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Introduction

DNA microarrays play an important role in many areas of  
biomedical research.

Two popular types:  Spotted cDNA microarrays, multiprobe
oligonucleotide arrays (Affymetrix Genechip).

Multiprobe oligonucleotide array: probe redundancy, one “color”.



Introduction

An example Affymetrix
 

genechip
 

array:

Probe set: 10-20 probe pairs
Probe pair: A (PM, MM) pair
PM: 25-mers complementary to region of gene
MM: Middle base is different to that of PM

...

Coding portion of gene X polyA

Perfect Match (PM)

Mismatch (MM)

25-mers

a probe set



Current methods

Simple rule without accounting for expression variation:
Chen et al. (1997) -

 
“fold changes”

 
rule.

Ordinary two-sample t-statistic:
Dudoit et al. (2002), Thomas et al. (2001)

Modified two-sample t-statistic:
Tusher et al. (2001), Efron et al. (2001), Smyth (2004).



“Borrowing” information from across the genes:  

Uncertainty in the variance is an acute problem when the sample size 
is small.

Eaves et al. (2002) - weighted average of the sample variance and 
a local variance estimate for groups of genes.

Bayesian approaches:
Newton et al. (2001), Baldi and Long (2001), 
Ibrahim et al. (2002).



The median number of arrays was 8 both in 1999 and 2003.

Illustrates importance of dealing with a wide range of sample sizes.  
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Significance analysis of 
Microarrays (SAM)

Tusher, Tibshirani, Chu (2001)
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The Problem:

•
 

Identifying differentially expressed genes 
•

 
Determine which changes are significant

•
 

Enormous number of genes
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Reminder: t-Test

•
 

t-Test for a single gene:
•

 
We want to know if the expression level 
changed from condition A to condition B.

•
 

Null assumption: no change
•

 
Sample the expression level of the genes in 
two conditions, A and B.

•
 

Calculate 
•

 
H0 : The groups are not different,

BA xx ,
0)( =− BA xxE
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t-Test Cont’d

•
 

Under H0 , and under the assumption 
that the data is normally distributed,

•
 

Use the distribution table to determine 
the significance of your results.

t
xx

xx

BA

BA ~
)(ˆ
0)(

−
−−

σ
t-Statistic
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Multiple Hypothesis Testing

•
 

Naïve solution: do t-test for each gene.
•

 
Multiplicity Problem: The probability of 
error increases.

•
 

We’ve seen ways to deal with it, that try to 
control the FWER or the FDR.

•
 

Today: SAM (estimates FDR)
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SAM-
 

procedure overview
Sample genes

expression

scale

Define and calculate 
a statistic, d(i)

Generate permutated
samples

Estimate attributes 
of d(i)’s

 

distribution

Identify potentially
Significant genes

Estimate FDR

Choose
Δ
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The Experiment

Two human lymphoblastoid

 

cell lines: 

Eight hybridizations were performed.

1 2

I1 I2

U1 U2

I1A I1B I2A I2B

U1A U1B U2A U2B
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SAM-
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SAM’s
 

statistic-
 

Relative Difference

•

 

Define a statistic, based on the ratio of change in gene 
expression to standard deviation in the data for this gene.
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•
 

At low expression levels, variance in 
d(i) can be high, due to small values of 
s(i).

•
 

To compare d(i) across all genes, the 
distribution of d(i) should be 
independent of the level of gene 
expression and of s(i).

•
 

Choose s0

 

to make the coefficient of 
variation of d(i) approximately constant 
as a function of s(i).

Why s0 ?
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•
 

We gave each gene a score.

•
 

At what threshold should we call a 
gene significant?

•
 

How many false positives can we 
expect?

Now what?
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More data required

•
 

Experiments are expensive.
•

 
Instead, generate permutations of the data (mix 
the labels)

•
 

Can we use all possible permutations?
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SAM-
 

procedure overview
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•
 

For each permutation p, calculate dp(i).

•
 

Rank genes by magnitude:

•
 

Define:

Estimating d(i)’s
 

Order Statistics

...)3()2()1( ≥≥≥ ppp ddd

∑=
p

id
E

pid 36
)()(

0

21

)(
)()()(

sis
ixixid GG

p +
−

=
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Example
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•
 

Plot d(i) vs. dE (i) :

•
 

For most of the 
genes, 

)()( idid E≅

•
 

Now Rank the original 
d(i)’s:

...)3()2()1( ≥≥≥ ddd

Identifying Significant Genes
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•
 

Define a threshold, Δ.
•

 
Find the smallest positive d(i) such that

Δ≥− )()( idid E
call it t1.

•
 

In a similar manner, find the largest negative 
d(i). Call it t2. 

•
 

For each gene i, if, 
call it potentially significant.

21 )()( tidtid ≤∨≥

Identifying Significant Genes
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Estimate FDR
•

 
t1 and t2 will be used as cutoffs.

•
 

Calculate the average number of genes that 
exceed these values in the permutations.

•
 

Estimate the number of falsely significant 
genes, under H0:

•
 

Divide by the number of genes called 
significant

∑ =
≤∨≥

36

1 2136
1 })()(|{#

p pp tidtidi
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FDR cont’d

})()(|{#

})()(|{#

21

36

1 2136
1

tidtidi

tidtidi
FDR p pp

≤∨≥

≤∨≥
≈

∑ =

•
 

Note: Cutoffs are asymmetric
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Example

5833.0
3
4
7

=≈FDR
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How to choose Δ?

Omitting s0 caused higher FDR.
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Test SAM’s
 

validity
•

 
10 out of 34 genes found have been 
reported in the literature as part of the 
response to IR

•
 

19 appear to be involved in the cell 
cycle

•
 

4 play role in DNA repair
•

 
Perform Northern Blot-

 
strong 

correlation found
•

 
Artificial data sets-

 
some genes 

induced, background noise
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Moderated t-statistic

Smyth G. K. (2004)



Linear model estimates

Obtain a linear model for each gene g

E (yg ) = Xβg , var(yg ) = W−1
g σ2

g .

Estimate model by robust regression, least squares, or generalized least
squares to obtain
coefficients, β̂gj

estimators of σ2
g , s2

g

standard errors, se(β̂gj)
2 = cgjs2

g.

() Moderated t February 10, 2008 2 / 10



Parallel inference for genes

1 10,000-40,000 linear models.

2 High dimensionality:
Need to adjust for multiple testing, e.g., control family-wise error rate
(FWE) or false discover rate (FDR).

3 The key: borrow information across genes.

() Moderated t February 10, 2008 3 / 10



Hierarchical model

β̂gj ∼ N(βgj , cgjσ
2
g )

P(βgj 6= 0) = p

βgj | βgj 6= 0 ∼ N(0, c0jσ
2
g )

s2
g ∼

σ2
g

dg
χ2

dg

σ2
g ∼ s2

0 (χ2
d0
/d0)−1

() Moderated t February 10, 2008 4 / 10



Posterior statistics

1 Posterior variance estimators

s̃2
g = E (σ2

g | s2
g ) =

s2
gdg + s2

0d0

dg + d0

2 Moderated t-statistic

t̃gj =
β̂gj

s̃g
√

cgj

3 The goal: eliminates large t-statistics merely from very small s.

() Moderated t February 10, 2008 5 / 10



Marginal distributions

The marginal distributions of the sample variances are moderated
t-statistics are mutually independent

s2
g ∼ s2

0Fd ,d0

t̃g ∼ {
td0+d with prob 1− p√

1 + c0/ctd0+d with prob p

Degrees of freedom add!

() Moderated t February 10, 2008 6 / 10



Estimating prior parameters

Marginal moments of log(s2) lead to estimators of s0 and d0:
Estimate d0 by solving

ψ
′
(d0/2) = mean{ns2

e − ψ
′
(dg/2)}

where
eg = log(s2

g )− ψ(dg/2) + log(dg/2),

and
s2
e = (eg − ē)2/(n − 1).

Finally
s2
0 = exp{ē + ψ(d0/2)− log(d0/2)}.

Where ψ() and ψ
′
() are the digamma and trigamma functions respectively.

() Moderated t February 10, 2008 7 / 10



Estimating prior parameters

s1, s2, · · · , sg → s̃1, s̃2, · · · , s̃g → s0
t1, t2, · · · , t − g → t̃1, t̃2, · · · , t̃g → tg ,pooled

The data decides whether t̃g should be closer to tg ,pooled or to tg .

() Moderated t February 10, 2008 8 / 10



Quantile estimation of c0

let r be rank of | t̃g | in descending order, and let F () be the distribution
function of the t-distribution. c0 can be estimated by equating empirical
to theoretical quantiles:

2[pF (−
√

cg

cg + c0
| t̃g |; d0 + dg ) + (1− p)F (− | t̃g |; d0 + dg )] =

r − 0.5

n

Get overall estimator of c0 by averaging the individual estimators from the
top p/2 proportion of the | t̃g |.

() Moderated t February 10, 2008 9 / 10



Posterior odds

Posterior probability of differential expression for any gene is

p(β 6= 0 | β̂, s2)

p(β = 0 | β̂, s2)
=

p

1− p

(
c

c + c0

)1/2

{ t̃2 + d + d0

t̃2 c
c+c0

+ d + d0
}

1+d+d0
2

It is a monotonic function of t̃2 for constant d .

() Moderated t February 10, 2008 10 / 10



Limma

• Limma is an R package to find 
differentially expressed genes

• it uses linear models
– fitted to normalized intensities (one-color)
– or log-ratios (two-color)

• assumption: normal distribution
• output: p-values (adjusted for multiple 

testing)



Documentation

• limma User’s Guide, Gordon Smyth, 
Natalie Thorne, James Wettenhall

• help documents for each function
• Smyth, GK (2004). SAGMB 3 (1) article 3
• de Menezes RX, Boer JM, van 

Houwelingen JC (2004). Applied 
Bioinformatics 3: 229-235

• background on linear models: tech note 
by Renee de Menezes



limma

• linear models
– can be used to compare two or more groups
– can be used for multifactorial designs

• e.g. genotype and treatment

• uses empirical Bayes analysis to improve 
power in small sample sizes
– borrowing information across genes



Pre-analysis steps

• read data into limma/affy
• basic quality control features
• background correction
• within-array normalization
• between-array normalization
• if duplicate spotting: sort data so that 

duplicates are together



Linear model

• make design matrix
• fit a linear model to estimate all the fold 

changes
• [make contrasts matrix]
• apply Bayesian smoothing to the standard 

errors (very important!) 
• output: moderated t-statistics



Two color - start

• working directory containing
– *.gpr files
– targets.txt file
– *.gal file (optional)



Reading in data

• basically the same as Anja Schiel has 
shown for Quality Control packages
– read in a targets file including 

• file names for *.gpr files
• cy3 and cy5 samples

– read in *.gpr files using read.maimages()
– option to use GenePix flag information
– print layout (from *.gpr or *.gal file)
– option to define spot types (controls)



Other BioC packages

• Limma package can work with microarray 
objects derived by these packages:

• marray: marrayRaw and marrayNorm

• affy: single channel (exprSet)



Exploring data

• automate the production of plots for all 
arrays in an experiment
– imageplot3by2

• array image of R, Rb, G, Gb, M (R/G) (un)norm
– plotMA3by2

• MA plots before/after normalization
– plotDensities

• histogram of all intensities before/after 
normalization



Background correction

• default = subtract
– disadvantage: negative values -> NAs

• “normexp”, offset = 50
– adjusts fg to bg to yield strictly positive intensities
– use of an offset damps the variation of the log- 

ratios for very low intensities towards 0, i.e. 
stabilizes the variability of the M-values as a 
function of intensity

– this is important for the empirical Bayes methods



Normalization 1

• normalizeWithinArray
– normalizes M-values of each array separately
– default = print-tip loess
– not appropriate for e.g. Agilent arrays, which do 

not have print groups: method = “loess”
– assumes bulk of probes not changed
– symmetrical change is not required
– spot quality weights (in RG) are used by default; 

weight = 0 will not influence normalization of 
other spots, but will be kept and normalized



Normalization 2

• normalizeBetweenArray
– intensities of single-channel microarrays
– log-ratios of two-color microarrays as a 

second step after within array normalization of 
the M-values

– because: loess normalization doesn’t affect 
the A-values

– quantile normalization results in equal 
distributions across channels and arrays



Normalization 3

• normalizeBetweenArrays directly on two- 
color data
– quantile normalization directly to individual red 

and green intensities
– vsn normalization should always be used 

directly on raw intensities
• background subtraction is allowed,
• but no correction (e.g. normexp) or loess!!!



Linear models

• design matrix
– indicates which RNA samples have been 

applied to each array
– rows: arrays; columns: coefficients

• contrast matrix
– specifies which comparisons you would like to 

make between the RNA samples
– for very simple experiments, you may not 

need a contrast matrix



Look at the result

• topTable(fit, adjust=“fdr”)
– gives the top10 of differentially expressed 

genes (for each contrast)
• plotMA(fit)
• decideTests

– makes a matrix with 0 (not selected) and -1/1 
(selected for a specific p-value)

– visualize by Venn diagram



Limma objects

• RGList (Red-Green, raw data)
• generated by read.maimages

• MAList (M- and A-values, normalized data)
• generated by MA.RG or normalizeWithinArrays

• MArrayLM (result of fitting linear model)
• generated by lmFit

• TestResults (results of testing a set of 
contrasts equal to 0 for each probe)

• generated by decideTests



Example 1: paired design

• direct two-color design including dye-swap
• dataset "arthritis", Maaike van den Hoven
• platform: Sigmamouse, 23232 single spots
• 12 arrays, 2 groups: 

– untreated (6 biological replicates)
– arthritis (6 biological replicates)

• question: find differentially expressed 
genes after induction of arthritis



targets.txt



plotDensities(RGb, MA, MA.q, MAq)



plotMA(RGb, MA, MAq)



topTable(MA.q, adjust=“fdr”)
Block Row Column    ID                      Name   M     A     t        P.Value B

1838      4  18     12    NM_026004       NA  1.996  9.31   9.58 0.00577   6.88

9277     20   4     15    NM_018762       NA  0.392 10.88  8.63 0.00577   5.91

5551     12  11      7    NM_017372       NA  1.741  9.37   8.55 0.00577   5.74

14031    29  22     17  AmbionSpike5   NA  1.053 14.24   8.43 0.00577   5.66

18056    38   7     16    NM_020611      NA  0.187  8.21   8.52 0.00577   5.52

15529    33   2     19    U52197             NA  0.340  8.83   8.28  0.00598   5.47

13274    28  10      8    X83919             NA  0.407  8.56   8.11  0.00598   5.18

22079    46  14     13   NM_026542      NA  2.017  9.97   8.08  0.00598   5.18

1155      3      9     11   X14097             NA  0.251  8.07  8.46  0.00577   5.16

13559    29   1       7    AmbionSpike5  NA  1.034 13.93  7.93 0.00598    5.03

AmbionSpike5 was spiked in at 2-fold change arthritis/untreated: log-ratio 1



The likelihood based approach

Hu and Wright (2007)



Notation  
A simple family of t-like statistics for gene i:

t0

 

is the “ordinary”
 

Welch statistic,  f =  n1

 

+ n2

 

– 2.

, governs the power of the statistics.

t0 can be viewed as an estimate of δ.
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FDR property of t0

δs, independent random variable, with 

Theorem 1 limc→∞FDR = π0 / ( π0 + π1Q ), where

Φ, the standard normal CDF; 
Y and Z, random variables with truncated normal densities,
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Visualizing the limit Q
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FDR curves for t0

 

with π0

 

= 0.9, δ’ = 2



Vertical movement 
represents improvement 
in FDR purely due to 
improvement in 
variance estimates

FDR curves for t0 with π0

 

= 0.9, δ’ = 2 



Motivation

The variance estimation plays an important role.   

A roughly linear relationship between log(s2) and log(  ) is 
observed.

x



Figure 4: log(s2) vs. log(  ) x

Heteroscedasticity

 

is 
consistent

 

with the 
model



Statistical model
Under each experimental condition, the expression index estimate xij
from N(μi

 

, σi
2).

Linear model is proposed,

ηi

 

, a gene-specific random effect term, from N(0, ξ2).  
Maximum likelihood estimation:
We assume the hierarchical model xij

 

| μi

 

, σi
2
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Parameter estimation   

Table 1:  MLEs for the four data sets

The “best predictor” approach (McCulloch and Searle, 2001) is 
used to predict ηi:

Then σ2 can be predicted based on the fixed parameter estimates and 
predicted ηi .

1α̂

Lemon et al. -5.853 1.697 0.049
Huang et al. -5.08 2.27 0.80
Virtaneva

 

et al. -2.803 2.028 0.271
Bro et al. -0.010 1.518 0.00

0α̂ 2ξ̂

∫==
i

ii iiiiii dxpxEBP
η
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Figure 5:The shrinkage effect in estimating μ, σ2
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Eventually, MLE of  δi can be obtained,



Small sample efficiency results

The MSE of      nearly achieves the Cramér-Rao lower bound

,  Fisher information      

Define 

B
 

represents a conservative lower bound for the efficiency of

B nearly reaches 1, with no overdispersion (small sample size). 

The situation of overdispersion is more complex.
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Criterion of comparing the statistics
General criterion: how well the statistics preserve the rank order of 
the δi

 

.

Continuous δi:

Relationship between FDR and AUC for discrete δ:
Theorem 2 AUC = 1/2 (1 –

 
FDR + true accept/accept)

Receiver-operator characteristic curve (ROC),
comparing the conditional distribution of the δs

 
for T

 
< c

 
vs. T c.

The area under the ROC curve (AUC), Pr (δ R > δ A), 
the most commonly used summary.

Discrete δi: 
FDR is used, fixing the number of rejected genes.

≥



Simulation study
Common set-up:   

“realized” FDR (Genovese and Wasserman, 2002)  
a case of δ’ = 1 and π0 = 0.7

Sampling from a double exponential distribution with location 0 and 
variance 1/2. 

n1 = n2 = 3, m = 10000.
In each case, 2000 simulations are performed.
Choices of a: 
-

 
percentiles 25, 50, 75, 90 and 100 of s, and 2max(s)

-
 

a
 

= 0, 
-

 
criterion proposed in Tusher et al. (2001).

Discrete δ:

Continuous δ:

∞
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A case study
Real data:  A human fibroblast cell expression data set from 
Lemon et al. (2002) (6 vs. 6, under stimulated to 50:50 conditions)

Small sample comparisons: n1 = n2 = 2 

Permutation procedures to estimate the FDR (Storey and Tibshirani, 
2001)
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12

“observed” distribution - comparisons of two conditions.

an empirical “null” distribution - total comparisons of 
2 vs. 2 arrays.
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