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Important focus of genetic research: common

complex diseases such as asthma, cancer.

Studies based on large numbers of twins or simple
pedigrees ascertained from population-based

sampling frames are becoming commonplace.

Many genetic and environmental factors causing

these conditions are unknown.

Even after all known determinants have been
taken into account, there is often a strong

residual covariance between relatives.

Basic family structures:

e Twins: Monozygotic (MZ) versus dizygotic
(DZ) twins,

e Nuclear families: Father, mother and
offsprings,

e Extended families: First-order, second-order
and higher order relationships.



Needs correct modeling, whether scientific interest

focuses on:
e Fixed effects, as in an association analysis,
e Covariances or correlations.

Analysis is complicated by the variety of types of

trait commonly encountered in genetic research:
e Normally distributed continuous traits,
e Binary and ordinal traits,

e Time-to-event endpoints.
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To model covariance structure associated with

multivariate Normal traits in nuclear families:

e Variance component models (Fisher 1918;
Hopper, 1993): ML, REML, GLS, WLS;

e Model fitting (Mather & Jinks 82; Lange et al
76; Neale & Cardon 92, Burton 95,
Gauderman et al 95): ANOVA, EM
algorithm, path analysis, multi-level
modeling, Bayesian methods;

e GEE methods (Liang & Zeger 86, Qaqish &
Liang 92): to handle fixed effects and

covariance structure;

e Regressive models (Bonney, 1984): generates
a Markov structure reflecting the serial

dependence of family members.



A conventional mixed linear model
Qij =PF'z+ Aijj + Cij + Cs,, + E;j (1)

();; is the observed value of a normally
distributed continuous trait for the j* individual

in the 7*" nuclear family:;

z;; 1s a vector of observed covariates representing
fixed effects, and [ is a corresponding vector of

unknown fixed regression coeflicients;

A;j,Cij, and Cg,; are random effects representing
additive polygenic, common family environment,
and common sibling environment effects

respectively.



The variation in an individual response is
represented by a composite covariance matrix, Vr,
and is the sum of an additive genetic covariance
matrix V4, a common family environment matrix
Ve, a shared sibling environment matrix Vg, and

residual environmental effects.
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Menopause Study (DO et al(1998) Human Biology)

e Age at menopause (AaM) in > 6000 twin individuals. AaM was
defined as age at last menstrual period, determined

retrospectively after a woman had stopped menstruating for 12
months.

e Potential covariates:

— Year of birth, zygosity (DZ or MZ), determined via
self-report (95

— Reproductive: Age at menarche, Age at first full-term
pregnancy, parity;

— Lifestyle: cumulative quantity of alcohol and smoking;

— Socioeconomic: Education, income, occupation, social class.

Objectives:
e Covariate effects on AaM, familial aggregation of AaM,

e Quantify the variance components.



Melanoma Study (Aitken et al 1996, DO et al 2000, submitted

JRSSC)

e Queensland Familial Melanoma Project: ascertained 12,016 first
incident cases of cutaneous melanoma giagnosed 1982-1990 and
reported to Qld Cancer Registry.

e Analysed 1.912 separate families with 15,989 relatives.

e Potential covariates (demographic and melanoma risk factors:

Gender, birth year, place of birth.

Ability to tan (very brown, moderate tan, slight tan, no tan)
Propensity to burn, number of sunburns,

Skin color (olive/dark, medium, fair, pale),

Hair color (black, brown, blonde, red),

Eye color (brown, green/hazel, blue/grey),

Total freckling in summer (0, 1-100, > 100),

Naevi (none, few, moderate number, very many),

Numerous measures of cumulative lifetime exposures.

Objectives: Investigate the relative contributions of genetic and

environmental effects on the age at onset of melanoma, and on the

expression of naevi and freckles.
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Preliminary Analysis: Cox PH and RPART (Therneau &
Atkinson 97)

Cox PH results:

An increase of one year in birth year induces 17%
increase in risk of earlier melanoma onset.

People with no freckles nor naevi have the lowest
risk of melanoma onset.

The risk of earlier melanoma onset is increased by
up to 36% for blue eyed people and even further
(46%) for green eyed people, when compared to
individuals with brown eyes.

“Red Heads” have an increased risk of earlier
melanoma onset (46%) when compared to
individuals with black hair. There was no
significant increase noted however for individuals
with fair or light red hair.

A person’s ability to burn easily increases the risk
of earlier melanoma onset, in some cases by up to
100% compared to those that never burn.
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Table 1: Results from fitting a multivariate proportional hazards
model to the melanoma data based on univariate results. The results re-
ported in this table are the parameter estimates (3, their standard errors

se(B), the relative risk eﬁ and the p-value for each estimate.

Variable B se(B) eB p-value
Birth Year 0.16 0.00 1.17 < 0.05
Eye Colour (Baseline: Brown)

- Blue/Grey 0.31 0.07 1.36 < 0.05
- Green/Hazel 0.38 0.07 1.46 < 0.05
Hair Colour (Baseline: Black)

- Light Red/Ginger 0.17 0.15 1.19 0.27
- Dark Red/Auburn 0.38 0.15 1.46 < 0.05
- Fair/Blonde 0.06 0.12 1.06 0.62
- Light Brown 0.14 0.12 1.15 0.22
- Dark Brown 0.02 0.12 1.02 0.87
Skin Type (Baseline: never burn)

- always burn 0.69 0.16 1.98 < 0.05
- usually burn 0.45 0.15 1.57 < 0.05
- sometime burn 0.31 0.15 1.36 < 0.05
Freckling (Baseline: none)

-1 to 100 0.17 0.06 1.18 < 0.05
- > 100 0.09 0.08 1.10 0.23
Mole Count (Baseline: none)

- few 0.29 0.07 1.34 < 0.05
- moderate 0.79 0.08 2.20 < 0.05
- many 1.12 0.10 3.08 < 0.05
Number of Sunburns (Baseline: none)

- one -0.07 0.11 0.93 0.49
-2to b -0.06 0.09 0.94 0.50
->6 0.17 0.09 1.19 0.07
Cumulative Sun Exposure (< 5 yrs) 0.04 0.01 1.04 < 0.05
UV Exposure (5-12 yrs) 0.0003 0.00 1 < 0.05
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Table 2: Concordant and Discordant Pairs of

Relatives in 1912 Families from the Queens-

land Familial Melanoma Project.

Probands

are not included for the calculation of concordancy.

Sib-Sib | Parent-Child | Second/Others | Total
++ 49 15 41 105
+- 763 536 1200 | 2499
- 7011 1078 9817 | 17906
Total 7823 1629 11058 | 20510
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Preliminary analysis for Menopause Data

e Mx was used to identify appropriate genetic model: ACE or
ADE?
ACE since TMzZz = 0.49, TDz = 0.33

e Cox regression was used to screen covariates for inclusion into
the model: Birthyear and smoking were highly significantly

associated with later AaM, parity, menarche, university

education were just significant.
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To accommodate age-at-onset outcomes:

1. Estimating equations: Hsu (PhD thesis 94), Hsu & Zhao
(Amer J Hum Genet 96), Hsu & Prentice (Biometrika 96).

2. The frailty (random effects) model: Clayton (Biometrika 78),
Clayton & Cuzick JRSSA 85), Self & Prentice (Proc SIAM
86), Oakes (JASA 89), Nielsen et al (Scnd J Stat 92),
Gauderman & Thomas (Genetic Epi 94), Meyer et al (Amer
J Hum Genet 91), McGilchrist & Yau (Aust J Stat 96),
Bandeen-Roche & Liang (Biometrika 96), Yashin,Vaupel &
lachine, Yashin & lachine (Mechanisms of Aging and
Development 95), Petersen, Andersen & Gill (Stat
Neerlandica 96), Hougaard (Lifetime Data Analysis 95).

Specific issues to consider:
e Plausibility of the model,
e Ease of numerical implementation,

e How well can it answer our fundamental questions.
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Frailty approach
e Introduce unobserved frailty (liability) for each family.

e Conditioning on frailty, each AaO outcome follows Cox PH
model independently.

e Frailty follows some parametric dist, often chosen for
mathematical convenience.

PROS

e Frailty model can be used to characterize major gene in
segregation analysis of correlated AaO outcomes (Gauderman &
Thomas 94).

e Can be used for modeling genetic and environmental effects
under restricted assumptions (Meyer et al 91).

CONS

e Computation requires double iterative procedure — may not be
feasible for large pedigrees.

e Restricted assumptions to model frailty.
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Estimating Equations approach

e For correlated outcome: extension of Liang & Zeger 86, Prentice
88, Zhao & Prentice 90.

e In modeling correlated phenotypes:

— Model the dependence of a phenotype on covariates via a
marginal regression model.

— Model the nature of correlation of phenotypes between
family members via correlation coefficients.

PROS
e Assume only existence of means and correlations.

e Stat inference is robust, only need pairwise distribution
assumptions.

e Manageable computing requirements.
CONS

e No known way to decompose total variation into genetic and
environmental components.
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Estimating equations

Y D, Wi F,=0.
k

D : Matrix of derivatives of mean and correlation
regression models wrt unknown parameters,

W : weights, can be arbitrarily chosen without
affecting estimation consistency,

F : deviations of observed phenotypes and
correlation functions from their expectations under
the assumed mean and correlation regression
models.
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Cox PH model for twins

T = failure time,

d = 1 (menopausal), 0 (censored),

X = observed age at menopause or censored age,

7 = (Z1,...,Z,) = vector of covariates,

K = Number of independent pairs of twins or families.

Data for the 4*" individual (i = 1, 2) from the k" pair is
(XkisOkir Zki)-

Model the hazard rate function:

Awi(8) = Ao (t)ezp(8 Zri)

where A\ is the baseline hazard function describing hazard rates in the
absence of covariates.

Obtain consistent and efficient estimators of 3 by maximizing the
partial likelithood

I — eacp(B/Z,L-)
I s iz

1€Eevents JER(t)
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EE for parameters in Cox model

Probability k" individual fails at time X}; given
covariates is:

Pr(k: = 1| Xki, Zki) = Mei(Xki)-

(I) EE: U= Y Zi {6s—Au(Xp,B)} =0.

families

where §, = (81, 0k2), A, = est cum hazard for kt"
family.

Solve p equations for p covariates.

A

Var(3) can accommodate correlation in the family.

Equation (I) is robust to departure of
misspecification of joint distribution among the
individuals within a family.
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Modeling familial aggregation of AaO

Th, T random survival times.

Marginal survival function: S;(t;) = P(T; > t;)

Joint survival function: S(t1,t2) = P(Th > t1,T2 > ta)
General odds ratio:

_ f(t1|T2 = t2)/S(t1|T2 = t2) B A1 (t1|T2 = ta)
(1T > t2)/S(t1|T2 > ta) A1 (t1|T2 > t2)

0" (t)

Clayton model: Constant odds ratio for each relation type.

Pr(Ty > t1, T > ta) = {Pr(Ty > t1) 4+ Pr(Ty > tp) =1}~/ @

146 € (0,00) is the odds ratio.

146 =1 at grid point (¢;,t;) <= Independence between two AaO
outcomes at that grid point.

14+ 6 — 1 gives maximal positive dependence.

Simplicity but no general estimation procedure for estimating odds
ratio that varies over time domain.
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EE for parameters in the odds-ratio

function

(II) EE: U= Z {ar12 (X1, Xi2)—ar12(Xe1, Xr2;0)}
families

where ag12 = [0g1 — Ak1(Xk1)] [0r2 — Ak2(Xk2)] =

sample covariance between twin 1 and twin 2 in k"

pair = product of differences between disease status

and expected mean.

12 IS the expected covariance function conditional
on (X1, Xg2) based on Clayton's model.
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Estimation procedure
Solve EE1 & EE2 simultaneously for (3, 9).
NO EXPLICIT SOLUTION = Newton-Raphson iterative procedure.

B1 _ Bo byt Ux

91 90 U2

Hsu (1994 PhD thesis) showed consistency & asymptotic normality of
estimates with robust covariance matrix that can be empirically
estimated from data.

- $(11)  y(12) S

1 »(21) 3 (22) 1o
where =(*1) s the information on the marginal parameters 5 from the
mean function, X(22) is the information on the dependence parameter
6@ from the covariance function, and »(21) is the information of the
marginal parameter 3 from the covariance function. See papers by
Hsu and co-authors for explicit mathematical formulation.
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A Bayesian analysis using BUGS
The Bayesian paradigm

Let y be the observed data, and 6 be everything not
observed including parameters and latent variables.
The problem, in general terms, is to obtain the
expected value of a function of interest s(.) under
the posterior density p(6|x)

Jo 5(0)p(0)p(]0)do

Els(0)] = o p(0)p(z]0)ds

which cannot generally be found analytically. One
method to carry out the integration on the RHS is
to perform simulation of exact Bayesian posterior
distributions using Markov chain Monte Carlo
techniques such as Gibbs sampling.
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MCMC ALGORITHM

1. Step 1: Setting initial values for unobserved
quantities (parematers and latent variables),

2. Step2: For each parameter or latent variable §;,
sample from its “full conditional distribution”
given the current values of all other quantities
in the model,

3. Step 3: Examine sampled values of parameters
and latent variables to monitor convergence and

to provide summary measures.
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The Model

A Weibull distribution may be used to model time
to failure as

ti,z;) = eﬁ/'z"'tr_lexp _ P Eigr : 2
7 7

where (3 is a vector of unknown regression
coefficients. This leads to a baseline hazard of the
form

)\0 (tz) = Ttg_l .

Reparameterise by letting u; = eP'#i | the conditional
distribution of ¢; given u; is Weibull(r, ;).
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Twin menopause data

Aim to model the correlation structure within twin
pairs to satisfy

var(MZ) = var(DZ) = 05 = 05 + 06 + 0%

2 2
TMZ:O'A—I-O'C
1

2 2
rpy = §UA + 0o

Mixed model
tij|,LL7;j NWG’Lb’LLll(?“,/,Lw) 7::1,...,’]’&; ]: 1,2

where

o+ B'z+m; for MZ twin
logpi; = , (3)
Oé—|—6z—|—dz—|—dw for DZ twin

and m;, d;, d;; are independent additive random

effects where m; ~ N (0,05 + 02),
dz’ ~ N(O, %0'124 + 0'%«), and dz’j ~ N(O, %0'124)
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Family melanoma data

tijlpi; ~ Weibull(y, pij) i=1,...,n; j=1,2

where
(& +p0'z+ F;, +G; + Rf; for fathers
logpi; = § a+p'z+F,—G;+ Rf; for mothers
| a+ Bz + F; + H; —I—R,g- for children

where F; ~ N (0, %0124 +0%), G; ~ N(0, %0124),
Hi ~ N(O,O’%«S>.

The regression coefficients and the precision of the
random effects (7g, 7, TH) may be given
“non-informative” Normal and Gamma priors
respectively. The shape parameter, v, of the time to
onset of melanoma distribution may be given a
non-informative Gamma prior which slowly
decreases on the positive real line.
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th pair
with t.cen; being an indicator variable of censoring status. Full arrows

represents the observed failure time for the jth twin in the 1
indicate stochastic links to which a probability is attached; broken
arrows denote deterministic relationships; 8’s are regression coefficients,
7 is the precision of the prior distribution and equals the inverse of the

variance; m; is an independent additive random effect modeled as

mj |t ~ N(O, 0'?4 + aé) Rectangles represent actual data values for the

covariates; v and K4 are scale and shape parameters for the underlying
Weibull distribution.
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Table 3: GEE approach: Estimated Regression Co-
efficients in the Proportional Hazard Model and Es-

timated Odds Ratios for Quantifying Familial Aggre-

gation in Age at Onset of Melanoma in Queensland

Families (**

indicates significance).

Coefficient Robust
Covariate RR = P B se(pB) Z-statistic
A. Mean effects
Year of birth 1.142 0.132 0.051 2.588 **
Naevi 1.765 0.568 0.073 7. 781 **
Freckling 1.160 0.148 0.049 3.020 **
B. Patterns of familial aggregation
Relationship 146 se(6) Z-Statisti c
Sib-sib 2.973 0.6217 3.17 **
Parent-child 1.650 0.434 1.50 **
Second/Others 1.155 0.3270 0.47
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Table 4:

efficients and Estimated Variance Components in a Melanoma Study of

Gibbs Sampling Approach: Estimated Regression Co-

Queensland Families (** indicates significance). Naevi is a binary variable
with Baseline 0 = No or few moles; Freckling is coded as a binary variable
with Baseline 0 = No freckles.

Covariate RR = P Coefficient 3 Robust se(f3) 95% CI of bet
Weibull Model: A. Mean effects - Response variable is Age-at-onset
Year of birth 1.378 0.321 0.0027 (0.316,0.326) **
Naewvi 1.126 0.119 0.0021 (0.058,0.185) **
Freckling 1.017 0.017 0.1400 (-0.055,0.085)
Weibull Model: B: Variance components - Response variable is Age-at-onset
Latent Mean from 5000 iterations se(o-2) 9 5% CI of o2
0'?4 0.452 0.054 (0.348,0.566) **
0'?;, -0.223 0.027 (-0.282,-0.169)
o-%,s 0.467 0.040 (0.393,0.545) **
Y 14.3 0.104 (14.2, 14.6)
Binomial Model: Variance components - Response vartable is Naevi
Latent Mean from 5000 iterations se(o-2) 9 5% CI of o2
o2 0.142 0.149 (0.002,0.498) **
o-% 0.704 0.156 (0.403,1.010) **
a%s 0.195 0.157 (0.0025,0.553) *
Binomial Model: Variance components - Response variable is Freckling
Latent Mean from 5000 iterations se(o-2) 9 5% CI of o2
0'124 2.050 0.779 (0.835,3.570) **
o-% 2.600 0.418 (1.780,3.460)**
o2, 0.115 0.088 (0.011,0.312)%*
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Table 5: Estimated Regression Coefficients in the Propor-
tional Hazard Model and Estimated Odds Ratios for Quantify-
ing Familial Aggregation on Menopause Data From a Longitudi-
nal Study of Australian Twins Using the Estimating Equations
Approach. ** indicates significance.

Coefficient Robust
Covariate RR = P B se(pB) Z-statistic
A. Mean effects

Year of birth 0.978 -0.022 0.0038 -5.79 **
Smoking 1.123 0.116 0.0680 1.72

Uni education 0.643 -0.442 0.1077 -4.10 **
Menarche 0.984 -0.016 0.0226 0.71

Parity 0.624 -0.471 0.0960 -4.90 **

B. Patterns of familial aggregation

Zygosity 1+6 se(60) Z-Statistic
MZ 1.764 0.1480 5.16 **

Dz 1.355 0.1270 2.79 **
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Table 6: Estimated Regression Coefficients in the Weibull
Model and Estimated Variance Components on Menopause

Data From a Longitudinal Study of Australian Twins using the

Gibbs Sampling Approach. ** indicates significance

Covariate RR = &P Coefficient 3 Robust se(3) 95% CI of 3
A. Mean effects
Year of birth 0.971 -0.029 0.0035 (-0.036,-0.023)
Smoking 1.148 0.138 0.0788 (-0.187,0.293)
Uni education 0.672 -0.397 0.1400 (-0.676,-0.123) |
Menarche 0.976 -0.024 0.0204 (-0.063,0.015)
Parity 0.556 -0.586 0.1260 (-0.830,-0.033)
Variance components

Latent Mean from 5000 iterations se(aQ) 95% CI of o2
o2 0.730 0.329 (0.129,1.410)
o2, 0.011 0.240 (-0.456,0.489)
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CONCLUSIONS - MELANOMA STUDY

GEE results:

o GEE results: Later birth year, having at least a moderate
number of naevi and freckles are associated with later age at
onset of melanoma.

e OR = 2.973 (sib-sib), 1.650 (parent-child), 1.155 (higher order)
indicate a dominance variance in addition to genetic additive
variance.

MCMC results for random effects:

e Additive genetics and shared sibling environment seem to impact
equally on the variation of the age at onset of melanoma; a
negative estimate for a% suggests that the sibling correlation is
much larger than the parent-sibling correlation. Should try
another model, a dominance model or even a purely
environmental model.

e Common family environment effect contributes the most to the
expression of naevi relative to addititve and shared sibling effects.

e The variation in the expression of freckles is largely explained by
additive genetic and shared family effects.
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GEE versus Bayesian approaches

e GEE is a marginal approach producing regression coefficient
estimates that describe the average population response to
changing covariates; MCMC produces subject-specific
coefficients.

e GEE describes a common covariance among specific relative
pairs; whereas the Bayesian approach can explicitly describe the
source of this covariance.

e Bayesian method has the flexibility in incorporating prior info for
the covariates or latent effects.
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CONCLUSIONS

Based on 267 MZ and 159 DZ post-menopausal twin pairs:
T"MZz = 0.49, "Dz = 0.33.

Age of menopause increased with later birthyear, university
education, and parity of two or more.

Smoking may be associated with earlier menopause.

Late age of menarche may be associated with earlier menopause.
Additive genetics effect: 31% to 53% of the variance.

Unique environmental effect: 47% to 69% of the variance.

Bayesian analysis: give exact decomposition of variance
components but is extremely computer-intensive, 30 hours CPU
time (on Ultra-Sparc) to obtain convergent results incomparison
to 20 seconds of CPU time for the estimating equations
approach.

Future work:

— (i) Assess MCMC performance under model misspecification
of the hazard function and/or the genetic model;

— (ii) Include mother/twin relationships and other sibships;

— (iii) Consider random covariate effects, rather than fixed.
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Other methods

Mizxed-effects frailty model - McGilchrist & Yau (96): Proposed
three approaches for failure time analysis which involved modeling
frailty and other covariates as mixed effects.

Imputation method - Yashin & lachine (95): Replace censored
failure times by imputed uncensored failure times using the correlated
frailty model suggested. The approach exploits an important
advantage of survival model with frailty: additive decomposition of
frailty on genetic and environmental components induces the
competing risks structure of the respective failure-time model.

Pickles’ method (94): A threshhold is presumed in the liability
distribution, beyond which individuals are affected. For twin data, a
multifactorial threshold model can be fitted by maximum likelihood
methods to contingency tables that cross-classify the menopausal
status of Twin 1 with Twin 2. Twin liability correlations may be
parameterized in terms of the different variance components (A, C, D,
or E) using Mx. To handle censoring, group twins into a finite number
of age groups, within each age group construct a contingency table of
age-at-onset for Twin 1 versus Twin 2, those with censored
observations are placed in a category of their own, a category on the
underlying latent scale that extended from the last estimated threshold
to infinity. Analysis then proceeds in the usual fashion as if there were
no censored data. This method is simple only when the censoring
mechanism is simple.

39



FUTURE WORK

e Application to glioma and childhood sarcoma
data sets collected at MDACC,

e Extend methodology applicable for extended

families,

e Incorporate biomarker info and extend
models to have the ability of decomposing
variance into major gen and polygene effects,

e Extend the methodology to include Bayesian
model averaging and model search strategies
applicable for finding the best fitting genetic
model.
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