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Types and features

1 Typically short series: k=4-10 time points for shorter
series; 11-50 time points for longer series.

2 Often irregularly spaced.
3 With no or few (<5) replications.
4 Can be periodic, as in the cell cycle: Cho et al. (1998),

Spellman et al. (1998), or circadian rhythms (Storch et al.,
2002).

5 May have no particular pattern, as in developmental time
courses; Chu et al. (1998), Wen et al. (1998), Tamayo et
al. (1999).
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1 May be longitudinal, where mRNA samples at different
times are extracted from the same unit (cell line, tissue or
individual), but more commonly cross-sectional, where
mRNA samples are from different units.

2 Gene expression values at different time points may be
correlated, especially in a longitudinal study, or when a
common reference design is used for a cross-sectional
study. At other times, the experimental design induces
correlations in cross-sectional studies.
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1 Several general types of hypotheses of interest:
1 the one-sample (or one-class) problem: which genes are

changing in time?
2 the 2 or >2 sample (or class) problem: which genes are

changing differently in time across the samples (or
classes)?

3 gene-gene association: coexpression, causality, etc.

2 Two broad types of mRNA samples: from cells or cell lines
which give reasonably repeatable responses within
classes, and whole organism (mice, humans), where there
is a lot of response variability within classes.
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Design of microarray time course experiments

1 The first issue is: longitudinal or cross-sectional? The
question revolves on whether it is important to measure
change within units.

2 For two-channel (cDNA or long oligo) arrays, a major
question is whether or not to use a reference design. Most
frequently, the answer is yes.

3 For very short two-channel time courses, the possibility
arises of optimizing the design for contrasts of interest.

4 Important design issues include not just assignment of
mRNA to arrays, but also the actual conduct of the
experiment, including preparation of the sample mRNA,
the times of hybridizations, and the equipment, reagents
and personnel used.
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Replication

1 We can have biological, technical and probe set (spot)
replicates.

2 Replication is a good thing. With it we get estimates of
variability relative to which temporal changes and/or
condition differences can be assessed.

3 Biological replicates are best, as they permit conclusions
to be extrapolated, something not possible with tech. reps.

4 With unreplicated experiments, inference to a wider
population is not possible, and analysis is less
straightforward, being dependent on unverifiable
assumptions, as no estimate of pure error is available.

5 When we do have replicates, it is better to use the variation
between them in the analysis, and not simple average
them.
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Replication in two experimental examples

1 A. thaliana (At) experiment:
1 Two lines of plants: Columbia, Col-0=widetype (wt), and an

enhanced disease susceptibility line eds 16 (mutant).
2 Objective: to identify genes whose temporal expression

patterns following infection differ between wt (Col-0) and
mutant (eds 16).

3 Three experiments-effectively biological replicates-were
conducted using the wt and mutant lines, and within each, 3
technical replicate series. Not all have b een hybridized to
chips. Later we use one series from experiments I and III,
and two from experiment II.

4 These experiments are longitudinal at the level of
experiment, but cross-sectional at the level of mRNA
sample (from separate leaves).
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1 Replication in the OPC/OL experiment:
1 Oligodendrocytes (OL) myelinate Central Nervous System

axons...... and develop from migrating oligodendrocyte
precursor cells (OPC).

2 Broad purpose: to examine gene regulation in cultured
oligodendrocyte precursor cells (OPC) as they develop into
oligodendrocytes (OL). item Specific purpose: to identify a
subset of genes with up-regulated time courses. Candidate
genes predicted to be secreted will be assayed for their
ability to cluster sodium channels along cultured retinal
ganglion axons.

3 4 independent preparations were performed, each of which
generated mRNA for every time point. We view this as 4
biological replicates of a longitudinal study. Again, it is not
clearcut. For each biological replicate, a dye-swap pair of
technical replicates was done.
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Hybridizations for the At experiments

1 Initially we hybridized mRNA from just one of the technical
replicate series from experiments I and III, and two from
experiment II.

2 The Affymetrix Arabidopsis 24K GeneChip was used. In
total of 2 (genotypes) × 6 (times) × 4 (experiments)=48
chips were hybed.

3 Preprocessing steps (background, normalization, probe
set summarization) were done by RMA.

4 Question: find genes whose expression profiles differ
between genotypes.
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Pooling in the OPC/OL experiment

1 Each prep has its own reference pool, which is the pool of
all the individual time point mRNA samples of that prep.

2 Question: find genes whose expression levels change over
time.
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Approaches to solve the problems

1 Clustering
2 pairwise comparisons
3 ANOVA
4 Empirical Bayes methods
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Custering with tiem-course data

1 Clustering methods have been widely used in this context
to find groups of genes with interesting and similar
patterns.

2 Hierarchical clustering: Eisen et al. (1998)
3 Self-organizing maps: Tamayo et al. (1999), Saban et al.

(2001), Burton et al. (2002).
4 k-means clustering: Tavazoie et al. (1999)
5 Bayesian model-based clustering: Bar-Joseph et al. (2002,

2003), Ramoni et al. (2002)
6 HMM clustering: Schliep et al. (2003).
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Drawbacks of clustering methods

1 They make no explicit use of the replicate inforamtion.
They either use all the slides or means of the replicates.

2 Clustering does not provide a ranking for the individual
genes based on the magnitude of change in expression
levels over time.

3 When the number of genes becomes large, clustering
methods may not provide clear group patterns.

4 Cluster analysis may fail to detect changing genes that
belong to clusters for which most genes do not change
(Bar-Joseph et al. 2003).

5 Question: How many clusters?
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Pairwise comparisons

1 One strategy is to make many or all univariate pairwise
comparisons, e.g., of consecutive times: days 1 vs 2, 2 vs
3, etc.

2 Illustration on the OPC/OL data: t-tests, univariate
posterior odds: the LOD statistic (Lonnsted et al., 2002;
Smyth, 2004); the moderated t statistic (Smyth, 2004).

3 Moderated s2 of m values: s2∗ = (n−1)s2+νλ2

n−1+ν

4 Moderated t: t2∗ = M̄2

s2∗/n

5 Log10 of posterior odds against differential expresssion:

LOD = c + (
n + ν

2
)log10

t2∗ + n − 1 + ν

t2∗
1/n

1/n+1/k + n − 1 + ν
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Drawbacks of pairwise comparisons

1 If involves a large number of tests for each gene, and there
are over 10,000 genes in a typical microarray experiment:
a two-way multiple testing problem.

2 Merging all the lists of genes can be difficult.
3 Cannot rank the genes according to the overall amount of

change.
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Drawbacks with ANOVA

1 ANOVA includes time as a factor.
2 This approach does not deal adequately with correlations

across time.
3 An element of moderation just as with the t-statistic in the

pairwise comparisons is desirable.
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The goal in general

We prefer a formula to rank genes, in order to
1 Find those changing.
2 The formula should be (1) t-like or F-like; (2) multivariate;

(3) moderated.
3 Moderation is required because variance and covariances

are poorly estimated.
4 Some sort of smoothing, borrowing strength, or empirical

Bayes approach is desirable to improve the identification of
genes of interest.

5 Along the line of empirical Bayes approach, Tai and Speed
(2006) used multivariate normals with conjugate priors,
without the need of using MCMC.

Jianhua Hu UT MD Anderson Cancer CenterMicroarray time course da



Multivariate empirical Bayes approach

1 We denote by Xg,1, · · · , Xg,n the replicate random k-vectors
representing the observed time series for a single gene.

2 For the At data, n = 4 and k = 6, and the Xg,i ,t are
differences of log intensities, i.e. log ratios of mutant to wt.

3 For the OPC/OL data, n = 4 and k = 8, and the Xg,i ,t are
log ratios of experimental to reference pool intensities.

4 the underlying model is that these Xg,i are i.i.d. N(μg ,Σg),
and we make different assumptions about μg and Σg.
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Hypotheses

1 With the At data, we are interested in testing the null
hypothesis Hg : μg = 0,Σg > 0, against the alternative
Kg : μg �= 0,Σg > 0.

2 With the OPC/OL data, we are interested in testing the null
hypothesis Hg : μg =constant, Σg > 0, against the
alternative Kg : μg not constant, Σg > 0.
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1 The priors for μg and Σg are set to reflect the indicator
status I = Ig of the gene, where Ig = 1 if Hg is true, and
Ig = 0 otherwise, i.e. if Kg is true.

2 We suppose that Pr(Ig = 1) = p, independently for every
gene, for a hyperparameter p, 0 < p < 1. (the subscripts g
will be dropped afterwards.)

3 our prior for Σ is inverse Wishart with degrees of freedom ν
and matrix parameter (νΛ)−1, where Λ > 0 is positive
definite. When we dealing with a variance σ2, we use an
inverse Gamma prior with analogous paramters λ and ν.

4 Our priors for μ will be different depending on whether
I = 0 or I = 1. In all cases, it is multivariate normal and
involves Λ.

5 Finally, the data X1, · · · , Xn are supposed i.i.d. given I,Σ,
and μ, with Xi | I,Σ, μ ∼ N(μ,Σ).
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Summary results for the At experiment

1 The moderated S is:

S̃ = [E(Σ−1 | S)]−1 =
(n − 1)S + νΛ

n − 1 + ν
,

2 The moderated t-statistic is

t̃ = n1/2S̃−1/2X̄ .

3 The posterior odds is

O =
P(I = 1 | data)

P(I = 0 | data)
= (

p
1 − p

)
P (̃t | I = 1)

P (̃t | I = 0)

4 The multivariate B-statistic MB = log10O.
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Likelihood Ratio (LR) statistic

1 LR test simply tests the null H against the alternative K in
the usual way. It is obtained

LR = 2(lmax
K − lmax

H ) = n log(1 +
n

n − 1
X̄ T S−1X̄)

= n log(1 + T 2/(n − 1))

where S is assumed nonsingular. T 2 is Hotelling’s statistic.
We can plug in the moderated statistic T̃ 2.
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Hyperparameter estimation

1 The prior p = 0.02.
2 Estimates of ν and η are developed using the univariate

approach of Smyth (2004).
3 Λ is estimated by the method of moments using the formula

E(S) = (ν − k − 1)−1νΛ.
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Conclusions

1 Methods which rank genes (e.g. the MB statistic or the
moderated Hotelling T 2) perhaps provide easier access to
genes whose absolute or relative expression varies over
time, than do multi-gene methods (e.g. clustering).

2 Among the single-gene methods, MB performs no worse
than other methods in both real data and simulated data
comparisons, and better than the F.

3 Moderation is needed to improve the variance estimation.
4 The MB statistic may be able to select interesting genes

which are missed by other methods.
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1 The time course data can also be used to explore
gene-gene association problems.
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Exploration of gene-gene association

1 Cell cycle microarray experiments provide gene expression
intensity data over time.

2 High dimensional time series analysis can be conducted to
explore a wide range of problems. For example, periodicity
(Filkov et al. 2002), gene-gene coexpression detection
(Schafer and Strimmer, 2005), clustering of genes (Zhu et
al. 2005a, 2005b).

3 We focus on exploring the gene-gene causal relationship.
That is, if the expression of gene 1 is predictive of
expression of gene 2 at a future time period.
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Causality

1 Graphical models based on coherence/partial coherence.
Brillinger (1996); Dahlhaus (2000); Butte et al. (2001);
Salvador et al. (2005).

2 Drawback: sensitive to measurement noise (Albo et al.,
2004). incapability of detecting time precedence
relationship (Baccala and Sameshima, 2006).

3 Granger causality is good for detection of causalities in
stationary/nonstationary time series (Winterhalder et al,
2005; Mukhopadhyay and Chatterjee, 2006).
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Granger causality

1 Assuming the following autoregressive model:

y1(t) = c+α1y1(t−1)+...+αqy1(t−q)+β1y2(t−1)+...+βqy2(t−q)+εt ,

where εt ∼ N(0, σ2), t = 1, ..., n.
2 Granger causality can be tested using a vector

autoregressive (VAR) (Hamilton, 1994; Mukhopadhyay and
Chatterjee, 2006). Specifically, F test is used to test

H0 : β1 = β2 = · · · = βq = 0.
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Disadvantages

1 Required distributional assumption: εt ∼ N(0, σ2).
2 Real application: (i) Nonhomogeneous errors; (ii) Not

normal distributed.
3 It could lead to inconsistent results.
4 Only for least squared estimate.

Jianhua Hu UT MD Anderson Cancer CenterMicroarray time course da



Why inconsistent?
The F test depends on the consistent variance estimation.
Example 1. If q = 1, c = α1 = 0, then the model is

y1(t) = β1y2(t−1) + εt ,

where Eεt = 0 and Var(εt) = σ2
t .

β̂1 =

∑n
t=1 y1(t)y2(t−1)∑n

t=1 y2
2(t−1)

= β1 +

∑n
t=1 y2(t−1)εt∑n
t=1 y2

2(t−1)
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The variance estimation of β̂1 is,

V̂ar(β̂1) =

∑n
t=1 e2

t

n
∑n

t=1 y2
2(t−1)

,

where et are the residuals, with

et = y1(t) − β̂1y2(t−1).
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For homogeneous errors, σ1 = ... = σn = σ, Then the variance
is

Var(β̂1) ∼ σ2
∑n

t=1 y2
2(t−1)

In this case,
V̂ar(β̂1) − Var(β̂1) → 0.
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For nonhomogeneous errors, σt are different, then

Var(β̂1) ∼
∑n

t=1 y2
2(t−1)σ

2
t

(
∑n

t=1 y2
2(t−1))

2
.

However,

V̂ar(β̂1) →
∑n

t=1 σ2
t

n
∑n

t=1 y2
2(t−1)

.

Therefore, the variance estimate V̂ar(β̂1) is not consistent.
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Motivation

1 We proposed a test based on estimating equations.
2 Applicable to a wide class of estimate: Least squared

estimate; M-estimate; General linear model based
estimate; L1 and quantile based estimate; etc.

3 Relax of the distributional assumption: only need εt to be
independent. No distribution assumption and for
nonhomogeneous errors.

4 Computationally implementable.
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Inference Based on Estimating Equation

For simplicity, we consider two genes with observations as
y1(0), ..., y1(n) for the first gene and y2(0), ..., y2(n) as the second
gene.
Assume the following autoregressive model holds:

y1(t) = c+α1y1(t−1)+...+αqy1(t−q)+β1y2(t−1)+...+βqy2(t−q)+εt ,

where εt , t = 1, ..., n, are independent and satisfy Eεt = 0 and q
is the autoregressive lag length.
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The gene two is said to Granger cause gene one if β i �= 0 for at
least one i . The main statistical problem is to test the null
hypothesis

H0 : β1 = β2 = · · · = βq = 0.

Let Y1(t) = (y1(t), ..., y1(t−q)) and Y2(t) = (y2(t), ..., y2(t−q)).
θ = (c, α, β).
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General we consider that the estimate of θ is from following
estimating equation

S(y , θ) =
n∑

t=1

g(Y1(t), Y2(t), θ) = 0

for some given function g satisfying

Eg(Y1(t), Y2(t), θ) = 0.

For the estimating equation, see Boos (1992), Godambe and
Kale (1992), Liang and Zeger (1986), Hu and Kalbfleisch
(2000) for details. In literature, inference based on estimating
equation is mainly for independent data. Here we consider
dependent Microarray data.
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When the least square method is used to estimate the
parameters, then the estimating function

g(Y1(t), Y2(t)) = (1, y1(t−1), ..., y1(t−q), y2(t−1), ..., y2(t−q))
T

[y1(t)−(c+α1y1(t−1)+ ...+αqy1(t−q)+β1y2(t−1)+ ...+βqy2(t−q))].

which is a 2q + 1 vector.
In Example 1, the corresponding estimating equation is

n∑

t=1

y2(t−1)(y1(t) − β1y2(t−1)) = 0.
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To do the inference of θ, we need following notations. Let

V (θ) = n−1
n∑

t=1

Var(g(Y1(t), Y2(t), θ))

and

W (θ) = E{n−1
n∑

t=1

∂g(Y1(t), Y2(t), θ)

∂θT }.

Both V (θ) and W (θ) are (2q + 1) × (2q + 1) matrix.
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In application, we use the following two estimates for given θ,
which is

V (y , θ) = n−1
n∑

t=1

(g(Y1(t), Y2(t), θ)−ḡ(y , θ))(g(Y1(t), Y2(t), θ)−ḡ(y , θ))T

Where

ḡ(y , θ) = n−1
n∑

t=1

g(Y1(t), Y2(t), θ).

W (y , θ) = n−1
n∑

t=1

∂g(Y1(t), Y2(t), θ)

∂θT .
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By the law of large number, for both homogeneous and
nonhomogeneous errors,

V (y , θ) → V (θ)

and
W (y , θ) → W (θ).
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Now we consider a general testing problem

H0 : h(θ) = 0

for some differentiable function h. Let r be the dimension of h.
Let

H(θ) =
∂h(θ)

∂θT .
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To test H0 : h(θ) = 0, we define

U(θ) = HT (HW−1HT )−1HW−1VW−1HT (HW−1HT )−1H,

and its general inverse (Moore-Penrose) is then

U−(θ) = W−1HT (HW−1VW−1HT )−1HW−1.
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Let θ̃ be the estimate of θ under the restriction h(θ) = 0.
The test statistics is then

Qh=0 = S(y , θ̃)T U−(θ̃)S(y , θ̃).

We can show that Qh=0 is a chi-square distribution with degree
of freedom r under H0. We will reject H0, if

Qh=0 > χ2
r ,α.
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In our application,

H0 : β1 = ... = βq = 0

It is very easy to calculate the matrices:

H(θ), U(θ), U−(θ), and Qh=0 = S(y , θ̃)T U−(θ̃)S(y , θ̃).

Qh=0 is a chi-square distribution with degree of freedom q
under H0. We will reject H0, if

Qh=0 > χ2
q,α.
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Simulation studies

1 We generated two variables X1 and X2 where
x1t = 0.7x1(t−1) + ε1t and x2t = 0.3x2(t−1) + βx1(t−1) + ε2t .

2 The interest is to test the null hypothesis H0 : β = 0.
3 We conducted 5000 simulations with the data generated

under null hypothesis H0.
4 We considered the number of time points to be n = 30 or

100.
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Table: Type-I error rate results in simulation study.

n Method Homogenous ε2t Non-homogenous ε2t

N(0, 1) t(3) centered exp(1) N(0, x2
1(t−1))

30 F 0.060 0.062 0.054 0.241
EE 0.060 0.049 0.050 0.060

100 F 0.053 0.062 0.053 0.242
EE 0.052 0.050 0.053 0.050
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1 In addition, we made comparisons of the distribution of the
test statistic Q̃h=0 to its theoretical distribution χ2(1).
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Figure: Distribution of Q̃h=0 versus χ2(1).
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1 We simulated a network of 14 genes in various cases.
2 Independent genes are x1,x7,x8,x9,x11, and x14. All are

AR(1) processes with autocorrelation< 1.
3 All the other genes are generated from dependent series,

with lag 1 and autocorrelation< 1.
4 The series are generated at 100 equidistant time points.
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1 The gene-gene dependent series:
x2t = 0.29x2(t−1) + 0.65x1(t−1) + εt ;
x3t = 0.15x3(t−1) + 0.29x2(t−1) + 0.65x14(t−1) + εt ;
x6t = 0.12x6(t−1) + 0.3x7(t−1) + 0.3x8(t−1) + 0.3x9(t−1) + εt ;
x4t = 0.17x4(t−1) + 0.4x3(t−1) + 0.7x6(t−1) + εt ;
x5t = 0.6x5(t−1) + 0.8x4(t−1) + εt ;
x10t = 0.4x10(t−1) + 0.3x11(t−1) + εt ;
x12t = 0.4x12(t−1) + 0.4x11(t−1) + εt ;
x13t = 0.4x13(t−1) + 0.4x11(t−1) + εt .
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1 The independent series (stationary):
x1t = 0.7x1(t−1) + εt ;
x7t = 0.8x7(t−1) + εt ;
x8t = 0.7x8(t−1) + εt ;
x9t = 0.77x9(t−1) + εt ;
x11t = 0.7x11(t−1) + εt ;
x14t = 0.65x14(t−1) + εt ;
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1 The independent series (non-stationary):
x1t = sin πt

40 + 0.7x1(t−1) + εt ;
x7t = 0.8x7(t−1) + εt ;
x8t = cos πt

40 + 0.7x8(t−1) + εt ;
x9t = 0.77x9(t−1) + εt ;
x11t = cos πt

40 + 0.7x11(t−1) + εt ;
x14t = 0.65x14(t−1) + εt ;
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1 Several homogeneous residual distributions.
1 εt ∼ N(0, 1).
2 εt ∼ centered exp(1), representing an asymmetric

distribution case.

2 We applied algorithms at time points t =10, 20, 40, 60, 80,
and 100.

3 Between a pair of genes, we only consider the direction
with lower p-value of the test for causality.
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1 Accuracy summary statistics (Mukhopadhyay and
Chatterjee, 2006): Let G denote the number of genes,
A = 100[1 − 2

G(G−1)

∑
ei

l(ei)].

2 For each edge ei that connects two genes,
i = 1, · · · , G(G−1)

2 , l(ei) = 0 if the conclusion drawn from a
test if a edge is statistically significant agrees with the
truth; l(ei) = 1 otherwise.

3 100 simulations were performed. And the threshold of
p-value=0.01 is used to take into account multiple testing
issue.

4 The average accuracy summary statistics (together with
standard error) over the simulations are reported next.

5 we also record the number of false positives (FP, the
detected edges that are not true edges); and the number of
false negatives (FN, the true edges that are not detected).
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Table: Homogeneous εt case 1 with stationary and non-stationary
independent series.

εt ∼ N(0, 1) Stationary
Method time 10 20 40 60 80 100
F Avg 89.45 89.78 92.26 93.48 94.12 94.70

SE 2.48 2.46 2.81 2.46 2.44 2.34
FP 2.88 3.04 2.73 2.94 3.12 3.32
FN 6.72 6.26 4.31 2.99 2.23 1.50

EE Avg 89.54 88.79 91.64 92.75 93.69 94.54
SE 2.97 2.55 2.60 2.55 2.26 2.24
FP 2.64 2.61 2.38 2.88 3.10 3.24
FN 6.88 7.59 5.23 3.72 2.64 1.73

Non-stationary
Method time 10 20 40 60 80 100
F Avg 89.16 89.70 91.37 88.86 87.53 84.58

SE 2.82 2.94 3.07 4.04 4.05 4.92
FP 2.88 3.36 5.01 8.18 9.92 12.91
FN 6.98 6.01 2.84 1.96 1.43 1.12

EE Avg 88.90 88.30 90.40 88.84 87.86 84.95
SE 2.55 3.08 2.70 4.47 4.02 4.99
FP 2.65 3.13 4.75 7.69 9.51 12.37
FN 7.45 7.52 3.99 2.47 1.54 1.33

Jianhua Hu UT MD Anderson Cancer CenterMicroarray time course da



Table: Homogeneous εt case 2 with stationary and non-stationary
independent series.

εt ∼ exp(1) (centered) Stationary
Method time 10 20 40 60 80 100
F Avg 89.46 90.29 92.59 93.90 94.49 94.89

SE 2.64 2.34 2.33 2.66 2.53 2.31
FP 2.99 3.05 2.86 2.89 2.92 3.25
FN 6.60 5.79 3.88 2.66 2.09 1.40

EE Avg 89.49 89.73 91.05 93.21 94.47 95.16
SE 2.46 2.41 2.72 2.36 2.24 2.21
FP 2.15 2.13 2.38 2.17 2.33 2.47
FN 7.41 7.22 5.76 4.01 2.70 1.93

Non-stationary
Method time 10 20 40 60 80 100
F Avg 89.29 89.68 90.59 88.64 87.43 85.12

SE 2.85 2.58 3.19 4.18 4.14 4.72
FP 2.94 3.45 5.78 8.45 9.98 12.45
FN 6.81 5.94 2.78 1.89 1.46 1.09

EE Avg 89.20 89.04 89.92 88.89 87.62 85.10
SE 2.66 2.51 3.04 3.90 4.02 4.54
FP 2.14 2.57 4.84 7.33 9.21 11.94
FN 7.69 7.40 4.33 2.78 2.06 1.62
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Next, we examined the stationary data with non-homogenous
normal distribution case where the variance of ε it in the model
of predicting gene i is associated with expression intensities of
other interacting genes at the previous time points.
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Table: Standard deviation of εit .

independent series dependent series
sd(x1t) = 1 sd(x2t) = 5 | x1(t−1) |
sd(x7t) = 5 | x1(t−1) | sd(x3t) = 5 | x2(t−1) + x14(t−1) |
sd(x8t) = 5 | x7(t−1) | sd(x6t) = 5 | x7(t−1) + x8(t−1) + x9(t−1) |
sd(x9t) = 5 | x8(t−1) | sd(x4t) = 5 | x3(t−1) + x6(t−1) |
sd(x11t ) = 5 | x9(t−1) | sd(x5t) = 5 | x4(t−1) |
sd(x14t ) = 5 | x11(t−1) | sd(x10t ) = 5 | x11(t−1) |

sd(x12t ) = 5 | x11(t−1) |
sd(x13t ) = 5 | x11(t−1) |
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Table: Heterogeneous εt .

Method time 5 10 15 20 40 60 80 100
F Avg 85.14 86.52 87.35 88.14 88.42 88.64 88.67 89.25

SE 4.74 4.98 3.72 3.10 3.21 3.03 3.13 3.14
FP 7.50 6.24 5.44 5.15 4.74 4.61 4.69 4.49
FN 6.02 6.03 6.07 5.64 5.80 5.73 5.62 5.29

EE Avg 90.68 91.26 91.88 92.26 91.92 91.86 91.58 91.63
SE 2.52 2.18 2.34 2.27 2.07 2.38 2.22 2.12
FP 1.98 1.31 1.16 0.93 1.09 1.11 1.16 1.18
FN 6.50 6.64 6.23 6.11 6.26 6.30 6.50 6.44
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A real example

1 We used the human cancer cell cycle data (Whitfield et al.,
2002) available at
http: //genome-www.stanford.edu/Human-CellCycle/Hela.

2 Li et al. (2006) studied gene regulatory network on 20
genes, represented by 23 probe sets, using one
experiment in this data which consisted of 48 time points.

3 We focus on the same set of genes.
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1 At the p-value threshold of 0.001, F detected 104 gene
pairs that showed significant causal relationship while EE
detected 78. And 70 pairs were detected by both.

2 The performances of two methods should be similar if
expression intensities of a gene to be predicted is
homogenously and normally distributed.

3 It motivates checking the distribution of expression
intensities of each individual gene.

4 We observed that the majority of genes are nearly
normally distributed except for 6 genes.

5 Observation: the most difference in the results between F
and EE is associated with these 6 genes.
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Figure: Q-Q plots of the expression intensities of 6 genes.
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1 One interesting observation: EE detected 3 genes that
strongly predict gene DHFR4 while F could not detect any.

2 We used the gene pair (NPAT, DHFR4) as an example
where EE obtained the p-value of 0.0002 while F is 0.013.

3 We standardized the expression profile of gene DHFR4
with a monotonic normal score transformation.

4 Specifically, we obtain the ranks of gene expression
intensities R1, · · · , Rn and use them to construct the
transformed profile, Φ−1(R1/(n + 1)), · · · ,Φ−1(Rn/(n + 1)),
where Φ(.) is the cumulative normal distribution.

5 On the transformed profile of DHFR4, EE and F yielded the
p-values of 0.00005 and 0.0003, respectively.
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Figure: expression intensities along time for 3 gene pairs.
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1 The second gene pair example: gene NPAT is tested to
predict PLK which has the non-normal distribution.

2 F claimed the association to be significant with p-value of
0.0005 while EE yielded nonsignificant result
(p-value=0.003).

3 The normal score transformation resulted in the p-value of
0.002 using F and p-value of 0.006 using EE.
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Figure: expression intensities along time for 3 gene pairs.
Jianhua Hu UT MD Anderson Cancer CenterMicroarray time course da



1 In the third example, the gene-gene causality relationship
between CCNF and PLK is detected by both methods.

2 Normality transformation on PLK only slightly altered the
significance levels of both F test and EE test.

3 This relationship has been validated in Li et al. (2006).
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Figure: expression intensities along time for 3 gene pairs.
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Remarks

1 The proposed test based on estimation equation has the
appealing theoretical property: valid and consistent
regardless of the data distribution form.

2 The estimation equation method is computationally simple.
3 The possible un-equidistant time points can be taken into

account.
4 Missing data problem is often seen in the real data.
5 Nonlinear causality???

Jianhua Hu UT MD Anderson Cancer CenterMicroarray time course da



References

1 Li (2002). Genome-wide coexpression dynamics: theory
and application. PNAS 99, 16875-16880.

2 Albo et al. (2004). Is partial coherence a viable technique
for identifying generators of neural oscillations? Biological
Cybernetics 90, 318.

3 Winderhalder et al. (2005). Comparison of linear signal
processing techniques to infer directed interactions in
multivariate neural systems. Signal processing, 85,
2137-2160.

4 Mukhopadhyay and Chatterjee (2007). Causality and
pathway search in microarray time series experiment.
Bioinformatics, 23, 442-449.

5 Hu and Kalbfleisch (2000). The estimating function
bootstrap (with discussions). Canadian Journal of
Statistics, 28, 449-499.

Jianhua Hu UT MD Anderson Cancer CenterMicroarray time course da


	class2-timecourse
	figures
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4


