0} + n_{\text{pos}}).$$

$$[eta_{ij} \mid m{N}, \; ext{rest}] \propto e^{-\mu_{ij}(1+e^{eta_{ij}}+e^{2eta_{ij}})} \mu_{ij}^{N_{ij0}+N_{ij1}+N_{ij2}}$$
 $e^{eta_{ij}(N_{ij1}+2N_{ij2})} \prod_{l=1}^2 \phi^{\lambda_{ijl}}.$

$$[s_1 \mid N, \; {\sf rest}] \sim N(B_{\sf neg}ar{eta}_{\sf neg} + (1-B_{\sf neg})m_1, B_{\sf neg} au_1^2/n_{\sf neg})$$
 and

$$[s_3 \mid N, \text{ rest}] \sim N(B_{\text{pos}}\bar{\beta}_{\text{pos}} + (1 - B_{\text{pos}})m_3, B_{\text{pos}}\tau_3^2/n_{\text{pos}}),$$

where
$$B_{\text{neg}}=rac{\eta_1^2}{\eta_1^2+ au_1^2/n_{\text{neg}}}$$
 and $B_{\text{pos}}=rac{\eta_3^2}{\eta_3^2+ au_3^2/n_{\text{pos}}}.$

$$[\tau_1^2 \mid \boldsymbol{N}, \text{ rest}] \sim IG\left(a_\tau + \frac{n_{\text{neg}}}{2}, \frac{1}{\frac{1}{b_\tau} + \sum\limits_{(i,j) \in \Delta_{\text{neg}}} (\beta_{ij} - s_1)^2}\right)$$

$$[au_2^2 \mid \mathbf{N}, \text{ rest}] \sim IG\left(a_{ au} + rac{n_{ ext{Zero}}}{2}, \quad rac{1}{rac{1}{b_{ au}} + \sum_{(i,j) \in \Delta_{ ext{Zero}}} eta_{ij}^2}
ight),$$

and

$$[au_3^2 \mid m{N}, \; ext{rest}] \sim IG \left(a_ au + rac{n_ ext{pos}}{2}, \; \; rac{1}{rac{1}{b_ au} + \sum\limits_{(i,j) \in \Delta_ ext{pos}} (eta_{ij} - s_3)^2}
ight)$$

Three display patterns identified

Results II

Particularly interested in the blue group, which indicate that the peptide bind strongly the the corresponding tissue

- ▶ Compute the posterior probability $P(\beta_{ij} > 0|\mathsf{Data})$
- ▶ FDR based on the posterior probabilities, Newton *et al.* (2004)

Organ	Tri-peptide	Counts (estimated	Poisson me
A	GGL	1 (0.81)	0 (2.14)	6 (5.66
В	DRW	0 (0.42)	0 (1.26)	4 (3.77
В	AGV	0 (0.38)	0 (1.12)	4 (3.67
В	FGG	0 (0.39)	0 (1.21)	4 (3.73
В	GGR	1 (0.85)	0 (2.19)	6 (<i>5.74</i>
В	GLL	0 (0.62)	1 (<i>1.38</i>)	3 (3.06
K	LRV	0 (0.63)	1 (1.62)	4 (4.20
K	LGS	1 (1.46)	2 (2.71)	5 (5.02
M	GGT	0 (0.38)	0 (1.34)	5 (4.68
M	FSG	0 (0.62)	1 (<i>1.80</i>)	5 (5.25
M	AGS	0 (0.61)	1 (<i>1.79</i>)	5 (5.26
M	IGS	0 (0.60)	1 (<i>1.77</i>)	5 (5.22
M	AIG	0 (0.41)	0 (1.23)	4 (3.70
M	IAY	0 (0.42)	0 (1.26)	4 (3.77
M	DFS	0 (0.42)	0 (1.26)	4 (3.77
M	RRS	0 (0.58)	1 (<i>1.56</i>)	4 (4.16
M	FRS	0 (0.64)	1 (<i>1.42</i>)	3 (3.10
M	SGV	0 (0.61)	1 (<i>1.38</i>)	3 (3.11
Р	SSV	1 (0.82)	0 (2.17)	6 (5.74
Р	SSV	0 (0.62)	1 (<i>1.37</i>)	3 (3.14
Р	GWR	0 (0.62)	1 (<i>1.39</i>)	3 (3.06
U	AAG	0 (0.63)	1 (1.70)	4 (4.27

Discussions

- Poisson assumption vs. Multinomial assumption for the counts
- Mixture of Normals vs. others, e.g. $P(\beta_{ij}) = -\pi_1 G(\beta_{ij}|g_1,h_1) + \pi_2 N(\beta_{ij}|s_2,\tau_2^2) + \pi_3 G(\beta_{ij}|g_2,h_2)$
- Different baseline count μ_{ij} vs. one baseline μ for all the (i,j)'s simulation
- Functional data analysis if the covariate is time

Bayesian Multiple Testing Based on Test Statistics

Yuan Ji

January 28, 2008

Outline

- The problem of multiple testing
- 2 The proposed approach
 - A hierarchical modeling approach for multiple testing
 - An illustrative example *F*-tests
 - A model assessment tool
- Application
- A brief discussion

- Suppose a sequence of m null hypotheses H_{0i} is tested against a corresponding sequence of alternative H_{1i} for $i=1,\ldots,m$.
- A Bayesian procedure for this problem:
 - Construct a latent indicator $J_i = 0$ if H_{0i} is true and $J_i = 1$ if H_{1i} is true.
 - Compute the marginal posterior probability $Pr(J_i = 1 | data)$ based on some appropriate models.
 - Adjust for multiplicity using the marginal posterior probabilities.

Multiple testing

Bayesian modeling

For test i, observed data y_i . A Bayesian hierarchical model consists of

- Probability distribution $p(y_i|J_i=k)=p_k(y_i;\theta_k), k=0,1.$
- The likelihood function:

$$p_0(y_i; \theta_0)^{1-J_i} p_1(y_i; \theta_1)^{J_i}$$
.

- Priors for θ_k is $f_k(\theta_k)$; prior $Pr(J_i = 1) = \pi$.
- Hyperpriors for the parameters in the priors (e.g., π).

Compute

$$r_i = \Pr(J_i = 1 | y_1, \dots, y_m)$$

the marginal posterior probability that H_{1i} is true.

Multiplicity

- Probabilities r_i adjust for multiplicities automatically as long as
 - $Pr(J_i = 1) > 0$ for all i = 1, ..., m;
 - $\pi \sim p(\pi)$, rather than fixed.
 - Ref. Scott and Berger (2003); Müller et al. (2006)
- Optimal decision (Müller et al., 2004) is

$$I(r_i > t)$$
,

to reject all the null hypotheses with $r_i > t$ for some fixed value t.

Choice of t depends on choice of loss functions.

- Construction of appropriate Bayesian models can be difficult. (e.g., construction of priors for θ_k).
- Values of posterior probabilities r_i are often sensitive to the prior densities.
- MCMC computation can be intensive, especially for high-dimensional data (e.g., genomics/proteomics data).

Hierarchical model based on test statistics

- Johnson (2005) proposed computing posterior probabilities r_i based on test statistics.
- Main idea:
 - Base the models on the sampling distributions of test statistics.
 - The null distributions are often completely specified no need for prior specification.
 - The alternative distributions of test statistics can often be described with a parsimonious parametrization.

Hierarchical model based on test statistics (cont)

Therefore.

- Models under the null $p_0(y_i)$ are free of parameters.
- Models under the alternative $p_1(y_i; \theta_1)$ depend on few parameters (often just one).
- $Pr(J_i = 1 | y_1, \dots, y_m; \theta_1)$ has a closed-form solution easy to sample.

Multiple testing

Let f_i be the test statistic (e.g., χ^2 –, F–, t– or z–statistic) for null H_{0i} vs. H_{1i} :

- Likelihood $p(f_i|J_i,\tau) = p_0(f_i)^{1-J_i}p_1(f_i|\tau)^{J_i}$;
- Prior of $J_i \sim \text{Bin}(1, \pi)$:
 - Hyperprior of $\pi \sim \text{Beta}(p_0, (1-p_0))$, where p_0 is fixed.
- Prior of $1/\tau \sim \text{Gamma}(1,2)$;

MCMC

MCMC algorithm for $\{\pi, \tau, J_1, \dots, J_m\}$

Full conditional

$$\Pr(J_i = 1 | f_1, \dots, f_m, \tau, \pi) = \frac{p_1(f_i | \tau) \pi}{p_1(f_i | \tau) \pi + p_0(f_i)(1 - \pi)}$$

- $\pi | J_1, \dots, J_m \sim \text{Beta}(p_0 + \sum J_i, (1 p_0) + m \sum J_i).$
- Sample τ , e.g., using random-walk Metropolis-Hastings.

A special case -F-tests

Suppose

Multiple testing

$$\mathbf{y}_i|\boldsymbol{\beta}_i, \sigma_i^2 \sim N_n(\mathbf{X}_i\boldsymbol{\beta}_i, \sigma_i^2\mathbf{I}).$$

For testing the validity of linear constraint H_{0i} : $\mathbf{Q}'\beta_i = \xi$, the classical F – statistic f_i is the ratio of average sums of squares.

- $p_0(f_i)$ is a central F distribution;
- Suppose alternative H_{1i} assumes that

$$\boldsymbol{\beta}_i \sim N(\boldsymbol{\beta}_i^*, \tau \sigma_i^2 (\mathbf{X}_i' \mathbf{X}_i)^{-1})$$

where β_i^* is a value satisfying H_{0i} ,

• then $p_1(f_i|\tau) \sim (1+\tau)p_0(f_i)$.

- Posterior probability $r_i = \Pr(J_i = 1 | f_1, \dots, f_m)$ is computed using the MCMC sample.
- Reject H_{0i} if $r_i > t$ for some value of t (more discussion later)

A quantile-quantile plot is proposed to check the model fitting.

- Suppose $\{\tau^1, \dots, \tau^B\}$ is the MCMC sample.
- Randomly draw τ^s .
- Obtain the corresponding posterior sample $\{J_1^s, \ldots, J_m^s\}$ from the s^{th} iteration of the MCMC.
- Assign the test statistics f_i to the null group if $J_i^s = 0$, and to the alternative group if $J_i^s = 1$.

- Plot the sample quantiles of f_i in the null group against the theoretical quantiles based on the distribution $p_0(f_i)$:
- Plot the sample quantiles of f_i in the alternative group against the theoretical quantiles based on the distribution $p_1(f_i|\tau^k)$:
- Compare the curves with the 45 degree line.

This procedure only works for quantities of which the sampling distributions are free of parameters – such as the F-statistics (its distribution only depends on two degrees of freedom).

Multiple testing

Consider one-sample t-tests H_{0i} : $\mu_i = 0$, $i = 1, \ldots, m$.

Observed data for test *i* are samples $\{y_{i1}, \dots, y_{in}\}$. The F-statistic f_i is the square of the one-sample t-statistic.

- We generated m = 1000 tests.
- Sample sizes per test n = 11.
- Under H_{0i} , $f_i \sim F_{1,10}$ and under alternative $f_i \sim (1+\tau)F_{1,10}$.

Simulation scheme consists of sampling τ , π , $J_i|\pi$, and $f_i|J_i,\pi$ (in this order), from their true distributions under the proposed model.

qq-plots 1

• Sample $y_{i1}, ..., y_{in} \stackrel{iid}{\sim} N(3, 1)$ for i = 1, ..., 100;

- Sample $y_{i1}, \ldots, y_{in} \stackrel{iid}{\sim} N(0, 1)$ for $i = 101, \ldots, 1000$;
- $H_{0i}: \mu_i = 0$
- Compute

$$t_i = \frac{\bar{y}_{i.}}{\hat{\sigma}/\sqrt{n}}$$

where \bar{y}_i is the sample mean and $\hat{\sigma}$ is the sample standard deviation.

After applying the proposed method,

qqplots 2

siRNA screening

An siRNA screening experiment conducted by Gordon Mills and his lab.

- A kinase library of about 900 siRNA's are screened for their silencing properties.
- A functional silencing siRNA significantly reduced cell viability (measured as a continuous variable).
- Using 96-well plates, the library is screened with 30 plates in triplicates.
- F-statistics f_i are computed for all 900 siRNA's with degrees of freedom (1,4).

Histogram of p-values

Multiple testing

Results using the Bayesian procedure

We applied the proposed method for the 900 F-statistics f_i .

- Assume $\pi \sim \text{Beta}(0.5, 0.5)$.
- Assume $1/\tau \sim \text{Gamma}(1,2)$.
- Under null, $f_i \sim F(1,4)$.
- Under alternative, $f_i \sim (1 + \tau)F(1, 4)$.

Posterior probability and FDR

Decision rules

Multiple testing

The optimal decision takes the form (M(u)ller et al., 2004)

$$d_i = I(r_i \leq t)$$

- If the "goal" (loss function) is to minimize FNR subject to FDR $< \alpha$, then t equals the largest r_i such that the corresponding posterior expected FDR (by rejecting all the $r_i \leq r_i$) is $\leq \alpha$.
 - In the above plot, draw a horizontal line at y-axis = 0.2. Draw a vertical line at the intersection between the horizontal line and the dotted curve. The intersection between the vertical line and the solid curve is the optimal t value in d_i .

A gene expression experiment

Khodarev et al. (2005) studied the association between progression of Barrett's Metaplasia to Adenocarcinoma and gene expression levels. Three conditions are examined:

- Normal esophageal epithelium
- Premalignant Barrett's metaplasi,
- Esophageal adenocarcinoma

For each condition, n=8 Affymetrix U133A arrays were produced from 8 different patients with the same condition. After normalization using dChip (Li and Wong, 2001), we obtained m=16384 genes, each with 24 measurements.

A gene expression experiment (cont)

For each gene, we performed a one-way ANOVA using the three conditions as a factor. We obtained m = 16384F-statistics with degrees of freedom (2, 21). Therefore,

- $p_0(f_i)$ follows $F_{2,21}$
- $p_1(f_i|\tau)$ follows $(1+\tau)F_{2,21}$.

We applied the proposed method and computed $r_i = \Pr(J_i = 1 | f_1, \dots, f_m)$ for each gene i.

Posterior probability and FDR

Model assessment

We let $\pi \sim \text{Beta}(.5, .5)$.

Conclusions

Multiple testing

- The proposed model simplifies the process of specifying prior distributions for unknown parameters, which can be tricky.
- Only one parameter needs to be sampled using M-H; others are sampled directly from Bernoulli distributions.
- Information across all the tests is used in the decision. making for each single test – through the common parameter τ .
- We provide a simple model-assessment tool to check the model fitting.
- Additional research is needed to explore more general assumptions under the alternative when model does not fit.

