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Tumor Classification Using Gene
Expression Data

Three main types of statistical problems
associated with the microarray data:

« Identification of “marker” genes that
characterize the different tumor classes
(feature or variable selection).

« ldentification of new/unknown tumor classes
using gene expression profiles (unsupervised
learning — clustering)

¢ Classification of sample into known classes
(supervised learning — classification) 2

Hierarchical Clustering

1. Calculate the distance between all genes. Find the smallest distance.
If several pairs share the same similarity, use a predetermined rule
to decide between alternatives

2. Fuse the two selected clusters to produce a new cluster that now
contains at least two objects. Calculate the distance between the
new cluster and all other clusters

3. Repeat steps 1 and 2 until only a single cluster remains

4. Draw a tree representing the results
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Agglomerative Linkage Methods

Linkage methods are rules or metrics that return a value
that can be used to determine which elements (clusters)
should be linked.

Three linkage methods that are commonly used are:
* Single Linkage

» Average Linkage
» Complete Linkage




Single Linkage

Cluster-to-cluster distance is defined as the minimum
distance between members of one cluster and
members of the another cluster. Single linkage tends to
create ‘elongated’ clusters with individual genes chained
onto clusters.

Dag = min (d(u;, v;))

whereu e Aandv € B
foralli=1toNyandj=1to Ng

Average Linkage

Cluster-to-cluster distance is defined as the average
distance between all members of one cluster and all
members of another cluster. Average linkage has a
slight tendency to produce clusters of similar variance.

Dag = 1(NANg) Z Z (d(u;, v)) )

whereu e Aandv € B
foralli=1toN,andj=1toNg

Complete Linkage

Cluster-to-cluster distance is defined as the maximum
distance between members of one cluster and members
of the another cluster. Complete linkage tends to create
clusters of similar size and variability.

Dag = max (d(u;, vj) )

whereu e Aandv € B
foralli=1toNyandj=1to Ng

K-Means/Medians Clustering

1. Specify number of clusters, e.g., 5.

2. Randomly assign genes to clusters.
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K-Means/Medians Clustering
K-Means is most useful when the user has an a priori specified
number of clusters for the genes

Specify number of clusters

Randomly assign genes to clusters

Calculate mean/median expression profile of each cluster

Shuffle genes among clusters such that each gene is now in the cluster
whose mean expression profile is the closest to that gene’s expression
profile

5. Repeat steps 3 and 4 until genes cannot be shuffled around any more,
OR a user-specified number of iterations has been reached.

Self-organizing maps (SOMs)

1. Specify the number of nodes (clusters) desired, and also
specify a 2-D geometry for the nodes, e.g., rectangular or
hexagonal
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SOMs

2. Choose a random gene, say, G9

3. Move the nodes in the direction of G9. The node closest to G9
(N2) is moved the most, and the other nodes are moved by
smaller varying amounts. The farther away the node is from N2,
the less it is moved.
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SOMs

4. Repeat Steps 2 and 3 several thousand times; with each iteration, the
amount that the nodes are allowed to move is decreased.

5. Finally, each node will “nestle” among a cluster of genes, and a
gene will be considered to be in the cluster if its distance to the
node in that cluster is less than its distance to any other node.
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Principal Components Analysis

PCA is a dimension reduction technique

¢ Suppose we have measurements for each gene on
multiple experiments

¢ Suppose some of the experiments are correlated.

» PCA will ignore the redundant experiments, and will take
a weighted average of some of the experiments, thus

possibly making the trends in the data more interpretable.

* The components can be thought of as axes in n-
dimensional space, where n is the number of
components. Each axis represents a different trend in the

data. "

Principal Components Analysis
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“Cloud” of data points (e.g., genes)

0,f
in N-dimensional space, N = # hybridizations ] oﬁo
‘o
0%
Data points summarized along 3 principal
Example: component axes.

x-axis could mean a continuum from over-to under-expression

y-axis could mean that “blue” genes are over-expressed in first five expts and
under expressed in the remaining expts, while “brown” genes are under-
expressed in the first five expts, and over-expressed in the remaining expts.

z-axis might represent different cyclic patterns, e.g., “red” genes might be
over-expressed in odd-numbered expts and under-expressed in even-
numbered ones, whereas the opposite is true for “purple” genes.

Interpretation of components is somewhat subjective. 14

Other developments

1. Supervised principal components
(Bair, Hastie, Paul, Tibshirani, JASA 2005)

Software:
http://www-stat.stanford.edu/~tibs/superpc/

2. Graphical networks, Bayesian networks,
relevance networks,...
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Relevance Networks

(a)
(E) (B)

—
The expreésion
pattern of each gene = -
compared to that of Tin =0-50° 1he remaining
every other gene Tmax =0.90 between genes

define the subnets

The ability of each gene Correlation coefficients

to predict the expression outside the boundaries

of each other gene is defined by the minimum and
assigned a correlation maximum thresholds are

coefficient eliminated.
16




Methods

« Discriminant Analysis

— Linear and quadratic discriminant analysis
Diagonal LDA, QDA - ignores correlations between
genes, reducing number of parameters to estimate
Weighted voting
Compound covariate predictor

— Linear support vector machines (SVM)

— Nearest (shrunken) centroids (PAM)
* Classification and regression trees
* K Nearest neighbors
* Others: Nonlinear SVM, Neural networks, etc

Dudoit, S. and J. Fridlyand (2003). Classification in microarray experiments. Statistical Analysis of Gene Expression
Microarray Data. T. P. Speed. New York, Chapman & Hall/CRC: 222.

Simon, R., L. M. McShane, et al. (2003). Class Prediction. Design and Analysis of DNA Microarray Investigationd7
New York, Springer: 199.

Classification

Y Normal  Normal Normal Cancer  Cancer unknown =Y_new
sample1 sample2 sample3 sample4 sample5 ... New sample
1 0.46 0.30 0.80 151 0.90 0.34
2 -0.10 0.49 0.24 0.06 0.46 0.43
3 0.15 0.74 0.04 0.10 0.20 -0.23
4 -0.45 -1.03 -0.79 -0.56  -0.32 -0.91
5 -0.06 1.06 1.35 1.09 -1.09 1.23
X X_new

Each object (e.g. arrays or columns)associated with a class label (or
response) Y € {1, 2, ..., K} and a feature vector (vector of predictor
variables) of G measurements: X = (X, ..., Xg)

Aim: predict Y_new from X_new.

18

Classification and Prediction:
Supervised Learning

« Start with cases in known classes
— Select “features” that characterize the classes

— Make a rule that let you use the values of the
“features” to assign a class (minimize the “cost” of
misclassification)

* Apply the rule

» Estimate the accuracy of classification (XX%
Cl) and/or test to compare to an existing
classifier

» Classification and prediction is an old area of
statistics (LDA, Fisher, 1936), but still active
area of research

» Traditionally, there are more cases than
features 19
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Selecting a classification method

» Best classifier is the one that makes the
fewest mistakes (or least costly
mistakes)

* How should we estimate the accuracy of
the classifier?

20




Resubstitution Estimate of Accuracy

Training Cases

This is invariably biased, reporting a much

Select features more favorable accuracy then is true

Make Classifier

Report the AMAZING result!ll

21

External Validation Estimate of Accuracy

( Training Cases ) ( Validation Cases )

Select features

Make Classifier Use Classifier

This is unbiased, but may not
be feasible on your budget.

Class Predictions

Report the less amazing but more generalizable result!!
Inference - XX%CI excludes Null rate,
or explicit comparison to competing methog

Cross-validation Estimate of Accuracy

Training Cases Validation Cases

!
U

Repeat

This is usyally
| Leave In Cases | | Leave Out Cases | feasible and can be

“" unbiased, If done

correctly.
Select features

Use Classifier

Make Classifier >  Use Classifier

Essential fo repeat every l l

part of the process that | Class Predictions | | Class Predictions
is based on the data !ll

For Affymetrix data, can normalize left out cases against a fixed baseline,
estimate expression using “probe sensitivities”, then apply classifier. 23

Example of Accuracy Estimates

« Select genes and create a classifier to distinguish
between non-invasive dCIS and invasive breast
cancer

« Sample:

— HgU95av2, 12,558 genes

— dCIS, n=25

- IBC, n=25

— Randomly select half in each group to be the training
sample and half to be the test sample

¢ Train

— Feature selection — use t-test to select 169 genes,
a=0.001 (FDR~6%)
— Classifier construction - Linear Discriminant Analysis
« Test — compute scores and predict class of test %
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Discriminant Analysis

(]

Discriminator is
“linear” weighted
combination of gene
values
Various distance
metrics

Many choices to
make

— Which features

(genes) to use

— Distance metric

— Weights
Choices must be
made without
reference to “leave
out” cases
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CART: Classification Tree

BINARY RECURSIVE PARTITIONING TREE

* Binary

-- split parent node into two child nodes
* Recursive

-- each child node can be treated as parent node
* Partitioning

-- data set is partitioned into mutually exclusive subsets
in each split

-- L.Breiman, J.H. Friedman, R. Olshen, and C.J. Stone. Classification and
regression trees. The Wadsworth statistics/probability series. Wadsworth
International Group, 1984

30

Classification Trees

» Binary tree structured classifiers are constructed by
repeated splits of subsets (nodes) of the measurement
space X into two descendant subsets (starting with X
itself)

« Each terminal subset is assigned a class label; the
resulting partition of X corresponds to the classifier

« RPART in Ror TREE in R

31

Three Aspects of Tree Construction

Split Selection Rule
 Split-stopping Rule

* Class assignment Rule

« Different tree classifiers use different
approaches to deal with these three issues,
e.g. CART( Classification And Regression

Trees)
32




Three Rules (CART)

« Splitting: At each node, choose split maximizing
decrease in impurity (e.g. Gini index, entropy,
misclassification error).

» Split-stopping: Grow large tree, prune to obtain a
sequence of subtrees, then use cross-validation to
identify the subtree with lowest misclassification rate.

e Class assignment: For each terminal node, choose the
class with the majority vote.

33

CART
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Aggregating classifiers

» Breiman (1996, 1998) found that gains in accuracy could
be obtained by aggregating predictors built from
perturbed versions of the learning set; the multiple
versions of the predictor are aggregated by weighted
voting.

Let C(., L,) denote the classifier built from the b-th
perturbed learning set L, and let w, denote the weight
given to predictions made by this classifier. The
predicted class for an observation x is given by

argmax, Y, wI(C(x,L,) = k)

-- L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.

-- L. Breiman. Out-of-bag eatimation. Technical report, Statistics Department, U.C. Berke?esy,

Aggregating Classifiers

* The key to improved accuracy is the possible
instability of the prediction method, i.e.,
whether small changes in the learning set
result in large changes in the predictor.

» Unstable predictors tend to benefit the most
from aggregation.
— Classification trees (e.g.CART) tend to be unstable.
— Nearest neighbor classifier tend to be stable.

36




Bagging & Boosting

» Two main methods for generating
perturbed versions of the learning set.
— Bagging.

== L. Breiman. Bagging predictors. Machine Learning, 24:123-140,
1996.

— Boosting.

== Y.Freund and R.E.Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of
computer and system sciences, 55:119-139, 1997.

37

Bagging= Bootstrap aggregating
I. Nonparametric Bootstrap (BAG)

* Nonparametric Bootstrap (standard bagging).

» perturbed learning sets of the same size as the original
learning set are formed by randomly selecting samples
with replacement from the learning sets;

» Predictors are built for each perturbed dataset
and aggregated by plurality voting plurality
voting (w,=1), i.e., the “winning” class is the one
being predicted by the largest number of
predictors.

38

Bagging= Bootstrap aggregating
Il. Parametric Bootstrap (MVN)

» Parametric Bootstrap.

* Perturbed learning sets are generated according to a
mixture of multivariate normal (MVN) distributions.

* The conditional densities for each class is a
multivariate Gaussian (normal), i.e., P(X]Y= k) ~ N(g,,
%), the sample mean vector and sample covariance
matrix will be used to estimate the population mean
vector and covariance matrix.

* The class mixing probabilities are taken to be the class
proportions in the actual learning set.

» At least one observation be sampled from each class.

« Predictors are built for each perturbed dataset
and aggregated by plurality voting (w,=1).

Bagging= Bootstrap aggregating
lll. Convex pseudo-data (CPD)

» Convex pseudo-data. One perturbed learning set are
generated by repeating the following n times:

« Select two samples (x,y) and (x’, y’) at random from the learning
setL.

« Select at random a number of v from the interval [0,d], 0<=d<=1,
and let u=1-v.

* The new sample is (x”, y”’) where y”’=y and x”’=ux+vx’
* Note that when d=0, CPD reduces to standard bagging.

» Predictors are built for each perturbed dataset and
aggregated by plurality voting (w,=1).

40
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Boosting

* The perturbed learning sets are re-
sampled adaptively so that the weights
in the re-sampling are increased for
those cases most often misclassified.

The aggregation of predictors is done by
weighted voting (w, !=1).

41

Boosting

Learning set: L = (X, Yy), ..., (X,,Y,)

Re-sampling probabilities p={p,,..., p.}, initialized to be
equal.

The bth step of the boosting algorithm is:

— Using the current re-sampling prob p, sample with replacement
from L to get a perturbed learning set L,

— Build a classifier C(., L,) based on L,
— Run the learning set L through the classifier C(., L;) and let d=1

if the ith case is classified incorrectly and let d=0 otherwise.
— Define &y =Z pd; and g, =M
and update the re-sampling prob for the (b+1)st step by ' >pA
i

The weight for each classifier is @, =109(5,)

[N

Nearest Neighbors

« Majority or plurality
voting
¢ Various distance
o metrics
« Often effective for
small samples
¢ Kis usually 1 or 3, up
to7
« Many choices to
make
— Features to use
— Distance metric
- K
9 10 11 12 13 14 15 * Choices must be
made without

reference to “leav®
out’” cases

100

Comparison of Methods

« With modest sample sizes (<100),
methods that DO NOT account for
correlations among genes, interactions, or
other structural complexity perform best

¢ Studies to date do not favor a single best
classifier

» Estimates of classifier accuracy should
account for ALL “training decisions"

Dudoit, S., J. Fridlyand, et al. (2002). "Comparison of discrimination methods for the cIassnfucahon of
‘tumors using gene expression data." J Am Statistical Assoc 97(457): 77-87.
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How bad could it be?
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S. Michiels, S. Koscielny, C. Hill, Lancet 365, 488-92 (Feb 5-11, 2005).

Comparison of classifiers

Dudoit, Fridlyand, Speed (JASA, 2002)

FLDA (Fisher Linear Discriminant Analysis)
DLDA (Diagonal Linear Discriminant Analysis)
DQDA (Diagonal Quantic Discriminant Analysis)
NN (Nearest Neighbour)

CART (Classification and Regression Tree)

Bagging and boosting
« Bagging (Non-parametric Bootstrap )
+ CPD (Convex Pseudo Data)
+ MVN (Parametric Bootstrap)
« Boosting

46
-- Dudoit, Fridlyand, Speed: “Comparison of discrimination methods for
Ll 1 ifl i Lt H H dat

2 1ASA 2000

Comparison study datasets

* Leukemia — Golub et al. (1999)
n =72 samples, G = 3,571 genes
3 classes (B-cell ALL, T-cell ALL, AML)
* Lymphoma - Alizadeh et al. (2000)
n = 81 samples, G = 4,682 genes
3 classes (B-CLL, FL, DLBCL)
* NCI 60 — Ross et al. (2000)
N = 64 samples, p = 5,244 genes
8 classes

47

Procedure

* For each run (total 150 runs):
— 2/3 of sample randomly selected as learning set
(LS), rest 1/3 as testing set (TS).
— The top p genes with the largest BSS/WSS are
selected using the learning set.
* p=50 for lymphoma dataset.
* p=40 for leukemia dataset.
« p=30 for NCI 60 dataset.
— Predictors are constructed and error rated are
obtained by applying the predictors to the testing
set.

48
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Results

* In the main comparison of Dudoit et al, NN
and DLDA had the smallest error rates,
FLDA had the highest

* For the lymphoma and leukemia datasets,
increasing the number of genes to G=200
didn't greatly affect the performance of the
various classifiers; there was an
improvement for the NCI 60 dataset.

* More careful selection of a small number
of genes (10) improved the performance of
FLDA dramatically 5

Comparison study — Discussion ()

“Diagonal” LDA: ignoring correlation
between genes helped here. Unlike
classification trees and nearest neighbors,
LDA is unable to take into account gene
interactions

Although nearest neighbors are simple and
intuitive classifiers, their main limitation is
that they give very little insight into
mechanisms underlying the class
distinctions

54

Comparison study — Discussion (ll)

* Variable selection: A crude criterion such as
BSS/WSS may not identify the genes that
discriminate between all the classes and
may not reveal interactions between genes

» With larger training sets, expect
improvement in performance of aggregated
classifiers

55
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We shall present two methods for clustering microarray gene
expression data:

e GENE SHAVING (Hastie et al, 2000):

— Extracts coherent and typical small clusters of genes
that vary greatly across samples.

— Seeks different clusters where difference is measured
by correlation of the cluster means.

— Software development: GeneClust

o MIIXTURE-MODEL BASED CLUSTERING (McLachlan
et al 2001):

— Based on mixtures of ¢ distributions and mixtures of
factor analyzers

— Three part process:
* Selection of relevant genes;
x Clustering of the selected genes;

x Clustering of the tissues on the basis of the selected
genes or gene clusters.

— Software development: EMMIX-GENE



Clustering of Microarray Gene Expression Data
1. Unsupervised: Class discovery

e Only expression data is available

e Existing clustering techniques: hierarchical, K-means,
self-organising maps, support vector machines, etc.

2. Supervised: Class prediction

e A response measurement is available for each sample
e.g. group membership, survival time

e The problem is difficult because:

— Many correlated genes relative to few samples

— Want to describe how groups of genes work together
to predict outcome, not "variable selection”

— Existing methods such as tree-based classifiers, dis-
criminant analysis, neural networks, etc. may not
work well.



MOTIVATION FOR GENE SHAVING
1. CRITERION for “optimal” cluster of genes:

Favor subsets of genes that are similar and show large
variance across cell lines — Var (Cluster average)

2. GOAL: Seek a sequence of nested gene clusters S;. s.t.
Var(cluster mean) is maximal over all clusters of size k.

3. FIND a subset of rows of S;. that maximize between col-
umn variance.

(a) Greedy Bottom-up strategy : simple but short-sighted
for large clusters

(b) SEEK a weighted average of genes with maximal vari-
ance.

Gene-shaving is an iterative algorithm based on the princi-
pal components or the singular value decomposition (SVD)
of the data matrix, with a twist.



PC Shaving Algorithm (Hastie et al, 2000)
1.

Start with the entire expression matrix AN yxp, €ach row
centered to have zero mean,

. Compute the leading PC of the rows of A, the super

gene,

. Shave off (discard) the proportion o (10%) of the rows

having lowest correlation (inner—product) with the super
gene,

. Repeat steps 2 and 3 until only two genes remain. This

produces a sequence of nested gene clusters A = By D
B1 D By D ... D Bg, where S denotes the number of
total shaving iterations.

. Estimate the optimal cluster size k using the Gap statis-

tic, let Cypt denote the optimal cluster found.

. Orthogonalize each row of A with respect to Cyyt, the

column average of C)y.

. Repeat steps 1 — 5 above with A, to find the second

optimal cluster. This process is continued until a maxi-
mum of M clusters are found, with M chosen apriori.



Choice of cluster size via the Gap statistic

1. Goal: Select clusters that simultaneously exhibit large
variances between samples and high similarity between
gene rows in the cluster.

2. ANOVA analogy: Percent variance explained

Ve Ve/Viy
VT 1+ VB / VW

R*(By) = 1002

|: . Z Qij — -j)2] ) (1)

ZEB

’BM—‘

Q [

~—~
N)

~—

33
30

’BI*—‘

VT—VB+Vw—

Z Z aij —a. 3)

Large R? — tight clusters of coherent genes.

3. Gap function for cluster By of size ks is defined as
Gap(ks) = Ry, (Bs) — Rj;". (4)

kopt maximizes the Gap statistic over all values of ks €
{2,3,...,N}.

4. Plot Gap functions and percent variance curves.



Figure 3: Gene-shaving process for a simple example
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Computational Efficiency

1.
2.

Repeated computation of the largest PC of N genes.
Singular value decomposition: UAV’ of A where

e [/ isan N x N orthogonal matrix,

o\ = dz’ag(\/xl,...,\/xr) where A\ > Ao > ... >
A > Mg ==y =0, 1
e V/ is a p X p orthogonal matrix.

. The columns of U are eigenvectors of AA’, and the

columns of V are the eigenvectors of A’A.

. The eigenvector corresponding to the largest eigenvalue

of AA" is the first column of U: its elements form the
loadings corresponding to the first principal component

of AA’.

. Computational efficiency can be enhanced by deriving

only the first column of U.



SUPERVISED GENE SHAVING
1.

Let C} = a;5(¢ = 1,...,k;j = 1,...p) with corre-
sponding column average vector a.

. Aim: Find similarly expressing gene clusters that simul-

taneously have large variances but also discriminate well
between the pre-determined classes.

. Define Q1 to be a g X p matrix; each element ¢;; in

the it" row of QT takes nonzero values of \/Ln— if the jth

(4

sample belongs to group G;.

.Define AT = A(Q), an N X g matrix whose rows are

standardized versions of the class means for each gene.

. The cluster C}. of rows of the data matrix A with maximal

between-group wvartance is also the cluster that maxi-
mizes the sum of squares of the mean of the rows of AT,
a matrix with fewer columns than A.

. Perform shaving algorithm on AT, but orthogonalize A.

. General supervised gene shaving method is based on max-

imizing a weighted combination of the column means
variance and the information measure

maXC’k(l — w)VCI/I“(C_O -+ wjy(d) (5)
where w € [0, 1].



GeneShave Cluster Plots
Cluster # 1
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Figure 4: Heat maps of the first two unsupervised gene shaving clusters for the colon data, sorted by the column
mean gene

Cluster 1: Specific genes highly expressed in tumors, 25
tumours grouped to the right.

Cluster 2: Pattern of high expression in tumor versus normal,
orthogonal to CLuster 1.
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GeneShave Cluster Plots
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Figure 5: Heat maps of the third and fourth unsupervised gene shaving clusters for the colon data, sorted by the
column mean gene

Cluster 3: Specific genes under expressed in the old protocol (first 11 patients) grouped
to the left.

Cluster 4: Pattern found not coinciding with any known external classification.
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Figure 7: Heat maps of the first two gene shaving clusters for the colon data with full supervision; the samples

are sorted by the column mean gene.

CLUSTER 1: Classifies normals versus tumours with an error

rate of 6, comparable to other methods.
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Figure 8: Heat maps of the first two unsupervised gene shaving clusters for the NCI60 data; the samples are
sorted by the column mean gene.

CLUSTER 1 (96 genes): Leukemia to left, renal to right.
CLUSTER 2 (56 genes): Specific genes that underexpress or overexpress for melanoma

and several breast tissues.
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Figure 9: Heat maps of the third and fourth unsupervised gene shaving clusters for the NCI60 data; the samples

are sorted by the column mean gene.

CLUSTER 3 (8 genes): Highly expressed genes for most CNS and leukemia.

CLUSTER2 (4 genes): Overexpressed genes for breast cell lines and breast tissues.
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SOFTWARE IMPLEMENTATION

1. GeneShaving: for both unsupervised and supervised
analyses, in SPlus and R. The source code is available
from the StatLib S-archive collection at

http://lib.stat.cmu.edu/S/

2. Geneclust has a graphical user interface (GUI) written
in JAVA.

JAVA GUI invokes the back-end statistical analysis pro-
cess. Thisisan S-PLUS (or R) application with which the
GUI communicates using a pseudo-terminal. The com-
putationally intensive gene shaving algorithm is imple-
mented using C, and is dynamically loaded into S-PLUS
(or R) to perform the analysis. After the clusters have
been extracted, the S-PLUS (or R) application presents
the analysis results graphically.

Available versions: Solaris, Linux
Future version: Windows NT

http://odin.mdacc.tmc.edu/"kim/geneclust



Selection of relevant genes by EMMIX-GENE
(McLachlan et al 2001)

e Due to the possible presence of atypically large expression
values for a particular tissue in the microarray data, it is
better to use mixtures of £ components as opposed to
mixtures of normal components.

e When assessing the relevance of a gene, we examine
—21log A where A is the likelihood ratio statistic for test-
ing g = 1 versus g = 2 components in the mixture model.

e Although the ¢ mixture model may provide robust esti-
mates of the underlying distribution, it does not provide a
robust assessment of the number of clusters in the data.

o lf
—2log A\ > by (6)
then the gene is taken to be relevant provided that
Smin = b2, (7)

where s,i,, is the minimum size of the two clusters im-
plied by the two-component ¢ mixture model and b9 is a
specified threshold.

[213)



e If (6) holds but (7) does not for a given gene, then the
three-component ¢ mixture model is fitted to the tissue
samples on this gene, and the value of —2log A calculated
for the test of g = 2 versus g = 3;

12

10

NN NN

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2

Figure 10: Histogram of Gene 474 (T70046) with Mixture of ¢ = 3 Fitted ¢ Components

e If (6) holds for this value of —2log A, the gene is se-
lected as being relevant. Although the null distribution
of —2log A for g = 2 versus g = 3 is not the same as for
g = 1 versus g = 2 components, it would appear to be
reasonable here to use the same threshold (6).
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Clustering of genes by EMMIX-GENE

e The genes are clustered into a user-specified number ( Ny)
of clusters by fitting a mixture of ¢ = /Ny normal distribu-
tions with covariance matrices restricted to being equal
to a multiple of the p X p identity matrix.

e The clusters of genes are ranked in terms of the likelihood
ratio statistic calculated on the basis of the fitted mean
of a cluster over the tissues for the test of a single versus
two t-distributions.

e New software adaptation of EMMIX available at

http://www.maths.uq.edu.au/"gjm/emmix/emmix.

A



Clustering of tissues by EMMIX-GENE

e The tissues are clustered by fitting mixtures of factor
analyzers to the genes. Factor analysis can be used for
dimensionality reduction by modeling X ; as

XjZ,u—I—BUj—I—ej j=1,...,n), (8)

where U is a g-dimensional (¢ < p) vector of latent
factors and B is a p X ¢ matrix of factor loadings.

e The U; are assumed to be .d.) as N(O,1;), indepen-
dently of the errors €, which are assumed to be i.i.d.
N(O, D), where

D = diag (0%, L 0]29),

and where I, denotes the ¢ X ¢ identity matrix.

e [hus, conditional on the usj, the X]- are independently
distributed as N(x + Bu;, D).

e Unconditionally, the X]- are i.i.d. according to a normal
distribution with mean mu and covariance matrix

> =BB'! +D. (9)

e At each iteration the inversion of the current value of the
p X p matrix (BB! + D) can be undertaken using only
inverses of ¢ X q matrices



Figure 11: Heat maps of the twenty EMMIX-GENE clusters for the colon data
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SIMULATIONS

e Binary model:
Generated data with N=200 genes , p=20 samples.

Ajj = Si; + €
where e;; ~ N(0, 1);
for 1<i<10 s =2a(j/20)7 — a(l < j < 20)
for ¢ > 10 Sij = 0.
e Numerous Plaid models

e Assess performance by number of correct genes (out of
10) identified in the first cluster
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SIMULATION RESULTS
e (3 fixed, better clustering results with larger a(> 2.0)

e o = 2.0 fixed, clustering results do not seem to exhibit a
clear pattern with varying (3

e Gene shaving favors balanced samples

e Assuming balanced sample size, if the true cluster size
is n, then require at least n samples and n tumors to
achieve > 50% clustering power. Power increases with
amplitude of signal.



15

GeneClust
Kim-Anh Do, Bradley Broom, Sijin Wen

Abstract

Two-way clustering techniques—such as hierarchical cluster-
ing, K-means clustering, tree-structured vector quantization, self-
organizing map, and principal components analysis—have been used
to organize genes into groups or “clusters” with similar behavior
across relevant tissue samples or cell lines. However, these proce-
dures seek a single global re-ordering of the samples or cell lines for
all genes, and although they are effective in uncovering gross global
structure, they are much less effective when applied to more com-
plex clustering patterns; for example, where there are overlapping
gene clusters. This chapter describes gene shaving (Hastie et al.,
2000), a simple but effective method for identifying subsets of genes
with coherent expression patterns and large variation across samples
or conditions. After summarizing the gene shaving methodology, we
describe two software packages implementing the method: a small
package written in S (useable in either S-PLUS or R), and a consid-
erably faster, mixed-language implementation with a graphical user
interface intended for more applied use. The package can perform
unsupervised, fully supervised, or partially supervised gene shaving,
and the user is able to specify various parameters pertinent to the
algorithm. The package outputs graphical representations of the ex-
tracted clusters (as colored heat maps) and diagnostic statistics. We
then demonstrate how the latter tool can be used to analyze two
published data sets (the Alon colon data and the NCI60 data).

15.1 Introduction

Two-way clustering techniques have been explored by many researchers in
the field of bioinformatics to organize genes into groups or “clusters” with
similar behavior across relevant tissue samples or cell lines. Such methods
include hierarchical clustering, K-means clustering, tree-structured vector

This is page 1
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quantization, self-organizing map, and principal components analysis, to
name a few. These procedures seek global organization of genes and samples
and are effective in uncovering gross global structure by seeking a single
re-ordering of the samples or cell lines for all genes. However, the power
of these methods are challenged by more complex clustering patterns. For
example, distinct gene groups may cluster the samples in different ways;
or there may exist overlapping gene clusters where the genes in cluster C
may suggest discrimination between cancer groups G; and G4, say, while
the genes in cluster C5, possibly including some genes in C7, may suggest
a different way to distinguish between cancer groups G3 and G4.

Gene shaving (Hastie et al., 2000) is a simple but ingenious method that
was proposed with the aim to resolve these issues. The development of the
gene shaving methodology was motivated by the research goal to identify
distinct sets of genes whose variation in expression could be related to a
biological property of the tissue samples.

15.2 Methods

Let X = x;; be a row-centered J x I matrix of real-valued measurements
representing the gene expression matrix, assuming no missing values. The
rows are genes, the columns are tissue samples or cell lines, and zj; is the
measured (log) expression, relative to a baseline.

15.2.1 Algorithm

Gene-shaving is an iterative algorithm based on the principal components
or the singular value decomposition (SVD) of the data matrix. It starts with
the entire micro-array gene expression matrix X and seeks a function F' of
the genes in the direction of maximal variation across the tissue samples.
The general algorithm for gene shaving may be described in the following
steps:

e Step 1: Calculate the simplest form of the function F' as a normal-
ized linear combination of the genes weighted by its largest principal
component loadings, referred to as the super gene. The genes may be
sorted according to the principal component weights.

e Step 2: A fraction « of the genes having lowest correlation (essentially
the absolute inner product) with the super gene are then shaved off
(discarded) from the original data matrix.

e Step 3: The process of calculating the leading principal component
and shaving off some genes is iterated on the reduced data matrix
until only two genes remain. This iterative top-down process produces
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a sequence of nested gene blocks of sizes ranging from the full set of
J genes down to the final block consisting of just two genes.

e Step 4: Select the optimal cluster size based on a quality measure.
In particular, to select the optimal number of genes in the cluster
we use a Gap function, which is based on the between and within
variances of the gene blocks computed from the raw data matrix and
its permutation. The number of permutations should be specified a
priori.

e Step 5: Remove the effect of genes in the optimal cluster, C; say,
from the original matrix X. By computing the average gene or the
vector of column averages for C1, denoted by C4, we can remove the
component that is correlated with this average. This is equivalent to
regressing each row of X on the average gene row C}, and replacing
the former with the regression residuals. Such a process is referred to
as orthogonalization (Hastie et al., 2000), from which a modified data
matrix X,¢ho is produced.

o Step 6: With X,.1n0, the whole process is repeated of calculating
the leading principal component, producing another nested sequence
of shaved gene blocks, applying the Gap statistic to obtain the next
optimal cluster C5, and orthogonalizing the current data matrix. This

sequence of operations is iterated until M gene clusters Cy,...,Cy
are found. The number of clusters to find, M, should be specified a
PTIOTI.

e Step 7: For visual inspection, display graphically the derived M gene
shaving clusters and corresponding variance and Gap plots.

To allow for negatively correlated genes to be included in a cluster, the
average gene is actually a signed mean gene, that is if a gene row has
a negative principal component weight, then the signs of the expression
values are flipped before the average is calculated. The shaving process
requires repeated computation of the largest principal component of a par-
ticular data matrix X or its subset (after at least one step of shaving).
This process is easily implemented using the singular value decomposi-
tion UAV' of X where U is an J x I matrix with orthonormal columns,
A =diag(vA1,..., VA1) where Ay > Ao > ... > A\ > Ay == A\ =0,
and V is an I x I orthogonal matrix. The columns of U are eigenvectors of
X X', and the columns of V are the eigenvectors of X’'X. Since the eigen-
vector corresponding to the largest eigenvalue of X X’ is the first column
of U; its elements form the loadings corresponding to the first principal
component of X X’. At each step of the shaving process, it is not required
to compute the complete SVD of the data matrix. Computational efficiency
can be enhanced by deriving only the first column of U.
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15.2.2  Choice of cluster size via the Gap statistic

One important goal for any clustering technique is the ability to assess
whether the extracted cluster is real, that is, we should be able to distin-
guish real patterns from random small clusters. Tibshirani and colleagues
investigated a somewhat similar problem: estimation of the false discovery
rate in the context of detecting differential gene expression in DNA mi-
croarrays (Tusher et al., 2001; Storey and Tibshirani, 2003). In the context
of gene shaving, the Gap statistic was devised for selecting a reasonable
cluster size from the sequence of nested gene blocks (Hastie et al., 2000).
Further theoretical and simulation results (‘Tibshirani et al., 2001) showed
that the Gap statistic usually outperforms other methods proposed in the
literature in its ability to estimate the actual number of clusters or groups
in a set of data. The Gap test is an adaptation of the usual permutation test
based on randomization and an appropriate definition of a quality measure,
or test statistic, of each cluster. In other words, under the null hypothesis
that the rows and columns of the data matrix are independent, the per-
muted version of X, obtained by permuting the elements within each row
of X, should “look” the same as the original X. Thus, if we obtain many
permutations X* of X and compute any test statistic T'(X*) repeatedly, we
can obtain the null distribution of T If the independence (or no structure)
hypothesis were true, we would expect T' to behave like what we see in the
repeated permutations. For our purposes here, the definition of 7" should
reflect our ultimate goal of selecting clusters that simultaneously exhibit
large variances between samples and high similarity between gene rows in
the cluster. Established methods for a two-way analysis of variance can be
adapted to our situation where the choice of a cluster size is governed by
some function of the between-to-within variance ratio. After s shavings, let
B, denote the resulting gene block of k£ rows with elements x;;. Define the
percent variance explained as

VB VB/VW
R*(B;) =100 X ———— =100 X ——~———
( ) XVB+VW X1+VB/VW

where Vi, Vg and Vp denote the within, between, and total variances for
the gene block Bs. The range of R? is over the interval [0, 1] where values
close to 0 imply no clustering evidence, while values closer to one imply
tight clusters of similarly expressing genes. R? for a gene block of size k,
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can be explicitly computed by the following formulae

The Gap function for the gene block B; of size ks is defined as
Gap(ks) = R, (B,) — Ri*. (15.4)

where R%’; denote the averaged estimated value of the percent variance
explained by blocks of size ks, computed from NumPerm permutations.

The optimal cluster size is the value k,,; that maximizes the Gap statistic
over all values of ks € {2,3,..., N}. Implementation of the Gap statistic
criterion is enhanced by plotting the percent variance curve Ris (Bs) for
the observed data matrix, versus the corresponding averaged curve R%;‘ for
the collection of permuted data matrices, as a function of ks € {2,...,N}.
Alternatively, one can also include a plot of the computed values of Gap(ks)
against ks € {2,..., N}. Since the optimal cluster size usually assumes a
small integer, these plots are more meaningful if depicted on the log scale.

The problem of estimating the number of clusters and finding the optimal
cluster size in a dataset is a difficult one since there is no clear definition of
a “cluster”. Simulation studies have demonstrated that the Gap estimate is
good for identifying well separated clusters (Hastie et al., 2000). However,
when data are not clearly separated into groups, different people might have
different opinions about the number of distinct clusters. In practice with
DNA microarray data, the Gap curve plots often exhibit some flatness near
the maximum, or may have more than one peak that are almost equivalent.
A practicing biologist often wishes to explore further those genes next in
line to the ones in the cluster corresponding to the estimated maximum
Gap value. Therefore, graphing the Gap statistic with respect to increasing
cluster size is important. Further to this aim of exploratory analysis, a more
relaxed or flexible method for cluster size selection is to choose a cluster
with a larger size than the optimal cluster but still maintaining a Gap
statistic within a small percentage of the maximal Gap statistic, say 5%.
In our implementations, we refer to this parameter as the Gap Tolerance,
where a Gap Tolerance of O refers to cluster sizes corresponding to the
maximum Gap estimate.
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15.2.8 Supervised gene shaving for class discrimination

Either fully or partially supervised shaving with the ultimate aim of class
discrimination can be carried out if the column (sample) groupings is
known. Briefly, supervised shaving maximizes a weighted combination of
column variance and an information measure that depends on the nature
of the auxiliary information. Let By denote a generic cluster of k genes

where By = z;(j =1,...,k;I =1,...I) with corresponding column aver-
age vector Tpg,. Suppose there are c¢ classes or categories where ¢ < I. Let
Y = (y1,-..,yr) denote a vector of integers indicating class membership

for each sample. For example, if the data samples represent normals and
tumors then Y can take a value of 1 if the sample came from a normal
tissue, or a value of 2 if it was extracted from a tumor sample. Let class
averages be denoted by Zciass = (Tnormals, Ttumors) Which represent the
average expression of all genes in the gene block B summed over the class
of normal or tumor tissues respectively. Thus a measure of class discrimina-
tion can be represented as Var(Z.iqss ). Under principal component shaving,
it can be proven that

Var(zp,) = w(XTX)w,

where w = (wy, ..., wy) represent the principal component loadings associ-
ated with each gene in the original data matrix, and X' is a i J x ¢ matrix
whose rows are standardized versions of the class means for each gene.
Define an information measure Jy (Zp,) to be an appropriate quadratic
function of the column averages zp,, then the general supervised gene
shaving method is based on maximizing a weighted combination of the
column means variance and the information measure

(1—-w)Var(zg,) +wIy(Tr,) we€][0,1], (15.5)

over all possible clusters of sizes ranging from 2 to J. Full supervision is
equivalent to w = 1; while partial supervision is indicated by values of
w between 0 and 1. The equation (15.5) presents a compromise between
supervised and unsupervised clustering. In the context of class discrimina-
tion, an indicator vector with the length of samples is needed to specify
the external classification of the samples; the information measure is then
taken as the sum of squared differences between the class averages. For a
more detailed discussion of the methodology development and extension in
the context of general supervision, see Hastie et al. (2000).

15.3 Software

15.3.1 The GeneShaving package

We have implemented the gene shaving method, for both unsupervised
and supervised analyses, in an S-language package we call GeneShav-



15. GeneClust 7

ing. The source code is available from the StatLib S-archive collection at
http://1lib.stat.cmu.edu/S/.

To illustrate the gene-shaving methodology, and in particular the use of
the GeneShaving package, we present below a simple example involving
simulated data. We generated a data matrix X of J genes and I sam-
ples. Each element z;; consists of a simple signal sj; that can take values
—H,0,+H, and noise €j; ~ N (0, 1). Specifically, for K an even integer less
than J let

Tji = Sj;i + €ji; (15.6)
. [ -H i i<I)2
for 1 <j<K/2: Sji—{_|_H if i>1/2
' —H if 1 odd
for K/2<j<K: Sji—{ +H if i even
for j > K : s5i = 0.

For example, suppose that a data frame demo.dat is generated by taking
H =25, J =100, K =40 and I = 40.

> dim(demo.dat)

[1] 100 40

# 100 genes (rows) and 40 samples (columns)
> demo.dat[(1:5), ]

# part of the data frame (first 5 genes)

S1 S2 S3 S4 S5
G1 -2.207234 -1.480847 -2.177457 -4.260801 -3.407388
G2 -3.793671 -2.979609 -3.069576 -3.474391 -1.611161
G3 -2.108358 -3.166314 -3.811151 -4.053201 -3.869151
G4 -3.112067 -2.992520 -2.024178 -3.646037 -4.109120
G5 -4.371155 -5.390998 -1.957976 -3.270669 -2.245929

S36 S37 S38 S39 540
5.052145 4.323419 2.703080 2.548090 4.489734
1.713629 3.588597 2.443339 3.032010 2.852629
2.743546 3.445167 4.670663 2.045603 2.986980
2.964064 1.041393 2.827109 3.781293 2.153697
2.241520 3.447944 3.595235 4.946946 2.183231

Tts heat map on the gray scale, Figure 15.1, was produced by the image()
function in S-PLUS.

The S-PLUS function shave() implements unsupervised gene shaving. It
has three parameters:

e X the gene expression micro-array data. It is a data frame with gene
names (rows) and sample names (columns).
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Figure 15.1. Image plot of the simulated data

675 -

¢ NumClusts, the number of clusters to extract.

e NumPerm, the number of permutations used to select the optimal
cluster size by the Gap function.

For instance, to extract two gene clusters using 5 permutations, the inputs
of shave() are

1. the S-PLUS data frame demo.dat,
2. the number of clusters (i.e., 2), and

3. the number of permutations (i.e., 5).
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The shave() function returns the gene labels belonging to each extracted
cluster.

> shave(demo.dat,2,5)

## this is the output of gene labels for cluster #1:
[1] ||G1|| |IG2|| IIGBH l|G4|I IIGSII |IG6|| ||G7||
[8] "G8" "G9" "G10" "G11" "G12" "G13" "G14"

[15] "G15" "G16" "G17" "G18" "G19" "G20"

## this is the output of gene labels for cluster #2:
[1] "G21" "G22" "G23" "G24" "G25" "G26" "G27"
[8] "G28" "G29" "G30" "G31" "G32" "G33" "G34"

[15] I|G35|I |IG36|| IIGB7II ||G38l| I|G39II I|G4OII

The shave() function also outputs, for each extracted cluster, three plots:
e the percent variance explained by the actual and permuted data,
e a gap plot,
e a cluster plot (heat map) of the genes.

Figure 15.2 shows the plots output by shave() for the two clusters extracted
from the simulated data.

Suppose that instead of unsupervised shaving we wish to perform a su-
pervised shaving procedure. Perhaps the 40 samples (columns) in demo.dat
are classified into two groups, with the first 20 samples in the first group
and the last 20 samples in the second group. Thus an indicator vector can
be constructed and is coded 1 for the first 20 samples (columns) and coded
2 for the last 20 samples (columns):

>clf <- c(rep(1,20),rep(2,20)) #indicator vector
> clf

[1J 111111111111 11111111
[11] 2222 2222222222222222
Since there are only two classes of samples, we should only try to find a
single cluster. In the general scenario of more g > 2 classes, the number of
clusters to consider can be greater than g to cover both the main effects
and the possible interactions between the different classes.

In the GeneShaving package, the S-PLUS function super.part() imple-
ments supervised gene shaving. The outputs for super.part() are the same
as those in shave(); however, the inputs are slightly different:

e X: gene expression micro-array data. It is a data frame in S-PLUS
with gene names (rows) and sample names (columns).

e clf: an indicator vector to indicate the sample classification.

e lam: supervision parameter - fully supervised shaving is carried out
if lam = 1; partially supervised shaving is carried out if lam takes a
value between 0 and 1.
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Figure 15.2. Gap plots, variance plots, and the derived clusters from applying

unsupervised gene shaving to the simulated data.
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Y%variance= 90.0 VB/VW= 9.94 VB= 4.8 VT=5.28 Y%variance= 90.2 VB/VW= 9.15 VB= 4.62 VT=5.12

e NumClusts: the number of clusters to extract.

e NumPerm: the number of permutations for selecting the optimal
cluster by the Gap function.

## fully supervised shaving with 5 permutations
## 2 clusters to extract

> super.part(demo.dat,clf,1,2,5)

## this is the output of gene labels for cluster #1:
[1] I|G1II IIGQII IIG3|| IIG4|I I|G5II I|G6l| ||G7II IIG8II
[9] I|G9II I|G10I| IIG11II IIG12" I|G13I| I|G14I| ||G15|| IIG16|I

[17] I|G17I| IIG18|I IIG19II IIG2OI|

## this is the output of gene labels for cluster #2:
[1] "G21" "G23" "G30" "G40" "G69"

The outputs including gap plots, variance plots, and heat maps of the
derived clusters under full supervision are shown in Figure 15.3. Observe
that the first cluster gives a perfect discrimination of the samples (samples
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Figure 15.3. Gap plots, variance plots, and the derived clusters from applying
fully supervised gene shaving to the simulated data.
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S1-S20 versus samples S21-S40). The second cluster is orthogonal to the
first derived cluster and groups the even numbered samples together versus
the odd numbered samples. Since full supervision was employed, the whole
process was dominated by the external classification pattern (captured by
cluster 1), and only the strongest genes for the alternative clustering pattern
emerged in cluster 2, suggesting that further exploration is required here,
such as a partially supervised analysis.

15.3.2 GeneClust: a faster implementation of gene shaving

The GeneShaving package described above has two significant limitations
that prevent its routine use in clinical data analyses:

e it is far too slow, and
e it is only usable by S programmers.

We have developed the GeneClust software package to address these
issues.
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GeneClust has a graphical user interface (GUI) written in JAVA. Figure
15.4 shows the initial GUI interface. The GUI allows users to

e Perform a simple one-way hierarchical clustering by genes or by
samples;

e Perform unsupervised, fully supervised, or partially supervised gene
shaving; if the latter is chosen the user can also select the amount of
partial supervision;

e Specify the number of clusters to extract, the percent to shave for
each iteration, the number of permutations used to calculate the Gap
statistic, and the level of Gap tolerance.

GeneClust may be used either to analyze a real data set by selecting the
Raw Data mode, or to investigate the performance of gene shaving for
simulated data sets that are variations of the model (15.6), by selecting the
Demo mode.

When the user starts the gene shaving procedure, the GUI invokes the
back-end statistical analysis process. Because this is an S-PLUS (or R)
application, with which the GUI communicates using a pseudo-terminal,
either S-PLUS or R must be installed (see Chapter 1). The computationally
intensive gene shaving algorithm is implemented using C, and is dynami-
cally loaded into S-PLUS (or R) to perform the analysis. After the clusters
have been extracted, the S-PLUS (or R) application presents the analysis
results graphically.

The Geneclust software has been implemented for the Solaris and Linux
operating systems, and for the S-PLUS and R statistical programming
environments. For exact details and continuous updates, check the website:

http://odin.mdacc.tmc.edu/ kim/geneclust.

15.4 Applications

We demonstrate how GeneClust can be employed in the analyses of two
real published data sets: a colon data set (Alon et al., 1999), and the human
tumor NCI60 data set (Ross et al., 2000; Scherf et al., 2000).

15.4.1 The Alon colon data set

Alon and colleagues used Affymetrix oligonucleotide arrays to monitor ab-
solute measurements on expressions of over 6,500 human gene expressions
in 40 tumor and 22 normal colon tissue samples (Alon et al., 1999). These
samples were taken from 40 different patients so that 22 patients supplied
both a tumor and normal tissue sample. They focussed on the 2,000 genes
with highest minimal intensity across the samples. There was a change in
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Figure 15.4. A screen dump of the GeneClust GUI template
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the protocol during the conduct of the microarray experiments (Getz et al.,
2000). Tumor and normal tissue samples were taken from the first 11 pa-
tients using a poly detector, while the remaining tumor and normal tissue
samples were taken from the remaining 29 patients using total extraction
of RNA.

Before performing any clustering of this set, we processed the data by
taking the (natural) logarithm of each expression level in X. Then each col-
umn of this matrix was standardized to have mean zero and unit standard
deviation. Finally, each row of the consequent matrix was standardized to
have mean zero and unit standard deviation.

We then selected a 446-gene reduced Alon data set, as described in
Mclachlan et al. (2002), by selecting a subset of relevant genes based on the
likelihood ratio statistic —2log A calculated from fitting a single ¢ distribu-
tion versus a mixture of two ¢ components. The relevance of each of the J
genes was assessed by fitting one- and two-component ¢ mixture models to
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the expression data over the I tissues for each gene considered individually.
If —2log A is greater than a specified threshold b,
—2log A > by (15.7)
then the gene is taken to be relevant provided that
Smin > b2, (15.8)

where smin is the minimum size of the two clusters implied by the two-
component ¢t mixture model and by is a specified threshold. Following
McLachlan, we chose by = 8 and by = 8, thus retaining the reduced
Alon microarray data matrix X that has J = 446 rows and I = 62

Figure 15.5. Heat map of the reduced Alon colon expression array of 446 genes
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columns. We have rearranged the data consecutively so that the first 40
columns correspond to tumor samples followed by 22 columns of normal
tissues. Further, the first eleven tumor columns are matched with the first
eleven normal columns by patient. Figure 15.5 displays the observed gene
expression matrix X of 446 genes.

We investigated the performance of unsupervised gene shaving when ap-
plied to the reduced Alon data set of 446 genes. We applied GeneClust
with a Gap Tolerance of 5% which allows us to pick larger cluster sizes
than those dictated by the Maximum Gap criterion. The first four orthog-
onal unsupervised clusters along with their corresponding variance and Gap
plots are presented in Figures 15.6 and 15.7. The columns in the heat maps
are sorted according to the column averages. Estimated eigenvalues, R?
and between to within variance ratios are also printed beneath the heat
map for each cluster. The first cluster corresponds to a relatively small
between-to-within variance ratio of 1.72 and does not seem to reflect any
pattern resembling the normal versus tumor or change in paradigm exter-
nal classification. It can be seen, however, that cluster 2 (19 genes) consists
of two negatively correlated subclusters that capture the normal versus tu-
mor structure quite well showing genes that are either under expressed or
over expressed for most of the normal tissues (clustered to the right). In
contrast, the change in paradigm structure is reflected in cluster 3 (7 genes)
where most of the normal and tumor tissues corresponding to the first 11
patients are clustered to the right. A number of muscle-specific genes have
been identified as being characteristic of normal colon samples (Ben-Dor
et al., 2000). We note that two of these genes (J02854, T60155) along with
two suspected smooth-muscle genes (M63391, X74295) are included in the
second cluster. Clusters 2 and 3 also correspond to high R? estimates of
around 70% or more and large values of Vg /Viy (2.3 and 5.6 respectively).
Inspection of the variance and Gap curves can also be informative. The
variance curves are well separated for all four clusters indicating that the
clusters found are not entirely random. Except for cluster 3 with a clear
maximum at a cluster size of 9, the Gap curves for the other clusters exhibit
some flatness to the right of the maximum, suggesting that it is worth ex-
ploring additional genes in slightly larger cluster sizes than those presented
here.
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Figure 15.7. Alon data set. (a) Variance plots for the original and randomized
data. The percent variance explained by each cluster, both for the original data,
and for an average over twenty randomized versions. (b) Gap estimates of cluster
size. The Gap curve corresponds to the difference between the pair of variance
curves.
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15.4.2 The NCI60 data set:

The second data set we analyzed is the cDNA microarray gene expression
data collected by the National Cancer Institute’s Developmental Therapeu-
tics Program (DTP) (Ross et al., 2000). The gene expression represents 60
cancer cell lines (the NCI60) and contains 9,703 spotted cDNA sequences.
The cell lines are derived from tumors with different sites of origin: 7 breast,
5 central nervous system (CNS), 7 colon, 6 leukemia, 8 melanoma, 9 non-
small-cell-lung carcinoma (NSCLC), 6 ovarian, 2 prostate, 9 renal, and one
unknown. The fluorescent cDNA targets were prepared from an mRNA
sample using red dye Cyb, while the reference sample used green dye Cy3.
All hybridizations were prepared by pooling equal mixtures of mRNA from
12 of the cell lines. Independent microarray experiments using a leukemia
cell line (K562) and a breast cancer cell line (MCF7) were each grown in
independent cultures to investigate the reproducibility of the entire exper-
iment. As in Dudoit et al. (2001), we performed some pre-processing steps
including: (i) from the 60 tumor cell lines, we excluded the two prostate
cancer cell line observations and the unknown cell line observation, the re-
maining are labeled BREAST-BREAST7, CNS-CNS5, COLON-COLONT?7,
LEUK-LEUK6, MELA-MELAS8, NSCLC-NSCLC9, and OVAR-OVARS,
RENAL-RENALSY; (ii) retained four of the independent cell line experi-
ments (labeled K562A, K562B), (iii) screened out genes with more than 2
missing data points; (iv) for genes with two or fewer missing data points,
imputation was performed by replacing the missing entry with the average
of the corresponding entries from 5 nearest neighboring genes (in terms of
correlation). Our final matrix X thus consists of 5244 genes (rows) and 61
samples (columns) where zj; denotes the natural logarithm of the red/green
fluorescence ratio for gene j in sample i. Figure 15.8 displays the observed
gene expression matrix X.

A fully supervised gene shaving analysis of the NCI data set was
performed. The first four supervised clusters obtained from running
GeneClust with a 5% Gap Tolerance based on 5 permutations are pre-
sented in Figure 15.9. Cluster 1 (86 genes) exhibits two subclusters that
group most of the leukemia samples to the left while the majority of the
renal tissue samples cluster at the rightmost of the heat map. Cluster 2
(33 genes), orthogonal to cluster 1, found a different set of genes that
specifically over express or under express for all melanoma tissues and sev-
eral breast tissues. Five genes that specifically over express for colon and
NSCLC cancers are displayed in cluster 3. The fourth cluster consists of
only three genes that seem to express highly for the two breast cell lines
and several breast tissues.
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Figure 15.8. The NCI60 human tumor expression array
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15.5 Discussion

We have presented a brief description of the methodological underpinnings
and implementation details of our software GeneClust for the clustering
of microarray gene expression data by the gene shaving approach. We il-
lustrated the simplicity of usage of our software via some simple tutorial
exercises based on simulated data, as well as its application to two real
published data sets. Often in practice, scientific investigators also wish to
evaluate how much of the dimensionality of the gene expression is captured
by the first few clusters derived from any specific method used. For gene
shaving, the expression profile for each gene in the original complete data
set can be explained as a linear combination of the super genes from each
gene-shaved cluster. Alternatively, one can also compute the relative sum
squares total for each cluster relative to that of the complete dataset, as
long as the number of overlapping genes between clusters is small. The
percent variance explained by the first K clusters from gene shaving can
be compared with those obtained from other methods, such as a full prin-
cipal component analysis, by appropriate plots (Hastie et al., 2000). In
the group discrimination context, the error rates can also be compared be-
tween methods. The gene shaving method finds clusters of genes in which
the gene expression varies greatly over the tissue samples while maintain-
ing a high level of coherence between the gene expression profiles. The
extracted clusters are orthogonal to each other and are of varying sizes, so
that once a specific structure is captured in one cluster, the same structure
will no longer be captured in subsequent clusters. However, overlapping
genes are allowed between clusters if such genes induce different groupings
of the columns (tissue samples). Gene shaving is also flexible in allow-
ing the user to apply any amount of supervision required during the data
analysis process. GeneClust is implemented with this flexibility in mind
and allows interaction with the user to choose the Gap Tolerance level as
well as the amount of supervision. GeneClust is at least a hundred-fold
faster than the GeneShaving package implemented fully in S, and hence
is recommended for real-time interactive analyses of large microarray data.
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