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OARRAY TECHNC

o High-throughput assays for understanding molecular biology
o Simultaneously measure expression levels for thousands of genes
o By understanding how “gene expression” changes across multiple
conditions
» Researches gain clues about gene functions

o How genes work together to carry out biological functions

e Many applications in a variety of studies; attracted considerable
statistical literature

@ Other techniques to measure gene expression
o Serial analysis of gene expression (SAGE); cDNA library
sequencing; differential display; cDNA subtraction; multiplex
quantitative RT-PCR

STORY TILL NOW

o What is Bioinformatics?

o As the generation, organization, and analysis of biological data
(initially genomic data)

o Attracted lot of interest in different fields: Computer Science,
Physics, Engineering and of course Statistics
o Microarrays
o What are they?; What they measure?

e Pre-processing issues: normalization, technical vs biological
variation

o Downstream analysis

o What statisticians work with: Gene Expression Matrix

Samples | Gene1 | Gene2 | --- | Gene p
2 X X oee X
n x x || x

o X = Gene expression intensities (some form)

o p = Number of genes (usually in thousands)

o n=Number of samples (micorarrays) (n < p)

o Y (tissue type/phenotype) = 0 if Normal; 1 if Cancer (binary)

e Z = Design variables for controlled experiments (e.g. Drug A/B) OR
Covariates




o Preprocessing of the data

Assess spot quality, reliability of signal, normalize data
o Differential expression (Last two classes and next class)

Identify which genes are up-/down-regulated in different sets of
experimental conditions

o Classification/Discrimination (supervised learning)

Use gene expression profile to predict type of tumor (class
prediction)

o Clustering (unsupervised learning)

Determine genes that are coexpressed or new subtypes of disease
(class discovery)

o Feature (gene) selection

e Variable important by itself

o Gene independently ranked by some criteria
o Gene important in a context

o Combine variables

o Model for combining variables is needed
o Important genes not in a context

o Model averaging; ensemble learning

o Today’s lecture: Gene selection in a context: Classification

DIMENSION RED

o Often in microarrays: n << p
o Order of n: tens or hundreds
o Order of p: thousands or more
o Therefore it is advisable/essential from a practical and

methodological point of view to reduce the dimension i.e. p; not all
genes affect the process

o Termed Variable/Gene/Feature selection

o Statistical theory: Model selection i.e. different set(s) of
variables(genes) different models

o Rich literature in non-microarray context also: stepwise,
backward, forward regression; AIC; BIC.

o Objective: assign objects to classes (groups) on the basis of
measurements on the objetcs

o Unsupervised: classes are unknown and want to discover them
from data apriori

o Supervised: classes are known apriori and want to use a
traning/learning set of labeled objects to form a classifier for
classification of future observations

o In microarray context

= Objects are microarrays here, and are to be classified as belonging
to one of a number of predefined classes {1,2,.... K

» Each array has a class label: Y € {1,2,....K} and associated
feature vector of G genes: X = {Xi, Xz...., Xg} and the aim is to
predict Y from X.




Suppose there are two populations, healthy and disease individuals. Let the
class labels (arbitrary) Y; = 0 if individual j is healthy and Y; = 1 is individual j
has disease. The classifier function, T(X;), predicts Y}, given variables X;.
The function is a mapping from X to the class labels, T : X — {0,1}.

o1

Different nomenclature in different fields:

@ Discrimi analysis
@ Supervised learning (machine learning/artificial intelligence in computer
science)

@ Pattern recognition (engineering)

@ Prediction, predictive classification (Bayesian)

@ Useful to view classification as a statistical decision theory problem

@ Suppose observation Y’s are iid from an unknown multivariate
distribution. Denote population proportion of objects of class k as
7k = p(Y = K). Objects in class k have feature vectors with class
conditional density pk(x) = p(x|Y = k).

@ Aloss function L(i, j) quantifies the loss incurred by erroneously
classifying a member of class i as class j.

@ The risk function for a classifier T(X) is just the expected (average) loss

R(T) = EIL(Y,T(X)] = Y E[L(K, T(X))|Y = Klme
k

o For symmetric loss i.e. L(i,j) = 1for i # j then the risk turns out to be
simple missclassification rate: p(T(X) # Y)

o In Tumor classification: reliable and precise classification essential
for successful cancer treatment

o Characterizing molecular variations among tumor by monitoring
gene expression

@ Hope is that microarrays will lead to more reliable tumor
classification

o In the (unlikely) situation that we know both pk(x) and ¢, we can use
Bayes rule to express posterior probability p(k|x) of class k given a
feature gene vector x

TPk (X)

plkix) = i mipi(X)

@ Bayes' rule predicts class with highest posterior probability
Ta(X) = argmax,p(k|X)

@ Bayes rule minimizes the risk function/misclassifiation rate under a
symmetric loss function — Bayes risk.

Ts(X) = argmax, Lip(k|X)




@ Many classfiers can viewed as versions of this general rule, with either
parametric or nonparametric estimators of p(k|X). There are two
general paradigms to estimate p(k|X).

o Density estimation approaches e.g. Gaussian maximum likelihood
discriminant rules (discrimnant analysis); mostly linear

o Direct function estimation approach: Regression methods e.g.
logistic/probit regression, neural networks, classification trees; can be
adapted to be more flexible

@ Fisher Linear Discrimnant Analysis (FLDA)

@ Finds linear combinations (a’X) of the gene expression profiles
X = Xi, ..., Xp with large ratios of between-groups to within-groups

sums of squares (::f,,:) - discriminant variables

Predicts the class of an observation X by the class whose mean vector
is closest to X in terms of the discriminant variables

Classifier: T(X) = argmin,di (x) where d2(x) = Y5 [x — ()])vi; vi
are discriminating variables.

Standard method in most multivariate statistics books

Two main steps: (1) Dimension reduction via eigen values (2)
Classification using the discriminant variables.

o Note: No distribution over X's - Nonparametric method

XIMUM LIKELIHC

o Frequentist analogue of Bayes Rule

@ MLE chooses the parameter value that makes the chance of the
observations the highest

@ For known class conditional densities px(x) = p(x|Y = k), the ML rule
predicts the class of x that gives the largest likelihood to x:
Ci(x) = argmax,pi(x).

o In case of equal class priors: =, this is same as Bayes Rule

@ Otherwise, ML rule is not optimal => does not minimize the risk function
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IMINANT RUL

o If we assume multivariate Gaussian (normal) class densities for
X|Y = k ~ N(pk, Zk), the ML classifier is

T(X) = argmin, {(X — p)Z;" (X — ux)’ + log|Ex| — 2Dogm}
@ In general, this is a quadratic rule (Quadratic discriminant analysis, or
QDA) in standard multivariate analysis; function of the Mahalanobis
distance: (X — k) £ (X — puk)’

o In practice, population mean vectors jx and covariance matrices T are
estimated by corresponding sample quantities

@ Most common classifiers are variations of the Gaussian discriminant rule

STAT 675/ GS010103




CoMMON C FIER

 QDA: T(X) = argmin, {(X — pu)E; (X — k) + log| E«| — 2logmc}

o Linear discriminant analysis (LDA): If £ = X and = is constant for all

k then
T(X) = argming{(X — ) E' (X — )}
= argming {pE px — 2XT "}
o Diagonal quadratic discriminant analysis (DQDA): If
i = diag(y, - . 036),
S, % — pig)?
T(X) = argmin, 2(5672‘ +logo, }
et ke

o Diagonal linear discriminant analysis (DLDA): If £y = diag(a?, ..., 0%

T(X) = argmin, (Z{"“_a#)
f

a=1

o Microarray data are very rich and complex; linear or even
quadratic classification boundaries may not be flexible enough

o Features (genes) may have mixture distributions within classes

o Curse of dimensionality: for large number of genes the
performance may degrade rapidly due to over-parameterization
and high variance of parameter estimates

o There are methods and algorithms to overcome some of these
problems (later in the course)

o Very nice article comparing common classification methods:
Dudoit, Fridlyand, Speed (JASA, 2002)

Other mi
Bar ;

o Nearest Centroid (Xx = Ig); G is the number of genes

o Flexible discriminant analysis; Penalized Discriminant Analysis;

Mixture Discriminant Analysis

o These are widely used especially for microarray data for a variety

of reasons
o Simple and intuitive: predict class closest to sample mean

o Estimated Bayes Rule: LDA is Bayes rule with Gaussian
distributions

o Easy to implement

s Reasonable performance: low classification error

Error rates

Resubstitution estimation: fit a single classifier to the data, and applies
this classifier in turn to each data observation

Problem: bias; ur i ication error
(sometimes severely)

Test and training data: divide cases in learning set into two sets, S1 and
82; classifier built using S$1, error rate computed for S2. S1 and S2 must
be iid (crucial).

Problem: reduced effective sample size

V-fold Crossvalidation: learning set randomly divided into V subsets of
(nearly) equal size. Build classifiers leaving one set out; test set error
rates computed on left out set and averaged.

Problem: Bias-variance tradeoff: smaller V can give larger bias but
smaller variance

ethods: A




URE SELECTION IN

o Two ways to do this
o Do feature selection first and then build a classifier (Filter methods)

o Implicitly as an inherent part of the classifier building procedure
(Wrapper methods)

o Filter methods

o Simplest: one-gene-at-a-time approaches using univariate test
statistics e.g. t or F test, signal to noise ratio, Wilcoxon statistics,
p-values

s More advanced methods: consider joint distribution of genes;
ordering methods such as random forests

o Wrapper methods: depends on classifier
o Some Bayesian classifiers inherently take care of this (more later)

o Bottomline: Feature selection important and is an aspect of
classifier training

In classical frequentist parametric classification (as discussed before),
a new observation Z is classified by estimating 6; from the training
observations, 6;, and plugging ; back into the likelihood to form
prediction rules. Z is assigned to the class i for which

1(210) > £:(2107)

for all i/, and assigned randomly in the event of ties.

There are some disadvantages to this approach. To a Bayesian, ¢ is
unknown, and therefore the uncertainty in ¢ should be taken into
account when making predictions. See Lehmann (1990) for discussion
of bias/variance tradeoff in classification.

Suppose independent random variables (possibly vectors) Xj1, ..., Xiy,

are observed from popuations i = 1, ..., K, each with probability
distribution £(6;).
The likelihood of the data is

K N
LTI #xil60).

i=1j=1

where the 6;’s are unobserved population parameters.

In Bayesian parametric classification, a new observation Z is classified
by assigning a prior distribution to the 6;'s, 7(6s. ..., fk), and updating
the prior distribution to obtain a posterior distribution

K N
7(01, -, 0 |X) o [T TT H(Xi100)m (61, .. 0xc)-

i=1j=1

The predictive distribution for the i-th population of a new observation
Zis

120 = [ 120ym(oix000,

for all /, integrating over 6] X.




The Bayesian prediction rule assigns Z to the population i for which

wH(ZIX) > mify(Z1X)

for all i, again at random in the event of ties. The posterior distribution
of fi(Z|6;) is known given X, at least up to a normalizing constant.

Pz i) - HZX)

2 mifir(Z1X)

Suppose that independent random (p-dim) variables X1, ..., Xjy, are
observed from popuations i = 1, ..., K, with j = 1, ..., N; observations
each, with probability distributions N(u;, £;), where 6; = (u;, X;) are the
unobserved population mean and covariance of Xj.

The likelihood for the data is

K N

PX[p1s oo s T, Ti) = [T TT N (Xiliei Z5)
i=1j=1

Frequentist methods sometimes resort to large sample or resampling
theory in order to determine the uncertainty in prediction.

Measuring the uncertainty in the Bayesian classification rule is
straightforward, once (6| X) is obtained.




In the context of microarray data, Xj; denotes the vector of gene
expression intensity values for individual j in population /. In typical
studies, k=2 or 3, for example comparing cancer to normal gene
expression, or different types, or stages, of cancer. These studies tend
to be large, N > 100. Although for microarray classification N; < 200 is
considered small.

A convenient, non-informative prior for yq, ..., ik, £1, ..., Lk iS

K
(114, s T, oy D) o [ 127 (P2
i=1

Example Consider the case of two populations (classes), where
¥4 = X, the frequentist rule is to assign x to class 1 if

_ qifi(x) _ .
= Gh) + k() [1+ (a1 /qe)exp(~L)] "

is greater than 1, class 2 if P < 1 and at random if P = 1, where L is
the log-density ratio,

L = log(f(x)/f(x) = (52 — 61)/2

for §; = (x — X;)'S~"(x — X;), and q; is the known probability that a
randomly selected observation is from population i for i = 1, 2.

The predictive distribution of a new observation Z is

(2[%. Sj. i)
N PRI NG XS - X))
N+1 N+ )(N=FK)

where N = S5, Nj, X, = N7 S, X; and

(Ni=1)8; = 55X = X)(X; = Xi)'

Proof: see Press (2003) Bayesian Statistics

MPLE

Example Con’t

g - M=1)S+(N-1)S
B (N1 +N2-2) ’

The Bayesian rule, in the case of vague prior knowledge, is to compare
Pg =[1+(a1/q)exp(~Lg)] '

with 1 analogously,
where

Lo = (v + 1)0gl(w + 2d2)/ (v + R3]+ Spioglr /),

= Ni/(N; +1)and v = Ny + Ny — 2. Pg = p(Z € m|X) = E[P|X]
(Rigby 1997, JASA).




RE SELECTION RE

@ Suppose some subset of genes from the microarray are truely

differentially expressed in different populations, while the rest of 1Shu;?posi f’,fz = forall . vlved'nd",odtl:]ce lhedlnldw:tor var:)altgle 7g: Such
the genes have no information for discrimination. at g =1 it gene g s included in the model and 7g ifgene gis
3 ) ) excluded. A robust noninformative prior for (<, p, 71, ....7g) is
@ Based on non-informative priors, how do you account for the
uncertainty in the feature selection? How would a frequentist? (Pt ) = T s MR T(P)
Typically the heuristic approach is to select the featuers first, v L
based on some criterion, univariate or multivariate, and then fit the | - e ¥ |(p+1)/2
d w1 Y= x5
classifier. = p!

@ Either way, in applications with array data, there is uncertainty in
choosing the features.

URE SELECTION RE

In practice investigating the posterior density for all possible subsets of
For any given feature set, of size p, X, of size pis infeasible. Fortunately the unnormalized posterior of
fi(z|Xi. v, p) (7. p) may be evaluated as

K N
#(p,v1X) o [TTT X5 p)(v. p)

- _ - —(N-k+1)/2
N PR Nz RS (2= R)
i=1 j=1

A/
Ni+1 (Ni+ 1) (N—k)
where X;, and S, are derived from the selected subset of genes. and fi(z|X) may be obtained by

Accounting for uncertainty in feature selection involves integrating of
the posterior distribution of p, v1, ..., yu-

fi(z| X fi(z,| X, ,p|X)dvaj
i(2| )X/P/r:(z\ )7 (v, pIX)dvdp where where

fori=1,..K. fi= /P /r 1z, 1X,)7(. LX) .




SUMMARY: FREQUENTIST VS BAYESIAN

CLASSIFICATION

The linear model, is frequenty used in many biostatistical

applications, including

@ Bayesian and Frequentist classification rules depend on the 1. dose response modeling
likelihood function . .
@ Bayesian rules allow prior information 2. polynomial regression
@ Bayesian rules flexibly account for all uncertainty in ¢ (features). 3. exposure assessment
@ Bayesian classifiers yield exact measures of prediction 4. analysis of variance (ANOVA) problems comparing

uncertainty.
treatment groups

@ Intuitively Bayesian Classifiers can reduce variance, by averaging
over the uncertainty in 0, see Lehmann (1990) for discussion of
bias/variance tradeoff in classification.

(See Case studies in Biometry by Lange et al., John Wiley &

Sons.)

A LINEAR MODEL F A LINEAR MODEL

The linear model can be written as Theorem 1
Suppose 7 is known, X is of full rank p, and
Y=X3+e¢
. . . . m(3) o 1.
where Y is an x 1 response, X is a n X p matrix of covariates,
is a p x 1 vector of coefficients (unobserved) and Then
€~ N,(0,0°I). Bly. T~ N, ({3,7’1 (X’X)’l) .
Let M = X(X'X)~X’,and 7 = o2, where — denotes gener- where
alized inverse. Recall that the UMVUE of 1 = E(Y) = X[ is 3 = (X’X)‘l X'Y.

MY. We would like to derive the posterior distribution of 3 and

7 under noninformative priors.




OF A LINEAR MODEL

exp {—%(Y — XBY(Y - X/f)}
Y'(I—= MY + (8- 3)X'X (3~ 5)

exp{*% [(5 - é)/X,X(ﬂ - 3)} } :

Y'(I-MY +B8'X'XB-28X'XB+3X'XB
Y'(I= MY +8'X'X6 - 2Y' X(X'X)" (X' X)B + Y'MY

OF A LINEAR MODEL

‘When 7 is known, Jeffreys prior for 3 is a uniform prior, i.e.,

7;llug(27r) + glog(ﬂ - %(y — XB) (Y - XB)

% [%(y —XA)(Y — xs)]

O [_T 1yiy _ogxt Y
%[7i[yyfzuxy+ax)\a]]

OF A LINEAR MODEL

=YY +FXXB-2Y'XB=(Y - XB) (Y - XB),
Thus

P(Bly,7) o exp {7%(/1 —BYX'X (8- 3)} .

We can recognize this as a normal kernel with mean 5 and

covariance matrix 77! (X’X)~". Thus,

Bly. 7~ N, (8‘7*‘()(/)()*') )

OF A LINEAR MODEL

Also,
S osb(al. 7)) = ~(X'X)
2505 gp(ylo,7) = -7 )
and therefore,

I1(8) = T(X'X).

Thus Jeffreys prior for 3 is given by

7(B)7) o |7(X'X)[V? o 1.




OF A LINEAR MODEL

OF A LINEAR MODEL

Theorem 3 Then
Consider the linear model where both 3 and 7 are unknown.

Then Jeffreys joint prior for (3, 7) is given by B

y~ S, (n -p .Z(X’X)’I) s
7(Blr) o T(X' X)L, where s2 = Y’(I — M)Y/(n — p) and
tly ~ gamma((n — p)/2,5*(n = p)/2).

Proof: Exercise
Proof:
Theorem 4 ‘We have
Consider the linear model with both 3 and 7 unknown, and
Bl o T e { <2V - XB) (Y — X8) |

suppose
= 2l {7% [y'(z — MY + (8- B)X'X(8 /})] }

OF A LINEAR MODEL

OF A LINEAR MODEL

Thus, Now,
p(Bly) x [J“T"/Hexp{é [Y/(I = MY + (¥ —Xﬁ)’(Y—X,’i]]}d‘r prly) /:f"/zf‘exp{fg [Y'(I = M)Y + (Y — XB)’(Yf)\'ﬁ)]}dﬂ
- [y'(z — MY + (8- B)X'X(B— /’3)] s = /2 leg {,g Y- M)v]}
b T a4
Let s = Y'(I — M)Y/(n — p). Then the above integral is /,w r{-30-H'@-A}a

Al (T [y -y}

= At (T [0 pef])

= -t @-prxxe-p) T

1 )2
= 1+ - X

. Thus 7|y ~ gamma ((n — p)/2, s*(n — p)/2).
Thus, 8ly ~ Sy(n —p, 3, s*(X'X)71).




OF A LINEAR MODEL OF A LINEAR MODEL

Theorem 5 and

Consider the linear model with 3 and 7 unknown, and suppose 3= (n+8) Y (I = MY + (B — o) (A" X' X)(B = pto) + o),

BIT ~ Ny(tto, 77'5,) and
8o . cy e
~ % o 5,) 2(n+d,
T gamma<2,2> T\ngamma<7<"; ),75 (n2+ )).
220y 1y -1
Then 3|y ~ S, (n+6,. 3%, 3*(X'X + X;')7") , where Proof: Exercise
B = Apet (-5, Hint:
A = (X'X+3;h)7is) g
] (X'X)7'XY, T(B,7|Y) o 7 e TER
where

OF A LINEAR MODEL S OF A LINEAR MODEL

Rearranging terms, and equating quadratic and linear terms we
Q=Y = XB)(Y = XB) + (B~ 1to)'S5 (8 = o) + 0, find that
Notice that 5

(XX +5,7"
(Y= XB)(Y-XB) = FXXB-FXY-Y'X3+Y'Y welge = X’X@ + 251#0

Fo= (X)X 5 )

= (B-B)YX'X(B-B)+Y'(I-M)Y.

Setting @ = (3 — #*)'S*"1(3 — 3*) we have

Q = FX'XB-BFX'XB-8X'XB+FX'XB+[Y'Y -Y'MY]
HB'ETB — 1S5~ BE5 o + W B o] + 6o
= gyrlgopgUstolgo gsrolgt 4 gt el




BAYESIAN ANOVA MODELS FOR GENE EXPRESSION

DATA

The One-Way ANOVA model, for gene g is defined for a single
response vector Yy as

Yo =x"Bg+¢q (1)
where xT is a matrix of indicator variables forj=1,..., k treatments
(k = 2 often, in marker studies) and 8¢

Bg = (Bgts-- - Bgk) (2

is the k-dimensional (unknown) vector of treatment effects for gene g,
and ag is the unknown variance of g .

AN FEATURE SELECTION

Note that in biomarker discovery we are interested in variable
selection, i.e. determining the set of genes responsible for significant
variation between the j = 1, ..., k treatment groups. Variable selection
algorithms for high-dimension are discussed in work by:

o George and McCulloch (1997): Bayesian variable selection via
Gibbs Sampline

e Brown, Vannucci and Fearn (1998): Multivariate extension

o Storey (2003): FDR based

o Lee (2003), Sha (2006): Probit binary/multinomial regression with
variable selection

o Ishwaran and Rao (2003): ANOVA models for gene expression
o Ibrahim, Chen and Gray (2002): Threshold models

BAYESIAN ANOVA MODELS FOR GENE EXPRESSION

DATA

For By = (Bg1; - - - » Bgk) one could assume either non-informative
and informative prior specifications (depending on the case). See
Lindley and Smith (1972) article for an extensive treatment of the
Bayesian linear model

The ANOVA model is very powerful, and popular, for microarray
analysis. The model has a strong basis in normal theory, and may be
applied in many settings.

Note: In this model setup, the genes are assumed independent,
largely out of convenience and admittedly naivete.

ANOVA MODEL

o One of the first Bayesian models for differential expression was
that of Ibrahim, Chen and Gray (2002)

o Propose a general parametric Bayesian model that accomplishes
two goals.

o Determines which genes best discriminate between different
types of cancer
o Characterize the expression patters in the tumor tissues

o Model the expression under each tissue condition (normal/tumor)
as coming from a mixture of a point mass and a log-normal
distribution




Model gene expression x as,

_Jeo with probability p
" lco+y with probability 1 — p

where ¢, > 0 is the threshold level at which x is considered not
expressed. This is a truncated distribution, where ¢, is the lower
bound, and y, is the continuous part.

ANOVA MODEL

Let & = (u, o2, p) be the collection of all parameters for j = 1,2 and
g =1,...,G. Then conditional on the observed data D = (x, §), the
likelihood for 6 is given by,

L —&; -
L(01D) = [T P (1 — pig)' 5P (Yl sig» o3p) '~
Jig

With this formulation, all the fundamental questions can be answered
by the summary characteristics of the posterior distribution of 8. For
example, a quantity of interest is the expection,

Yig = EsylCodjig + (1 — 8jig)(Co + Yiig) |Pig» igs 75

o2
Cobjg + (1 — Pjg) (co +exp {u,-g + #}) .

Let xjig denote the gene expression where j indexes the tissue type
(e.g. 1=normal, 2=tumor), i indexes the individual, i = 1,...,n;jand g
indexes the gene, g = 1,..., G. Similarly, y;ig denote the continuous
component if the gene expression level for the jth tissue type for the
ith individual and the gth gene.

Assume yjig are independently log-normal distributed as,
PWigliig, o) = (2m) ™2y lay!

1
xexp {TU? (log(¥ig) — u/g)z}
9

Let djig = 1is Xjig = Co and 0 otherwise. Further, the prior probability
P(8jig = 1) = P(Xjig = C0) = pjg

ANOVA MODEL

For gene-wise treatment comparisons, e.g. normal versus tumor
expression in gene g, the summarize the posterior distribution of,

&g = th2g/P1g (3)
foreachgeneg=1,...,G.
Priors:

iglhjor oy~ N(hjos o0y /Tij)
U,?g ~ 1G(ajo, bjo)
o~ N(mjo, )

logit(pig) ~  N(Ujos Kjowf,)

i 2
Yo ~ N(8jo, hjows,




Note this that in this model formulation, the priors induce a priori
correlation between the genes. It can be shown that
(kgs igr) ~ Na(p*, £%), with p* = (myo, my)’ and

To0?,

ig 2 2

| m T Yio
= ) ot |,
Yjo 7 1Yo

is i i . . 2 2 . ni
TL]IS implies that Corr(g, “w""ig"’iy””lﬂ) — 1as f; — ocoor
vh,

— oo, thus borrowing strength across genes.

BAYESIAN ANALYSIS OF VARIANCE FOR MICROARRAYS

(BAM)

e Ishwaran and Rao (2003, 2005a, 2005b)

o An extension of the ANOVA model to detect differential expression
in genes within a model selection framework

o BAM approach uses a special inferential regularization known as
spike-and-slab shrinkage that provides an optimal balance
between total false detections and total false non-detections

o Use a parameteric stochastic variable selection procedure first
proposed by Mitchell and Beauchamp (1988)

o Recast the problem of finding differentially expressing genes as
determining which factors are significant in a Bayesian ANOVA
model

The general gene selection algorithm under the specified model
proceeds as,
@ Compute posterior distributions of £4's for g = 1, ..., G and find
g = P(&g > 1|D)
@ Select a threshold ~, for vg
@ If gene g is declared differentially expressed, require pu1g # pag,
else p1g = p2g, and create a submodel.
@ Create several submodels using different v = .7, .8, .9, ...
@ Compare models by the L-measure (see Ibrahim and Laud,
1994;Laud and Ibrahim, 1995)
@ L-measure defined as:

L=E[(z—x)'(z—x)]

where the expectation is with respect to the posterior predictive
distribution

p(2ID) = [ plio)p(6D)do

AN VARIABLE SELECTION IN LINEAR MODELS

o Mitchell and Beauchamp (JASA, 1988)

Y, = xB+¢
(YilXi, 8,0%) ~ N(X7B,0%), i=1,....n
(Bglg:m3) ~ N(O.v73), g=1,...,G
(1glxg) ~ (1= 2g)dy(-) + Agda (")
Ag ~ U(0,1)
(rg2lar, @) ~ Gamma(as, )
(672|by,b) ~ Gamma(by, by).

where Y; is the response/gene expression, X; is the
G-dimensional covariate with 3 as the associated regression
coefficients and o2 the measurement error
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(YilXi,8,0%) ~ N(X[B,0%), i=1,...,n Under the above model formulation, the conditional posterior mean of
(Bglrg:78) ~ N(O,772), g=1,...,G Bis,

(YglAg) ~ (1= Ag)dy- (") + Agi(-) @ E(B|v2, 0%, ¥) = (oM + XTX)7'XTY, (5)

o _ ) ) , . where I = diag(v}, . .., 1), 7% = (72,...,73) and
The key feature in this model is that the prior variance vg = vg74 on a Y = (Y4,..., Yn). This is the (generalized) ridge regression estimate
given cgefflmen? Bg has 2 bimodal distribution, which is callbratedzwa of Y on X with weights oI —*. Shrinkage is induced via the small
the choice of priors on 77 and ~g. For example, a large value of vg diagonal elements of I', which are determined by the posteriors of ~,
occurs when vg = 1.and 1—5 is large, thus inducing a large values for 72 and A.

Bg. indicating the covariate could be potentially informative. Similarly,
small values of u;‘; occur when g = ~v* (fixed to a pre-specified small
value), which leads to shrinkage of 3.

BAM BAM

Foragroup I = 1,2, let Yg; denote the gene expression from array/individual

N . . . . i=1,...,ng0fgene g =1,...,G. The interest then is to identify
o IR extend this varlable_selectlon framgwork to microarray date_i, via differnetially expressed genes between two groups say, control(/ = 1) versus
an ANOVA model and its corresponding representation as a linear treatment group(/ = 2). To this end, the ANOVA model can then be written
regression model as,

Yo = 00 + pgol{l = 2} + egi
o . where the errors eg are asssumed iid N(0, 02). 6,0 model the mean of the
o The two-group setting is discussed in Ishwaran and Rao (2003) gth gene in the control group. In this model those genes that are differentially
expressed correspond o f14,0 # 0 i.e. turned on or off depending on the sign

o Note: ANOVA can be written as a regression and vice-versa

on pg,0-
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The authors then go through a series of tranformations of the data, before
they fit the above model. There are two primary transformation: centering and
rescaling the data. They transformed data used for down-stream analysis is,

Yoi = (Yoi — Yg1)\/n/52

where
8= (n—p)"' Y (Yai — Veal{l = 2} — Vul{l = 1}
git
is the usual unbaised (pooled) estimator of a§, n= ‘;=‘ n; is the total

number of observations, )_(g, is mean of group /.

@ Centering: reduces the number of parameters and correlation between
the model parameters 65 and y1g.

@ Rescaling to force the variance o2 to be approximately equal to n

BAM

The effect of these transformations is, for genes that are differentially
expressed, to induce a conditional mean and variance for yg

Vg2 o -
ng m LER(Vgur — Vou2)
Car)
Vig ~
7 ~
v3g+1
Their “Bayes Test Statistic” is
py = E(ug|Y)\/ng1/ng

This E(p,|Y) is the compared to a N(0, ng,1/ng) distribution to test whether
I1g,0 is non-zero. This forms the basis of the Zcut procedure for differential
gene expression. IR further discuss an extension called FDRMix to control
the FDR via a hybrid version of the Benjamini and Hochberg (1995)
procedure.

BAM

Finally the transformed model that is fit to the data is,
Y=X"G3o+¢ (6)

where ¥ is a vector of expression values obtained by concatenating the
values 7,,-, in a vector, 3o are the new vector regression coefficients under
scaling and & is the vector of measurement errors. X is the rescaled design
matrix such that the second moments are equal to 1 is of dimension n x 2p.
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@ Lung cancer Affymetrix microarray dataset of Wachi, Yoneda and Wu
(2005). Expression values of 22283 genes collected from 10 patients, 5
of whom had squamous cell carcinoma (SCC) of the
lung and 5 were normal patients. The dataset is available for download at:
http://www.ncbi.nlm.nih.gov/~geo/query/acc.cgi?acc=GSE2

o BAM software available at http: //www.bamarray.com/
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Group Mean Difference Genes that are truly differentially expressed will have posterior variances
N converge to 1 in the far right and left side of the plot. The cut-off values are
BAM assumes eq”?' varlance_ !or e_ach grol_lp, and uses a CART determined in a data adaptive manner by balancing the total false detections
variance stabilization algorithm. against total false non-detections.
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SUMM

Q@ Microarray data: large n small p

@ Classification and feature selection

@ Frequentist and Bayesian perspectives

@ Both have their advantages and disadvantages




