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Introduction

Penalized t-statistics by Tusher et al. (2001) with implementation in
the software ""SAM”.

Moderated t-statistics by Smyth et al. (2004) with implmentation in
R package "'limmod”.

Likelihood-based identifying of differentially expressed genes by Hu
and Wright (2007).



Introduction

» DNA microarrays play an important role in many areas of
biomedical research.

» Two popular types: Spotted cDNA microarrays, multiprobe
oligonucleotide arrays (Affymetrix Genechip).

» Multiprobe oligonucleotide array: probe redundancy, one “color”.



Introduction

An example Affymetrix genechip array:
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Mismatch (MM)

Probe set: 10-20 probe pairs

Probe pair: A (PM, MM) pair

PM: 25-mers complementary to region of gene
MM: Middle base is different to that of PM




Current methods

» Simple rule without accounting for expression variation:
Chen et al. (1997) - “fold changes” rule.

» Ordinary two-sample t-statistic:
Dudoit et al. (2002), Thomas et al. (2001)

» Modified two-sample t-statistic:
Tusher et al. (2001), Efron et al. (2001), Smyth (2004).



» “Borrowing” information from across the genes:
= Eaves et al. (2002) - weighted average of the sample variance and
a local variance estimate for groups of genes.

* Bayesian approaches:
Newton et al. (2001), Baldi and Long (2001),
Ibrahim et al. (2002).

» Uncertainty in the variance is an acute problem when the sample size
1s small.
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» The median number of arrays was 8 both in 1999 and 2003.

» Illustrates importance of dealing with a wide range of sample sizes.



Significance analysis of
Microarrays (SAM)

Tusher, Tibshirani, Chu (2001)



The Problem:

* |dentifying differentially expressed genes
» Determine which changes are significant
 Enormous number of genes



Reminder: t-Test

t-Test for a single gene:

We want to know if the expression level
changed from condition A to condition B.

Null assumption: no change

Sample the expression level of the genes in
two conditions, A and B.

Calculate X,, Xg
Ho: The groups are not different, E(X, —X;) =0
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t-Test Cont'd

* Under Ho, and under the assumption
that the data is normally distributed,

()_(A_YB)_O ~t
&(XA_XB)

t-Statistic

 Use the distribution table to determine
the significance of your results.



Multiple Hypothesis Testing

Naive solution: do t-test for each gene.

Multiplicity Problem: The probability of
error increases.

We've seen ways to deal with it, that try to
control the FWER or the FDR.

Today: SAM (estimates FDR)
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The Experiment
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Eight hybridizations were performed. 8
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SAM’s statistic- Relative Difference

« Define a statistic, based on the ratio of change in gene
expression to standard deviation in the data for this gene.

- XI (l) — XU (I) <—a Difference between the
d (l) — - means of the two conditions
S(1)+ s,

=l “l

Estimate of the standard
deviation of the numerator

Fudge Factor

s(i) =\/(n ”;Z”Z_J{Z[xma)—x D) +3 [ () - % (i)r}
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Why So?

* At low expression levels, variance in
d(i) can be high, due to small values of
s(i).

 To compare d(i) across all genes, the
distribution of d(i) should be
independent of the level of gene
expression and of s(i).

» Choose so to make the coefficient of
variation of d(i) approximately constant
as a function of s(i). 1



Now what?

* \We gave each gene a score.

At what threshold should we call a
gene significant?

 How many false positives can we
expect?

12



SAM- procedure overview

Sample genes
expression

JL

scale

JL

Define and calculate
a statistic, d(i)

Generate permutated
samples

JL

Estimate attributes
of d(i)’s distribution

L

|dentify potentially
Significant genes

iyt

Estimate FDR

— Choose

= |

13



More data required

« Experiments are expensive.

 Instead, generate permutations of the data (mix
the labels)

« Can we use all possible permutations?
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Estimating d(i)'s Order Statistics

* For each permutation p, calculate dp(i).
L X, (1) =X, (i)
d _ 261 G2
o () s(i)+5s,

* Rank genes by magnitude:

d 1)>d (2)>d (3)>..

» Define: |d_ (i) = Zd p U
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d, (i)

3.2

Example

Sort

8.3

1.9

3.2

8.3

1.9

Combine permutations
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ldentifying Significant Genes

* Now Rank the original
d(i)'s:
d1)>d(2)>d(3)=>...

=
>

+ Plot d(i) vs. de(i) :

 For most of the
genes,

d(i)=d. (i) o e

-10 -3 0 5 10
expected relative difference d (i)

i
L

observed relative difference d(i)
=2

S




ldentifying Significant Genes

Define a threshold, A.

Find the smallest positive d(i) such that
d (i) —dg (i) > A

call it t1.

In a similar manner, find the largest negative
d(i). Call it t2.

Foreach gene i, if, d(i) >t, vd(i) <t,
call it potentially significant.
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Estimate FDR

t1 and t2 will be used as cutoffs.

Calculate the average number of genes that
exceed these values in the permutations.

Estimate the number of falsely significant
genes, under Ho:

1 36

L3 #ild, ()2t vd, ()<t}

Divide by the number of genes called
significant
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FDR cont'd

FDR =

A" #{ild, ()2t vd (i) <t}

#fild@i) >t vd(i)<t,}

* Note: Cutoffs are asymmetric
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How to choose A?

Mumber falsely Number called

Parameter significant significant FDR
SAM
A=04 1349 288 47%
A=05 78.1 192 41%
A=056 56.1 162 35%
A=09 19.1 80 24%
A=12 8.4 46 18%

Omitting so caused higher FDR.
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Test SAM’s validity

10 out of 34 genes found have been
reported in the literature as part of the
response to IR

19 appear to be involved in the cell
cycle

4 play role in DNA repair

Perform Northern Blot- strong
correlation found

Artificial data sets- some genes
iInduced, background noise

27



Moderated t-statistic

Smyth G. K. (2004)
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Obtain a linear model for each gene g

E(y,) = XB,, var(yg) = W,;!

Estimate model by robust regression, least squares, or generalized least
squares to obtain

coefficients, Bg;

. 2 2
estimators of Og: Sg

standard errors, se((gj)? = CgjSa-

«O» «Fr «=)r» «E)»



© 10,000-40,000 linear models.
© High dimensionality:

Need to adjust for multiple testing, e.g., control family-wise error rate
(FWE) or false discover rate (FDR).

@ The key: borrow information across genes.

«O» «F»r « =>»



A

ng ~ N(ﬁgj, ngaé)
P(Bgj #0) = p

Bei | Bej # 0~ N(0, cojo3)

2
ag

, o2,

Sg ~ ngdg

2 ) }
Og ™~ sO(Xdo/do)

«4Or «Fr «=>r «E» ) o



@ Posterior variance estimators

2 2
sy dg + s d
§§:E(U§|s§):gg 070
dg + dO
© Moderated t-statistic N
b= L
i =

&

§g, /ng
@ The goal: eliminates large t-statistics merely from very small s.

«O» «Fr «=)r» «E)» = o>



The marginal distributions of the sample variances are moderated
t-statistics are mutually independent

2
S NSOFddo

tdy+d with prob 1 —
\/ 1+ co/Ctaytd
Degrees of freedom add!

p
with prob p

«O» «Fr «=)r» «E)» o>



ESTIMATING PRIOR PARAMETERS

Marginal moments of log(s?) lead to estimators of sy and do:
Estimate dp by solving

¢ (do/2) = mean{ns? — ' (dg/2)}

where
eg = log(s}) — 1(dg/2) + log(dg/2).
and
2 = (eg — 8)2/(n—1).
Finally

s6 = exp{e + ¢(do/2) — log(do/2)}.

Where 1() and t'() are the digamma and trigamma functions respectively.

0] MODERATED T FEBRUARY 10, 2008 7/ 10
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ty, ta, -
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) tg - tg,pooled
The data decides whether t; should be closer to t; ;o01eq OF to tg.
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QUANTILE ESTIMATION OF (¢

let r be rank of | %z | in descending order, and let F() be the distribution
function of the t-distribution. ¢y can be estimated by equating empirical
to theoretical quantiles:

C . - r—05
2[PF(_\/C fco | tg |ido+dg) + (1 —p)F(— | tg ’?dO"‘dg)]:T
g

Get overall estimator of ¢y by averaging the individual estimators from the
top p/2 proportion of the | g |.

0] MODERATED T FEBRUARY 10, 2008 9 /10



Posterior probability of differential expression for any gene is

p(B#0]B,s?)

)
PB=0]5) 1-p

c \V? ; Pirditdy
c+ o t2_¢<
It is a monotonic function of #2 for constant d.

1+d+dy
ct+c

+d+ do

«O» «Fr «=)r» «E)» o>



Limma

Limma is an R package to find
differentially expressed genes

It uses linear models
— fitted to normalized intensities (one-color)
— or log-ratios (two-color)

assumption: normal distribution

output: p-values (adjusted for multiple
testing)



Documentation

limma User’s Guide, Gordon Smyth,
Natalie Thorne, James Wettenhall

help documents for each function
Smyth, GK (2004). SAGMB 3 (1) article 3

de Menezes RX, Boer JM, van
Houwelingen JC (2004). Applied
Bioinformatics 3: 229-235

background on linear models: tech note
by Renee de Menezes



lImma

* [inear models
— can be used to compare two or more groups

— can be used for multifactorial designs
* e.g. genotype and treatment

« uses empirical Bayes analysis to improve
power in small sample sizes

— borrowing information across genes



Pre-analysis steps

read data into limma/affy
basic quality control features
background correction
within-array normalization
between-array normalization

If duplicate spotting: sort data so that
duplicates are together



Linear model

make design matrix

fit a inear model to estimate all the fold
changes

[make contrasts matrix]

apply Bayesian smoothing to the standard
errors (very important!)

output: moderated t-statistics



Two color - start

e working directory containing
— *.gpr files
— targets.txt file
—*.gal file (optional)



Reading in data

» basically the same as Anja Schiel has
shown for Quality Control packages

—read In a targets file including
o file names for *.gpr files
e cy3 and cy5 samples

—read In *.gpr files using read.maimages()
— option to use GenePix flag information

— print layout (from *.gpr or *.gal file)

— option to define spot types (controls)




Other BioC packages

 Limma package can work with microarray
objects derived by these packages:

e marray. marrayRaw and marrayNorm

 affy: single channel (exprSet)



Exploring data

e automate the production of plots for all
arrays in an experiment
— Imageplot3by?2
e array image of R, Rb, G, Gb, M (R/G) (un)norm
— plotMA3by?2
 MA plots before/after normalization

— plotDensities

 histogram of all intensities before/after
normalization



Background correction

« default = subtract
— disadvantage: negative values -> NAs

e “normexp”, offset = 50
— adjusts fg to bg to yield strictly positive intensities

— use of an offset damps the variation of the log-
ratios for very low intensities towards 0, I.e.
stabilizes the variability of the M-values as a
function of intensity

— this Iis important for the empirical Bayes methods



Normalization 1

 normalizeWithinArray
— normalizes M-values of each array separately
— default = print-tip loess

— not appropriate for e.g. Agilent arrays, which do
not have print groups: method = “loess”

—assumes bulk of probes not changed
— symmetrical change Is not required

— spot quality weights (in RG) are used by default;
weight = 0 will not influence normalization of
other spots, but will be kept and normalized




Normalization 2

 normalizeBetweenArray
— Intensities of single-channel microarrays

— log-ratios of two-color microarrays as a
second step after within array normalization of
the M-values

— because: loess normalization doesn’t affect

t
—(C

ne A-values
uantile normalization results in equal

C

Istributions across channels and arrays



Normalization 3

 normalizeBetweenArrays directly on two-
color data

— guantile normalization directly to individual red
and green intensities

—vsn normalization should always be used
directly on raw intensities

» background subtraction is allowed,
 but no correction (e.g. normexp) or loess!!!



Linear models

e design matrix

— Indicates which RNA samples have been
applied to each array

— rows: arrays, columns: coefficients

e contrast matrix

— specifies which comparisons you would like to
make between the RNA samples

— for very simple experiments, you may not
need a contrast matrix



Look at the result

o topTable(fit, adjust="fdr”)

— gives the topl10 of differentially expressed
genes (for each contrast)

o plotMA(fit)
e decideTests

— makes a matrix with O (not selected) and -1/1
(selected for a specific p-value)

— visualize by Venn diagram




Limma objects

RGList (Red-Green, raw data)

e generated by read.maimages

MALIst (M- and A-values, normalized data)
e generated by MA.RG or normalizeWithinArrays

MArrayLM (result of fitting linear model)
» generated by ImFit

TestResults (results of testing a set of

contrasts equal to O for each probe)
» generated by decideTests



Example 1: paired design

direct two-color design including dye-swap
dataset "arthritis”", Maaike van den Hoven
platform: Sigmamouse, 23232 single spots
12 arrays, 2 groups:

— untreated (6 biological replicates)

— arthritis (6 biological replicates)

guestion: find differentially expressed
genes after induction of arthritis



B targets.txt - Notepad

File Edit Format

Yiew Help

targets.txt

10l
107
111
108
103
104
105
109
112
113
10
114

E11idenumber

Filename
Sigmamouselol.
SigmamouselQy,
Sigmamouselll.
Sigmamouselis.
Sigmamousells,
Sigmamouselod.
SigmamouselQs,
Sigmamouselo,
Sigmamousells.
Sigmamousells.
Sigmamouselos.
Sigmamouselld,

YR
ypr
ypr
YR
ypr
YR
YT
ypr
YR
ypr
YR
YT

e Bt s s YR I, U S oy S S el e

amecys Mamecyd Cy3

0
2
0
2
0
2
o
2
o
2
0
2

1 2 wi Tdtype
1_0 arthritis
2_2 wi Tdtype
2_0 arthritis
4_2 wildtype
4_0 arthritis
5_2 wildtype
5_0 arthritis
G_2 wildtype
G6_0 arthritis
7_Z wi Tdtype
7_0 arthritis

LY

arthritis
vildtype.
il
il
vildnype
Srthriess
wi Tdtype




plotDensities(RGb, MA, MA.q, MAQ)
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plotMA(RGb, MA, MAQ)

Sigmamouse105 Sigmamouse105

1T 2 3
]

a
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topTable(MA.q, adjust="fdr")

Block Row Column

1838
9277
5551
14031
18056
15529
13274
22079
1155
13559

4 18
20 4
12 11
29 22
38 7
33 2
28 10
46 14
3 9
29 1

12
15
v
17
16
19
8
13
11
7

ID Name M A t P.Value B

NM_026004 NA 1.996 9.31 9.58 0.00577 6.88
NM_ 018762 NA 0.392 10.88 8.63 0.00577 5.91
NM_017372 NA 1.741 9.37 8.55 0.00577 5.74
AmbionSpike5 NA 1.053 14.24 8.43 0.00577 5.66
NM_020611 NA 0.187 8.21 8.52 0.00577 5.52

U52197 NA 0.340 8.83 8.28 0.00598 5.47
X83919 NA 0.407 8.56 8.11 0.00598 5.18
NM_026542 NA 2.017 9.97 8.08 0.00598 5.18
X14097 NA 0.251 8.07 8.46 0.00577 5.16

AmbionSpike5 NA 1.034 13.93 7.93 0.00598 5.03

AmbionSpike5 was spiked in at 2-fold change arthritis/untreated: log-ratio 1



The likelihood based approach

Hu and Wright (2007)



Notation

» A simple family of #-like statistics for gene i:
_ Xi; = Xy

a . . 2 2
t! , with Si_\/Sli/n1+S2i/n29

l

s, +a
1 is the “ordinary” Welch statistic, f = n, + n, — 2.

> O, = \/ﬂ “2_/1 =, governs the power of the statistics.
Oy | Oy
7+7

n, n,

> 1V can be viewed as an estimate of .

Its performance can be examined by the positive FDR 1n

Storey (2001),
FDR=Pr(H,|T =c)



FDR property of t°

» FDR reaches a limit as ¢ — oo,

» s, independent random variable, with

» Theorem 1 lim., FDR=mn,/( m,+ m,Q ), where

O i PTTZCLH) _ 20(5)E(Y")
T SePrT2c|H)  EZ)

5

®, the standard normal CDF;
Y and Z, random variables with truncated normal densities,

p(y) =exp(=(y = 8) /2) (N2x®(5)),y 2 0
p(z) =2exp(-z2/2) /27,220
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Motivation

» The variance estimation plays an important role.

» A roughly linear relationship between log(s?) and log(X) is
observed.
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Statistical model

» Under each experimental condition, the expression index estimate x,
fI’OIIl N (/uia 0-12)
» Linear model is proposed,
log(al.z) =, +a, log(u,) +7,
1., a gene-specific random effect term, from N(0, &2).

» Maximum likelihood estimation:
We assume the hierarchical model x;; | w;, 07 ~ N(u;, 6,7),

log 6| w; ~ N(ay* a,log(uy), &),

1

L(u,0,04,&E%) = HH —exp(—(x, —4,)* / 207) exp(—1; /2&%)dn,
270, \27E?

=l j=lp

where o is substituted by exp(«, +a, log(x;) +n,).



Parameter estimation

» Table 1: MLEs for the four data sets

N

é, é, &
Lemon et al. -5.853 1.697 0.049
Huang et al. -5.08 2.27 0.80
Virtaneva et al. -2.803 2.028 0.271
Bro et al. -0.010 1.518 0.00

» The “best predictor” approach (McCulloch and Searle, 2001) is
used to predict #;:

BP(UZ):E(UZ |xi):j77ip(77i |xi;/ui9a09alaé:2)d77i
7

Then ¢ can be predicted based on the fixed parameter estimates and
predicted 7, .
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i
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» Eventually, MLE of ¢, can be obtained,

51‘ _ /}u _/}21'

A 2 A 2
Oy | Oy,
_|_

n, n,




Small sample efficiency results

» The MSE of 5 nearly achieves the Cramer-Rao lower bound
CRLB(3,)=(1+b'(5))" /1(5)),
b(8,) =3, - E, (9,), Fisher information 1(5).

> Define 4 A

- MSE(S)  MSE(S)

B represents a conservative lower bound for the efficiency of & .
» B nearly reaches 1, with no overdispersion (small sample size).

» The situation of overdispersion is more complex.



Criterion of comparing the statistics

» General criterion: how well the statistics preserve the rank order of
the o.,.

» Discrete o;:
FDR 1s used, fixing the number of rejected genes.

» Continuous o

= Recelver-operator characteristic curve (ROC),
comparing the conditional distribution of the os for 7’<c vs. T >c.

» The area under the ROC curve (AUC), Pr (6% > 64),
the most commonly used summary.

» Relationship between FDR and AUC for discrete o:
Theorem 2 AUC = 1/2 (I — FDR + true accept/accept)



Simulation study
» Common set-up:

" n, =n, =3, m=10000.

* In each case, 2000 simulations are performed.

* Choices of a:
- percentiles 25, 50, 75, 90 and 100 of s, and 2max(s)
-a=0,
- criterion proposed in Tusher et al. (2001).

» Discrete o

» “realized” FDR (Genovese and Wasserman, 2002)
= acaseof o'=1and 7,=0.7

> Continuous o:

Sampling from a double exponential distribution with location 0 and
variance 1/2.
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A case study

» Real data: A human fibroblast cell expression data set from
Lemon et al. (2002) (6 vs. 6, under stimulated to 50:50 conditions)

» Small sample comparisons: n, = n, =2

» Permutation procedures to estimate the FDR (Storey and Tibshirani,
2001)

e 6)( 6 : .
= “observed’ distribution - (2}(2) comparisons of two conditions.

= an empirical “null” distribution - (122](120] total comparisons of
2 vs. 2 arrays.
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