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Ouftline

» Hypothesis test
» Mulfiple comparisons
» False discovery rate approaches

» Phage analysis — hierarchical modeling and controlling FDR
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4 Hypothesis fest
o

» A hypothesis is a statfement or claim about some unknown
aspect of the state of nature.,

» A fest of a hypothesis is a procedure, based on sample
information, that culminates in an inferential statement
about the hypothesis and possibly, in some situations, in a
decision as to what action to take.

» The hypothesis being tested is called the null hypothesis, and
the set of other possible claims is called the the alternative
hypothesis.

» Typically, one put the desirable claims in the alternative
hypothesis.

» Notation: Hy for null, and H; or H 4 for alternative.
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Examples

» One-sample ¢t-test

» Two-sample t-test

» F-fest

» The likelihood ratio ftest
» x3-test

» The Fisher’s exact test

All these known fests are based on theoretical proof.
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4 General theory
il

» Asef of data Y is observed.
» A probability model is assumed: Y ~ f(Y'|0).
» Hy and H; are proposed as functions of 6.

» A pivotal stafistics T'(Y') must be developed
» T(Y) is a function of the data Y only;
» T(Y) is "pivotal” —its distribution does not depend on 6.

» Plugging in the observed data values, we can compute an
observed value of T(Y) = to.

» The P-value corresponding to T' = ¢, is probability (under the
distribution of T") at and beyond ¢y, in the direction of more
extfreme values.
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Example - t-fest

» Data: Y = (Yi,...,Y,)
» Model: Y;'s are i.i.d. N(u,0?). (50 0 = (u,0?))
» Ho: p = po VS. Hi: pu # po (€.9.. po = 0)
» Pivotal stafistics: )
Y —u
T(Y) =
(Y) NG

where S is the sample standard deviation. T(Y') follows a
t-distribution with n — 1 degrees of freedom.

» Under the H,,

Y — po
Y) =
W¥) =5

» P-value = Pr(|T| > to) computed under the t-distribufion with
n — 1 degrees of freedom
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Hypothesis test

—_

From a decision theoretic point of view, a hypothesis test is a
decision rule that assignes one of the two actions, do not
accept Hy and accept Hy, based on the observed data .

» Suppose the observed datais ¢ = (z1,...,z,), and E(z;) = u.
4 HoZ,LL:OVS. H1,u:1

» A test stafisfic is a function of the data: T' = t(z) (T' does not
depend on pu).

» A testisis function of T' (and therefore of x), ¢(T'(x)). which
takes values 0 and 1.

» The level of a test is the probability Pr(¢ = 1|Hy), which is
equivalent to type | error rate,

» The power of a fest is the probability Pr(¢ = 1|Hy).
» The type Il error rate is the probability Pr(¢ = 0|H).
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# Level of g test
o

» Usually, we use a 1o denofte the level, which controls the
probability of falsely reject the null hypothesis.

» For example, if we reject the null in a comparison of a new
drug vs. a standard drug and conclude that the new drug is
more effective, we want to e very sure about our
conclusion.

» This require our test has a low level «, e.g., 0.05.

» a = 0.05 means that the probability of making a false
conclusion that the new drug is more effective equals 0.05.

» For asingle test, if we reject the null when p-value is less than
0.05, the test level a = 0.05.
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Multiple fests

» Question: if we have two tests, and each test has level «,
what is the probability of falsely rejecting at least one null
hypothesis?
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Multiple fests

» Question: if we have two tests, and each test has level «,
what is the probability of falsely rejecting at least one null
hypothesis?

» The answeris 1 — (1 — a)?.

» When we have m tests, the probability of falsely rejecting at
least one null hypothesisis 1 — (1 — a)™.

» This quantity is called the familywise error rate (FWER).
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4 Multiple fests
o

» Question: if we have two tests, and each test has level «,
what is the probability of falsely rejecting at least one null
hypothesis?

» The answeris 1 — (1 — a)?.

» When we have m tests, the probability of falsely rejecting at
least one null hypothesisis 1 — (1 — a)™.

» This quantity is called the familywise error rate (FWER).

» Procedures that control tThe error rates of multiple tests are
called multiple comparison procedures (MCPs).

» The most famous MCP is the Bonferroni procedure
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Bonferroni procedure

» Suppose each test has level of «..
» With m tests, the FWER is 1 — (1 — a.)™.

» If we want to control FWER aft «, by solving
1—(1—a)™=a,

we have a, =1 — (1 —a)l/™,

» Apply the Taylor expansion on (1 — «)Y™ (assuming « is close
to zero), we have a,. ~ a/m.

» Therefore, to control FWER af «, we reject each null when the
p-value is less than a/m.
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Multiple comparison in bioinformatics

Multiple comparisons are routinely encountered in Bioinformatics
research.

» For each gene, we want to fest the null hypothesis that the
gene expression level is differentially expressed against the
alternative hypothesis that the gene expression level is not.

» If we have 20,000 genes, we have 20,000 tests

» If we apply Bonferroni, we will reject each null when the
p-value is smaller than 0.05/200000 in order fo maintain FWER
at 0.05 level.

» Very few null will be rejected
» We will not have much power
comparisons.
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False Discovery Rate

:

Reference: "Controlling the False Discovery Rate: a Practical
and Powerful Approach to Multiple Testing” by Benjamini, Y. and

Hochberg, V.
Suppose we have m tests and mg null hypotheses are true.
Not reject Reject  Totfadl
True null U
True alternative S m — mo
m— R

» FWER equals Pr(V > 1)
» FDR equals E(V/R)
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FDR and FWER

FDR=FE(V/R), FWER = Pr(V > 1).
» If R =0, FDR = 0 by definition.

» Conftrol of FDR implies control of FWER in tThe weak sense.
» Ifmg=m,S=0,V =R. SO
E(V/R)=0Pr(V =0)+1Pr(V > 1).
» In general, controlling FWER implying conftrolling FDR

» If mg <mandV >0,then V/R < 1. Therefore,
L(V>1)=1>V/R=Q. Taking expectation of both sides
we have Pr(V > 1) > E(V/R).
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Controlling FDR

Benjamini and Hochberg (1995) proposed the following
procedure that will control the FDR at the level T«

» For each test, obtain the p-value. We get Py, P, ..., P,,.

» Let {Pn), Poy,. .., Pm)} be the set of ordered p-values.
Denote H ;) The null hypothesis corresponding To F;).

» Specify ¢*, the desired FDR value.
» Let k be the largest i for which P;) < Lg*.
» Rejectall H;y i =1,2,... k.
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BH approach

The BH approach is a step-down procedure:
» Start from the largest p-value P,,).

» If P, > «, proceed o P,,_1: otherwise, all the null hypothese
are rejected.

» Given P,y > a, if Py,_1) > (m — 1)a/m, proceed 10 P,,,:
otherwise, all the null hypotheses Hy), ..., H,,_1) Qre
rejected.

» Confinue on until the first time Py < ka/m and reject all H;
i=1,...,k

The above procedure will confrol the FDR af « (in fact af 72q).
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An example

=

» Suppose we have a set of P-values {.0001, .0004, .0019,
0095, .0201, .0278, .0298, .0344, .0459, .3240,
4262, 5719, .6528, .7590, 1.000}

» Controlling the FWER at 0.05, the Bonferroni approach would
use 0.05/15=0.0033, and would reject three hypotheses.

» Controlling the FDR at 0.05, we would start at 1.000 and
proceed using BH.

> Turns out p4) = .0095 < 4/15 x 0.05 = .013 is the first fime the
condition is met. Therefore, the first four null hypotheses are
rejected.
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Bayesian hypothesis festing

» Lety=01If Hylistrue and v =1 if Hy Is frue.
» Assume v|pg ~ Bern(1 — pg) — prior distributfion
» Model:

Y|7=0 ~ o

» Marginally, Y ~ f follows a mixture model:

f(y) = pofoly) + (1 — po)f1(y)

» The Bayes factor

Pr(y=0]Y)/Pr(y
Pr(y=1]Y)/Pr(vy

) Pr(y=1]Y)/(1- po)

» If po = 1/2,then B(Y) is decided by Pr(v = 0|Y), the posterior
probability of null.
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Bayesian multiple hypothesis festing

» Let~, =0if Hy; isfrue and ~; = 1 If Hy; Is frue.

» Assume ;|po v Bern(1 — pg) — prior distribution (Note:
marginally +;’s are exchangeable but not independent)

» Model:
Yilvi=0 ~ fo

Yivi=1 ~ f

» Marginally, Y; ~ f follows a mixture model:

f(y;) = pofo(y;) + (1 —po) f1(y;)
» The Bayes factor for the ith test

Pr(yi =0[Y,)/Pr(yvi=0) _ Pr(vi =0]Y3:)/po

B;(Y;) = Pr(yi =1Y)/Pr(vi=1)  Pr(v=1Y;)/(1 - po)
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Bayesian multiple hypothesis festing

» If po = 1/2, then B;(Y;) is decided by Pr(v; = 0|Y ;). the
posterior probability of :th null Hy;.

» Therefore, the important quantity is
T, = P?“(H()i IS TUI’@|Y¢) — P’I“(’)/Z' = 1|Y1)
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Bayesian FDR

.

In Bayesian multiple hypothesis testing, reject the ith test is

m; > 7. The problem is to specify «* so that the FDR is controlled
at a desirable level.

» Genovese and Waserman (02); Newton et al. (04); Bro et et
al. (04)

» The posterior expected number of false discoveries
FD(r™) = Zm[(m < 7")
=1

(why — Homework 2)
» A Bayesian FDR procedure controls FDR af level o by
rejecting Hy; if m; < n* where
sznl ﬂ-i‘[(ﬂ-i S C) S CV}
> im1 L(mi < ¢)
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Bayesian FDR

The previous approach is a step-up procedure.

» Sort the marginal posterior probabilities to obtain
(M), T(2)s - -+ T (m))-

» Starting from the 7(yy. If 7(1)/1 > «, then do not reject any null
hypothesis.

» Otherwise, if (m(1) + m(2y)/2 > a, then reject Hy only.

» Otherwise, if (m1) + w2y + 7(3))/3 > o, then reject H(;y and
H(Q)

» Continue until the first time 35, 7(;)/G > «, and reject
H(l), c e H(G—l)-
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Other approaches

» BUM (Beta-Uniform Mixture) (Pound and Morris, 2003)
» PFDR (positive FDR) (Storey, 2003; Storey et al., 2004)
» Correlation and FDR (Efron, 2007)

» and MANY MANY others

Question: If there are 1,000 ordered test statistics, and | can only
reject at most 10 tests, what should | do?
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Iwo case studies

» Phase display experiments

» Bayesian FDR based on test statistics
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Phage display

» A bacteriophage is a virus that ONLY infects bacteria (not
human)

» By infecting bacteria, phage “kills” bacteria

» Phage provides important information on which protfeins and
peptides are potential drug candidates.
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# Phage display

o

» A bacteriophage is a virus that ONLY infects bacteria (not
human)

» By infecting bacteria, phage “kills” bacteria

» Phage provides important information on which protfeins and
peptides are potential drug candidates.

» Phage display is the process using a variety of phages in a
phage library for peptide and protein screening

» The phage library is highly diversified. When exposed to a
target fissue, some phage will bind with strong affinity

» If the phage binds to disease-causing molecules and
changes their behavior, the peptide associated with the
phage becomes a drug candidate

A nice infroduction: http://www.dyax.com/phage/howitworks.asp
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The count data

X111

X1im1
Xnml
T
Round 1

X1im2
Xnm2
T
Round 2
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The count data

X111 0 Xima X112 0 Xime X113 - Xims3
i anl e Xnml | i Xn12 e Xnm2 | i Xn13 e Xnm3 |
1 T T
Round 1 Round 2 Round 3

» At each round of the experiment, one data matrix obtained.
Three in total

» n peptides measured for m fissues at K rounds
» n=4200,m =6,and K = 3

» X,k is the observed counts the peptide ¢ for fissue j af round
k.

STAT675 & GS10103 Yuan Ji Spring 2008 - p.26/33



Data sfructure

» High dimensionality: n can be very large

» Complex correlations in the measurements
» Across fissues for the same peptide
» Across peptides for the same tissue
» across rounds for the same pair of peptide and fissue

» Interested in the displaying patterns in the peptide counts
across the three rounds
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A visual display of the dafa
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Main goal

.

» If a peptide binds to a fissue strongly, the value of ifs count
increase over the three rounds because of the enrichment -
ascending pattern

» If a peptide does not bind To a fissue, the value of its count

» decrease as it drops out of the selected peptide samples
— descending pattern

» oscillate due to sampling variation — oscillating pattern

Goal: To distinguish the three patterns
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Challenges

» Mixture models are natural. Three patterns lead to three
mixftures

» But mixtures of what?
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Challenges

» Mixture models are natural. Three patterns lead to three
mixftures

» But mixtures of what?

» A confingency table for each round

» However, three correlated tables - relationship between the
tables is of magjor interest
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The Bayesian model

» Model each cell count X, as a Poisson random variable

» Treaf the round id k as a covariate and regress the count
Xz'jk on k.

Xiji ~ Poi(pijetd)
(1
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The Bayesian model

» Model each cell count X, as a Poisson random variable

» Treaf the round id k as a covariate and regress the count
Xijk: on k.

Xijk ~ Poi(pije*Pii)
(D

» Mixtures on the distribution of the slopes

p(Bij) = m1d(Bijls1, 1) + mad(Bij|s2, 75) + wsd(Bij|ss, 75)
(2
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The Bayesian model

» Model each cell count X, as a Poisson random variable

» Treaf the round id k as a covariate and regress the count
Xijk: on k.

Xijk ~ Poi(pije*Pii)
(D

» Mixtures on the distribution of the slopes

p(Bij) = m1d(Bijls1, 1) + mad(Bij|s2, 75) + wsd(Bij|ss, 75)
(2

» The prior of the s; centered aft a negative value; fix s, = 0;
and the prior of the s3 centered at a positive value.
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The Bayesian model Il

Full Bayes hierarchical modeling

» u;; is the baseline count for peptide : for fissue j.
pij ~ poG(a, 1/a)
» Hierarchical priors on the hyperparameters
» Dirichlet prior for (mq, mo, 73)
» Normal priors for s; and s3 (s3 = 0)
» Inverse gamma priors for all the variance parameters
» Inverse gamma prior for ug

Model fitting based on a hybrid of the Giblbs sampler and the
Metropolis-Hastings algorithm.
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1
1+ efii + e2Pii + a/ po )

2
g |IN, rest] ~ G(>  Nijr+a,
k=0
and
1

(o |IN, rest] ~ IG(ay, + n, — —
1o 1/bpy + ) iy Zj:l Hij

)

. T1P1
Xij |[IN, rest] ~ Multi| 1; :
i | | ( T1¢1 + Tap2 + T3¢3

T2 Q2 T3P3

T1P1 + Ta2 + 33’ W11 + T2 + T3P3

and
[ﬂ' |N, reST] ~ DiT’(Wl,O + Nneg, 2,0 + Nzero, T3,0 + npos)-

P Bij 1¢2Bi5y N;ig+N;i1+N;;
[Bij |IN, rest] o« e pij(l+e™t t+e ),uijwo ij1tNij2

2
eBz’j (N;j1+2N;j2) H ¢)‘ijl .

=1

[81 |N, I’eST] ~/ N(Bneaneg"‘(l—Bneg)ml, Bneng/nneg)
and

[33 |N, I’eST] ~Y N(BposBpos—l- (]. —Bpos)m3, BposTg?/npos),
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5 2
_ 1 == L
where Bneg = 7272 [rineg and Bpes = n§+7323/np08.

1
72 |N, rest] ~ IG|a,+ 209
2 7 1+ > (Biy—s1)?

(4,5) € Aneg
(73 |N, rest] ~ IG|ar+ feero 1
2 7 1 4+ i)
br (4,5) €EAzero 71J

and

1
(72 |N, rest] ~ IG | a,+ 22
27 3+ X (B —s3)?

(4,5) € Apos /
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—— Descending

—— Ascending
——— Oscillating

Three display patterns identified

Results

sjunod apidad-u|

STAT675 & GS10103 Yuan Ji Spring 2008 — p.33/33



Resulfs I

Parficularly interested in the blue group, which indicate that the
pepftide bind strongly the the corresponding tissue

» Compute the posterior probability P(3;; > 0|Data)
» FDR based on the posterior probabilities, Newton ef al. (2004)

Number of tri-peptides selected
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Organ

Tri-peptide  Counts (estimated Poisson me

A GGL 1081 0214 6 (8.6¢
B DRW 0042 0(1.26) 4(3.77
B AGV 00038 0(1.12) 4 (3.6/
B FGG 0039 0(1.2]) 4 (3.73
B GGR 1085 0219 6 (8.74
B GLL 000.62) 1(1.38 3 (3.0¢
K LRV 000.63) 1(1.62) 4 (4.2C
K LGS 1(1.46) 22.71) S (86.02
M GGT 00.38 0(1.39 S (4.66
M FSG 0062 1(1.80) 5 (8.28
M AGS 0.6 1(1.79 5 (86.2¢
M IGS 000.60) 1(1.77) S (8.2-
M AlG 00.41) 0(1.23) 4(3.7C
M IAY 0042 0(1.26) 4(3.77
M DFS 00042) 0(1.26 4(3.77
M RRS 000.58) 1(1.56) 4(4.1¢
M FRS 0064 1(1.42) 3 (3.1C
M SGV 0.6 1(1.38) 3(3.11
P SSV 1082 017 6 (8.74
P SSV 0062 1(1.37) 3(3.14
P GWR 000.62 1(1.39 3 (3.0¢
U AAG 000.63) 1(1.70) 4(4.21
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simulation
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Discussions

» Poisson assumption vs. Multinomial assumption for the counfts

» Mixture of Normails vs. others, e.g.
P(Bi5) = —m1G(Bijlg1, h1) + 2N (Bij|s2, 74) + m3G(Bijlg2, ho)

» Different baseline count p;; vs. one baseline y for all the
(,7)’s — simulation

» Functional data analysis if the covariate is fime
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Bayesian Multiple Testing Based on Test
Statistics

Yuan Ji

January 28, 2008

Yuan Ji Bayesian Multiple Testing Based on Test Statistics



@ The problem of multiple testing

© The proposed approach
@ A hierarchical modeling approach for multiple testing

@ An illustrative example — F-tests
©® A model assessment tool

© Application

© A brief discussion

ACELR] Bayesian Multiple Testing Based on Test Statistics



Multiple testing

A Bayesian framework

@ Suppose a sequence of m null hypotheses Hy; is tested
against a corresponding sequence of alternative H;; for
i=1,....m.

@ A Bayesian procedure for this problem:

e Construct a latent indicator J; = 0 if Hp; is true and J; = 1 if

H,; is true.

e Compute the marginal posterior probability Pr(J; = 1|data)
based on some appropriate models.

e Adjust for multiplicity using the marginal posterior
probabilities.

ACELR] Bayesian Multiple Testing Based on Test Statistics



Multiple testing
Bayesian modeling

For test i/, observed data y;. A Bayesian hierarchical model
consists of

@ Probability distribution p(y;|J; = k) = px(yi; €k), kK = 0,1.
@ The likelihood function:

Po(¥i: 60)' o1 (yi; 64)”.
@ Priors for Oy is fx(6k); prior Pr(J; =1) = 7.

@ Hyperpriors for the parameters in the priors (e.g., «).

Compute
ri=Pr(Ji=1ly1,...,¥m)

the marginal posterior probability that H;; is true.

ACELR] Bayesian Multiple Testing Based on Test Statistics



Multiplicity

@ Probabilities r; adjust for multiplicities automatically as long
as
e Pr(i=1)>0foralli=1,...,m;
e 7 ~ p(m), rather than fixed.
e Ref. Scott and Berger (2003); Mdiller et al. (2006)

@ Optimal decision (Mlller et al., 2004) is
/(I’,’ > t),

to reject all the null hypotheses with r; > t for some fixed
value t.

@ Choice of t depends on choice of loss functions.

ACELR] Bayesian Multiple Testing Based on Test Statistics



Methodology Model building Model assessment

Motivation

@ Construction of appropriate Bayesian models can be
difficult. (e.g., construction of priors for ).

@ Values of posterior probabilities r; are often sensitive to the
prior densities.

@ MCMC computation can be intensive, especially for
high-dimensional data (e.g., genomics/proteomics data).

ACELR] Bayesian Multiple Testing Based on Test Statistics



Methodology Model building Model assessment

Hierarchical model based on test statistics

@ Johnson (2005) proposed computing posterior probabilities
ri based on test statistics.

@ Main idea:
e Base the models on the sampling distributions of test
statistics.
e The null distributions are often completely specified — no
need for prior specification.
e The alternative distributions of test statistics can often be
described with a parsimonious parametrization.

ACELR] Bayesian Multiple Testing Based on Test Statistics



Methodology Model building Model assessment

Hierarchical model based on test statistics (cont)

Therefore,
@ Models under the null py(y;) are free of parameters.

@ Models under the alternative pi(y;; 61) depend on few
parameters (often just one).

@ Pr(Ji=1|y1,...,¥m: 61) has a closed-form solution — easy
to sample.

ACELR] Bayesian Multiple Testing Based on Test Statistics



Methodology Model building Model assessment

Probability model

Let f; be the test statistic (e.g., x°—, F—, t— or z—statistic) for
null Ho,' vs. Hyj;
o Likelihood p(f[J;, 7) = po(£)'~p1 (fil7)%;
@ Prior of J; ~ Bin(1, 7);
e Hyperprior of 7 ~ Beta(po, (1 — po)), where py is fixed.
@ Prior of 1/7 ~ Gamma(1, 2);

ACELR] Bayesian Multiple Testing Based on Test Statistics



Methodology Model building Model assessment

MCMC

MCMC algorithm for {7, 7, J1,...,Jdm}
@ Full conditional

pr(flr)m
pr(Fm)m + po()(1 = )

PF(J,': 1|f1,...,fm,7',7r) =

@ 7|Ji,...,dm ~Beta(py + >_Ji, (1 —po) + m—>_Jp).

@ Sample 7, e.g., using random-walk Metropolis-Hastings.

ACELR] Bayesian Multiple Testing Based on Test Statistics



Methodology Model building Model assessment

A special case — F—tests

Suppose
yi’ﬁiaalg ~ Nn(xiﬁhaizl)'

For testing the validity of linear constraint Hy; : Q'3; = &, the
classical F— statistic f; is the ratio of average sums of squares.

@ py(f;) is a central F— distribution;
@ Suppose alternative H;; assumes that

Bi ~ N(BF, Tof (X X))

where 37 is a value satisfying Hy;,
o then py(fi[7) ~ (1 + 7)po(f).
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Decision rules

@ Posterior probability r; = Pr(J; = 1|fy, ..., fn) is computed
using the MCMC sample.

@ Reject Hy; if r; > t for some value of f (more discussion
later)
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qqgplot

A quantile-quantile plot is proposed to check the model fitting.

@ Suppose {7',...,78} is the MCMC sample.
@ Randomly draw 7°.

@ Obtain the corresponding posterior sample {J;, ..., Jp}
from the s? iteration of the MCMC.

@ Assign the test statistics f; to the null group if J? = 0, and
to the alternative group if J7 = 1.
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Methodology Model building Model assessment

gqgplot continued

@ Plot the sample quantiles of f; in the null group against the
theoretical quantiles based on the distribution py(f;);

@ Plot the sample quantiles of f; in the alternative group
against the theoretical quantiles based on the distribution

p1 (fi17);
@ Compare the curves with the 45 degree line.
This procedure only works for quantities of which the sampling

distributions are free of parameters — such as the F-statistics
(its distribution only depends on two degrees of freedom).
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Simulation 1

Consider one-sample t-tests Hp; : pj=0,i=1,...,m.
Observed data for test i are samples {yi1,. .., Yin}. The
F—statistic f; is the square of the one-sample t—statistic.

@ We generated m = 1000 tests.

@ Sample sizes per test n = 11.

@ Under Hy;, f; ~ F1 10 and under alternative f; ~ (1 +7)Fj 10.

Simulation scheme consists of sampling 7, 7, J;|=, and fj|J;, =
(in this order), from their true distributions under the proposed
model.
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qqg-plots 1
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Methodology Model building Model assessment

Simulation 2

iid

@ Sample yi1,...,¥Yin~ N(3,1) fori=1,...,100;
e Sample yii, ..., ¥in "2 N(0,1) for i = 101, . .., 1000;
@ Hoj:pi=0
@ Compute _
f— Yi.
1 6’/\/5
where y; is the sample mean and & is the sample standard
deviation.

After applying the proposed method,
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ggplots 2

Alternative Null
0
&
n
o -
1% 1%
2 2
€ o IS
© ©
=] =]
o o
Q@ Q@
Q. Q n _|
£ £ |
I I
0 0
n
' ¢
° o
S
I
o
o | o
S
] T T T T 1 T T T
-4 0 2 4 6 8 -10 -5 0
Model quantiles Model quantiles

Yuan tiple Testing Based on Test Stati



Application
siRNA screening

An siRNA screening experiment conducted by Gordon Mills
and his lab.

@ A Kkinase library of about 900 siRNA’s are screened for
their silencing properties.

@ A functional silencing siRNA significantly reduced cell
viability (measured as a continuous variable).

@ Using 96-well plates, the library is screened with 30 plates
in triplicates.

@ F-statistics f; are computed for all 900 siRNA’s with
degrees of freedom (1, 4).
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Application

Histogram of p-values
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Application
Results using the Bayesian procedure

We applied the proposed method for the 900 F-statistics f;.
@ Assume 7 ~ Beta(0.5,0.5).
@ Assume 1/7 ~ Gamma(1,2).
@ Under null, f; ~ F(1,4).
@ Under alternative, f; ~ (1 +7)F(1,4).
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Posterior probability and FDR
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Application
Decision rules

The optimal decision takes the form (M(u)ller et al., 2004)

di=I(r; < t)

" @ If the "goal" (loss function) is to minimize FNR subject to
FDR < a, then t equals the largest r; such that the
corresponding posterior expected FDR (by rejecting all the
r<n)is <a.

@ In the above plot, draw a horizontal line at y-axis = 0.2.
Draw a vertical line at the intersection between the
horizontal line and the dotted curve. The intersection
between the vertical line and the solid curve is the optimal
t value in d;.

ACELR] Bayesian Multiple Testing Based on Test Statistics



Application

Model assessment
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Application
A gene expression experiment

Khodarev et al. (2005) studied the association between
progression of Barrett’s Metaplasia to Adenocarcinoma and
gene expression levels. Three conditions are examined:

@ Normal esophageal epithelium
@ Premalignant Barrett’s metaplasi,
@ Esophageal adenocarcinoma

For each condition, n = 8 Affymetrix U133A arrays were
produced from 8 different patients with the same condition.
After normalization using dChip (Li and Wong, 2001), we
obtained m = 16384 genes, each with 24 measurements.
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Application

A gene expression experiment (cont)

For each gene, we performed a one-way ANOVA using the
three conditions as a factor. We obtained m = 16384
F—statistics with degrees of freedom (2,21). Therefore,

@ po(f;) follows F o4

@ py(fi|r) follows (1 + 7)F2 21.
We applied the proposed method and computed
ri=Pr(Ji=1|f,..., fyn) for each gene .
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Application

Posterior probability and FDR
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Application

Model assessment

We let m ~ Beta(.5, .5).
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Conclusions
Conclusions

@ The proposed model simplifies the process of specifying
prior distributions for unknown parameters, which can be
tricky.

@ Only one parameter needs to be sampled using M-H;
others are sampled directly from Bernoulli distributions.

@ Information across all the tests is used in the decision
making for each single test — through the common
parameter .

@ We provide a simple model-assessment tool to check the
model fitting.

@ Additional research is needed to explore more general
assumptions under the alternative when model does not fit.
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