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Abstract

Background. Randomizing patients among treatments with equal probabilities in clinical trials

is the established method to obtain unbiased comparisons. In recent years, motivated by ethical

considerations, many authors have proposed outcome adaptive randomization, wherein the random-

ization probabilities are unbalanced, based on interim data, to favor treatment arms having more

favorable outcomes. While there has been substantial controversy regarding the merits and flaws of

adaptive versus equal randomization, there has not yet been a systematic simulation study in the

multi-arm setting.

Methods. A simulation study was conducted to evaluate four different Bayesian adaptive random-

ization methods and compare them to equal randomization in five-arm clinical trials. All adaptive

randomization methods included an initial burn-in with equal randomization and some combination

of other modifications to avoid extreme randomization probabilities. Trials either with or without a

control arm were evaluated, using designs that may terminate arms early for futility and select one

or more experimental treatments at the end. The designs were evaluated under a range of scenarios

and sample sizes.



Results. For trials with a control arm and maximum same size 250 or 500, several commonly used

adaptive randomization methods have very low probabilities of correctly selecting a truly superior

treatment. Of those studied, the only adaptive randomization method with desirable properties

has a burn-in with equal randomization and thereafter randomization probabilities restricted to the

interval .10 to .90. Compared to equal randomization, this method has a favorable sample size

imbalance but lower probability of correctly selecting a superior treatment.

Conclusions. In multi-arm trials, compared to equal randomization, several commonly used adap-

tive randomization methods give much lower probabilities of selecting superior treatments. Aside

from randomization method, conducting a multi-arm trial without a control arm may lead to very

low probabilities of selecting any superior treatments if differences between the treatment success

probabilities are small.

Keywords Adaptive randomization, Bayesian design, play the winner, screening trial, simulation
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1 Introduction

Outcome adaptive randomization (AR) has been proposed by many authors as an alternative to

equal randomization (ER), for comparing treatments A and B. AR uses the interim outcome data

to unbalance randomization probabilities in favor of the treatment arm, or arms, having currently

higher empirical success rates. Proponents of AR consider it more ethical than ER for the patients

enrolled in the trial because AR leads to sample sizes, NA and NB, on average unbalanced in favor of

the truly superior treatment. AR was proposed by Thompson [1] for binary outcomes. He suggested

that, assuming success probabilities πA and πB following beta priors, the next patient should receive

treatment A with probability rA,n = Pr(πB < πA | datan) and B with probability rB,n = 1 − rA,n.

Adaptive statistical criteria used to define AR probabilities similar to rA,n and rB,n sometimes are

called “randomized play-the-winner” rules [2][3]. Many different AR methods have been proposed

([4]-[7]), and clinical trials have been conducted using various AR methods ([8]-[10]).

Use of AR in clinical trials remains controversial. Critics argue that AR provides a small ad-

vantage in sample size imbalance in favor of the superior treatments, while introducing inferential

problems that decrease benefit to future patients. Discussions of AR have been given by Chappell

and Karrison [11], Korn and Friedlin [12], Yuan and Yin [13], Lee, Chen and Yin [14], Rosenberger,

Sverdlov and Hu [15], Buyse [16], Lee [17], and Hey and Kimmelman [18]. Berry [19] has argued that

the greatest advantages of AR over ER may be obtained in multi-arm trials. Thall, Fox, and Wathen

[20] reported a simulation study, for two-arm trials, comparing several Bayesian AR methods to a

group sequential design using ER. Their simulations showed that, compared to ER, AR methods

often have a much lower probability of selecting a truly superior treatment arm, much larger estima-

tion bias, produce distributions of NA and NB with much greater variability and skewness, and have

a nontrivial probability of unbalancing NA and NB in favor of the inferior treatment. Thus, only

reporting mean sample sizes from simulations may be very misleading. The particular way an AR

method is defined, and other aspects of a trial design, can greatly affect overall design performance.
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Because there are numerous ways to design a randomized trial, and many different ways to define

AR methods, statements about the comparative desirability of AR versus ER must be accompanied

by detailed explanations of these design specifics.

In this paper, we report a simulation study examining four AR methods and ER in multi-arm

clinical trials. A multi-arm trial design may or may not (1) include a control arm, (2) restrict the

randomization to a control arm if it is included, (3) involve various rules for between-arm comparisons

or stopping an arm early, (4) enrich the remaining arms with larger sample sizes when some arms

are terminated early, (5) select one best or possibly several experimental treatments, and (6) include

two or more than two stages, or monitor continuously. Thus, to obtain reasonable comparisons of

randomization methods, the underlying designs must have qualitatively identical structures, decision

rules, and maximum sample size. To obtain results that are useful to practitioners, we evaluate

several relatively simple clinical trial designs and AR methods, for five-arm trials that either do or

do not include a control arm. We consider Bayesian designs for trials with binary outcomes that use

either ER or one of four specific AR methods.

The AR methods to be evaluated are defined in Section 2. The trial designs are given in Section

3, and the simulation study design is given in Section 4. Section 5 presents the simulation results,

and we close with a discussion in Section 6.

2 Outcome Adaptive Randomization Methods

There are many ways to do AR ([2],[6], [7], [21], [22]). The Bayesian AR methods considered here are

similar to those studied by Thompson [1], Thall and Wathen [23], and Thall, Fox, and Wathen [20]

for two-arm trials, generalized to accommodate multi-arm trials. Index treatments by k = 1, · · · , K,

and intermediate sample sizes by n = 1, · · · , N, for maximum overall sample size N. Denoting

response probabilities of the K treatments by π1, · · · , πK , the AR probabilities are defined in terms
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of the K posterior probabilities

rk,n = Pr(πk = max{π1, · · · πK} | datan), k = 1, · · · , K, (1)

which sum to 1. Thus, r1,n, · · · , rK,n generalize the original definition [1] given for K = 2.

It is well known that using {r1,n, · · · , rK,n} as AR probabilities often leads to undesirable treat-

ment assignments due to “stickiness,” wherein an outcome-adaptive treatment assignment rule as-

signs a suboptimal treatment to an undesirably large number of patients [24]. With the above AR

probabilities, if a truly inferior treatment arm happens to have a higher early success rate, it is likely

to receive a larger proportion of patients thereafter, and consequently the trial design is not likely

to identify a truly superior treatment. Various modifications of rk,n have been proposed to mitigate

stickiness. We consider AR methods that use different combinations of three such modifications.

The first is a “burn-in” wherein, initially, a fixed number of patients are randomized equally among

the arms, with AR applied subsequently. The second replaces rk,n with

r
(c)
k,n =

(rk,n)c∑K
j=1(rj,n)c

(2)

for some c > 0, with c = .50 used very commonly. This shrinks rk,n toward .50, so the AR method

is more like ER, for which c = 0 and all r
(0)
k,n ≡ 1/K. The third modification restricts e ≤ rk,n ≤ 1− e

for small e > 0. If rk,n < e then the AR probability for arm k is set equal to e, and if rk,n > 1 − e

the AR probability is set equal to 1 − e, with the K resulting AR probabilities normalized so that

they sum to 1. A method using r
(c)
k,n restricted to [e, 1− e] will be denoted by AR(c, e).

All designs include a burn-in with the first 50 patients randomized equally among the arms, with

exactly 10 patients assigned to each arm. We first consider AR(1, 0), which randomizes patients

to arm k with probability rk,n, a K-arm generalization of Thompson [1], but imposing a burn-in.

The second method, AR(0.5, 0), randomizes patients to arm k with probability r
(0.5)
k,n given by (2).

AR(0.5, 0) minimizes the expected number of non-responders [11]. The third method, AR(n/2N, 0),

generalizes Thall and Wathen’s [23] two-arm trial method by applying (2) using c = n/2N, for

current sample size n = 1, · · · , N. The fourth method, AR(1, 0.10), uses rk,n with the restriction

0.10 ≤ rk,n ≤ 0.90. We thus evaluate AR(1, 0), AR(0.5, 0), AR(n/2N, 0), AR(1, 0.10), and ER.
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3 Trial Designs

Each simulation case is determined by whether a control arm is included, the maximum sample size

N=250 or N=500, decision rules, and randomization method. All cases are five-arm trials. When a

control arm, C, is included, we index it by k = C and the four experimental arms by k = 1, 2, 3, 4.

When C is not included, we index the five experimental treatments by k = 1, 2, 3, 4, 5. For all

designs, we assume the response probabilities, {πk}, are independent with beta(0.20, 0.80.) priors.

Each design requires one parameter, aU , to define the treatment arm selection rule, determined via

preliminary simulations under the null scenario where all fixed response probabilities equal 0.20.

When C is included, its response probability, πC , is used as the comparator in the decision rules.

These rules may stop randomization to an experimental arm Ek due to futility, or select an Ek as

promising, based on the posterior of πk − πC . If no control arm is included, one possible approach

is to use a fixed standard probability, pC , for comparison. Unless pC is completely arbitrary, this

requires the assumption that there exists a standard treatment with response probability known to

equal pC , i.e. Pr(πC = pC) = 1. It also requires that the numerical value pC , obtained in practice

from previous trials or clinical experience, will remain a valid comparator during the trial. This

implies there are no between-trial or trial-versus-historical effects. Because these are very unrealistic

assumptions, we do not consider designs assuming a fixed standard. Thus, the designs without a

control arm that we consider make decisions based on comparisons among the Ek’s.

3.1 Multi-Arm Trials With a Control Arm

For each experimental arm, Ek, k = 1, 2, 3, 4, after the initial burn-in, the following decision rules

are applied continuously during the trial.

Futility. For each k = 1, 2, 3, 4, arm Ek is terminated early due to futility if

Pr(πk > πC + 0.20 | datan) < 0.01.
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If all four experimental arms are terminated, the trial is stopped.

Enrichment. If an Ek is terminated early for futility, the remaining patients, up to N, are ran-

domized among the remaining open arms.

Selection. If Ek is not terminated early, then at the end of the trial Ek is selected if

Pr(πk > πC + 0.20 | datan) > aU . (3)

The design thus allows more than one Ek to be selected. It is typical practice to require a new

treatment to provide a minimal clinically significant improvement, here specified to be δ = 0.20.

The futility rule decreases the number of patients randomized to an Ek that is very unlikely to

achieve the targeted improvement over C, and thus enriches the sample sizes of arms having larger

success probabilities. For each design, the numerical value of aU is determined to ensure overall false

positive probability 0.05 for the trial, with a false positive defined as selecting any Ek in the null

case where all true pk = .20. The numerical value of aU depends on the randomization method,

the value of N and the initial burn-in. Supplementary Table S1 gives the numerical value of the

cut-off aU used by each design’s selection rule in each case. An alternative to deriving aU in this

way is to set it equal to a fixed value, such as aU = 0.95. We chose to determine aU for each design

to obtain the same overall false positive probability 0.05 in order ensure fair comparisons among

the randomization methods in terms of per-arm selection probabilities, stopping probabilities, and

sample size distributions.

3.2 Multi-Arm Trials Without a Control Arm

For trial without a control arm, the decision rules are as follows:

Futility. For each k = 1, 2, 3, 4, 5, accrual to Ek is terminated due to futility if

Pr(πk > max{πr : r 6= k} | datan) < 0.01.
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Enrichment. If an Ek is closed early for futility, the remaining patients, up to maximum sample

size N, are randomized among the remaining open arms.

Selection. If Ek is not terminated early, at the end of the trial Ek is selected if

Pr(πk > max{πr : r 6= k} | datan) > aU . (4)

At the end of the trial, the designs with a control arm may select more than one Ek, whereas the

designs without a control arm may select at most one Ek. While one might question why at most one

Ek may be selected in trials without a control arm, it is extremely unlikely that two different πk’s

both will satisfy the criterion (4) for any reasonably large aU . Moreover, in the cases of no control

arm there is no required improvement, such as the value δ = .20 that is used in the selection rule.

If the selection criterion (4) were replaced by

Pr(πk > max{πr : r 6= k}+ δ | datan) > aU ,

for δ = .15 or .20, our simulations show that, for N = 250 or 500 in a five-arm trial, this design

would be extremely unlikely to correctly select any Ek in many scenarios where there actually are

substantive differences among the pk’s.

4 Simulation Study Design

Under the Bayesian formulation, the probabilities, πC , π1, · · · , π4 in the case with a control arm, or

π1, · · · , π5 in the case without a control arm, are random. We distinguish between these random

quantities and corresponding assumed fixed probabilities, denoted using pk in place of πk, that

are used to define scenarios and simulate data. In all simulation scenarios, we assumed fixed null

response rate 0.20. We consider three scenarios. In the null scenario, all pk = 0.20. Given fixed

targeted improvement δ = 0.20, the least favorable configuration (LFC) has one experimental pk =

0.20 + δ and all other pk = 0.20. Thus, pC = p1 = ... = p3 = .20 and p4 = 0.20 + δ = 0.40 if there is

a control arm, and p1 = ... = p4 = .20 with p5 = 0.20 + δ = 0.40 if there is no control arm. The LFC
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is determined, in the case with a control arm, by assuming that (i) no experimental pk is between

pC and pC + δ and (ii) at least one experimental arm has pk ≥ pC + δ. The LFC is the configuration

of p1, · · · , pK values that minimizes the probability, under (i) and (ii), that at least one Ek for which

pk ≥ pC + δ is selected. The name “least favorable configuration” is somewhat misleading, since

the requirements (i) and (ii) are quite strong, and they ensure that it is relatively easy to identify

the one Ek providing a δ improvement over pC . This motivates the third, more realistic “staircase”

scenario, for which the pk’s are 0.20, 0.25, 0.30, 0.35, 0.40.

5 Simulation Results for Trials with a Control Arm

In the tables, n̄(95% CI) denotes the mean and (2.5th, 97.5th) percentiles of each per-arm sample

size distribution. Under the LFC, we denote the probability of correctly selecting the superior arm

E4 by PCS. In practice, an AR-based design with a large sample size imbalance favoring a superior

arm is unlikely to be used if it has substantially lower PCS than ER. Table 2 shows that, under the

LFC with p4= 0.40 and N = 250, AR(1,0), AR
(
1
2
, 0
)

and AR
(

n
2N
, 0
)

all have very low PCS, between

0.44 and 0.48, compared to AR(1, 0.1) and ER, which have PCS values 0.67 and 0.66. One reason

for this large loss in PCS for AR(1,0), AR
(
1
2
, 0
)

and AR
(

n
2N
, 0
)

is that each gets stuck randomizing

patients to E4 very early in the trial, resulting in a smaller n̄ for C. The AR methods have n̄ ranging

from 23 to 35, with the widest 95% CI (11, 70) for AR(1
2
, 0), compared to n̄ = 72 and 95% CI (37,

110) for ER. AR(1, 0.1) provides a favorable sample size imbalance, with n̄ = 127 for E4 compared

to n̄ = 70 with ER. To ensure false positive probability 0.05, the cut-off aU in the selection rule (3)

must be larger for AR(1,0), AR
(
1
2
, 0
)

and AR
(

n
2N
, 0
)
, compared to AR(1, 0.1) or ER, resulting in

much smaller PCS for the first three AR methods.

Thall and Wathen [23] and Thall, Fox and Wathen [20] showed that, in the two-arm case, there

is a significant risk that AR(1,0) and AR
(
1
2
, 0
)

will get stuck randomizing more patients to the

inferior treatment arm. To determine whether this holds in the multi-arm case, we calculate ηm =

Pr(NC > Nk + m) for m = 10, 20 or 30 for each method. When some Ek is superior, ηm is the
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probability that a method will randomize at least m more patients to the inferior control arm than

to Ek. An AR procedure having ηm much larger than that obtained with ER is undesirable. Under

the LFC with p4 = 0.40, using AR(1, 0.1), on average, 127 patients are treated with E4 compared

to 70 using ER, so an additional 57 patients are treated with E4 as a result of using AR(1, 0.1),

which has η10 = 0.05 compared to 0.23 for ER. The reason that ER has larger η10 than AR(1, 0.1)

is that, if E4 is dropped and the trial continues, ER assigns more patients to C than AR(1, 0.1).

Thus, results of the two arm case cannot be extended to the multi-arm setting. In the LFC, AR(1,

0.1) achieves a very favorable patient imbalance in favor of E4 compared to ER while maintaining

PCS and reducing the likelihood of randomizing patients to inferior treatments.

In the staircase scenario, it is much more difficult to discriminate among the Ek’s. Table 3

summarizes simulations in this case for trials including C with N = 250. Compared to ER, AR(1,

0.1) has sightly smaller probabilities of selecting E3 or E4, which have p3 = .35 and p4 = .40. This is

due to the fact that E1, E2, and E3 remain in the trial longer because these treatments provide some

improvement over C, limiting the number of patients treated with E4, and reducing the probability

that any AR method will select E4. Still, AR(1, 0.1) assigns more patients to the better treatment

arms, on average. Additionally, η10, η20 and η30 each are smaller for AR(1, 0.1) compared to ER.

Compared to AR(1, 0.1) or ER, the probabilities of selecting the best arms E4 or E5 are much

smaller for AR(1,0), AR
(
1
2
, 0
)

and AR
(

n
2N
, 0
)
.

Tables 2 and 3 show that, for designs with a control arm and N = 250 patients, in the LFC

or staircase scenarios, the highest probabilities of selecting the best arm are 0.66 or 0.67, obtained

by AR(1, 0.1) or ER. A trial probably would not be conducted if there were only a 66% chance

of selecting an Ek achieving the targeted improvement. In practice, one would either increase N,

increase the false-positive rate, or both. Supplementary Tables S1, S2, S3 summarize simulations in

the three scenarios for N = 500 with a control arm. Table S3 shows that N = 500 gives much larger

probabilities of selecting superior Ek’s in the staircase scenario, with E4 selected with probabilities

0.84 by AR(1, 0.1) and 0.86 by ER, while the other three AR methods have substantially inferior
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performance. Tables S2 and S3 show that, under the LFC, for N = 500 the probability of stopping

superior arm E4 is .08 to .09 for AR(1,.01). If desired, these Pr(Stop) values may be made smaller

by reducing the futility stopping rule cut-off to a value smaller than .01, such as .005, but the price

would be smaller per-arm sample sizes for E4 and consequently lower Pr(Select) values.

Table 4 compares PCS = Pr(Select E4) for N=250 and N=500 under the LFC when p4 = 0.40.

When N=500, AR(1, 0.1) and ER have PCS values 0.87 and 0.85. Compared to ER, although AR(1,

0.1) has a much more disperse sub-sample size distribution for E4, on average AR(1, 0.1) randomizes

many more patients to E4. The PCS values 0.77, 0.67 and 0.53 for AR
(

n
2N
, 0
)
, AR

(
1
2
, 0
)
, and AR(1,0)

are much smaller. AR
(
1
2
, 0
)
would require N=500 patients to obtain the same PCS as AR(1, 0.1)

and ER with only N=250. A trial utilizing AR(1, 0) would require more than double the sample

size to obtain the same PCS as AR(1, 0.1) or ER. A general conclusion is that AR(1, 0.1) provides

more patients with superior treatment while maintaining acceptable PCS, for N = 500 in a five-arm

trial with a control.

6 Simulation Results for Trials without a Control Arm

Each design without a control arm was calibrated to have a 1% chance of selecting each treatment in

the null scenario (Table 5). In the LFC scenario with p5 = 0.40 and N=250, Table 6 shows that all

methods provide PCS for E4 ranging from 0.75 to 0.82, and all of the ηm values are relatively small

for E4. If the only cases considered were the null and the LFC, then it might seem that running

a multi-arm trial including a control arm is foolish. However, the opposite is true. Table 7 shows

that, in the staircase scenario, for N = 250 the probabilities of selecting the best treatments are

extremely low, ranging from 0.19 to 0.26, compared to approximately 0.65 when a control arm is

included. The main reason for this large drop is that, without a control arm, comparison among

the Ek’s is extremely difficult if the differences between the pk’s are small. Supplementary Table S6

shows that, in the staircase scenario, even if the overall maximum sample size is increased to N =

500, the selection probabilities for E5 range from 0.33 to 0.39 for any randomization method, with
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selection probabilities at most 0.04 for any of E1, · · · , E4.

7 Discussion

A general conclusion is that, for multi-arm trials, AR(1, 0), AR
(
1
2
, 0
)
, and AR

(
n
2N
, 0
)

should not be

used. If one wishes to use some AR method in a multi-arm trial, if an initial burn-in is imposed,

the superior performance of AR(1, 0.1) indicates that it is important to restrict the domain of

possible AR probabilities by bounding them away from 0 and 1. Given the apparent popularity of

AR(1,0) and AR(.50, 0), this is a very important result. While we have not examined other hybrid

methods, such as AR(.50, .10) or AR(n/2N, .10), the simulations suggest that these may perform

well compared to AR(1, .10) or ER. The numerical limit e cannot be arbitrary, since, for example,

AR(.50, .20) would be close to ER in a five-arm trial. ER does the best job of selecting treatments

having pk’s that are superior but close to each other.

In practice, it is not unlikely that two or more pk’s may be close to each other, so the staircase

scenario may be closer to reality than the LFC. When the pk’s are close to each other, it is very

difficult to select any Ek if no C is included as a comparator. The simulations in the staircase scenario

indicate that conducting a multi-arm trial without a control arm may be a waste of resources, for

any randomization method, and it is best to include a control arm in a multi-arm selection trial.

Many elaborations and alternative cases are possible, including time-to-event or multivariate

outcomes, accounting for covariates, and evaluating AR methods for multi-arm trials in the presence

of drift. This latter issue is closely related to so-called platform designs [25], which allow experimental

arms to enter a trial after it has started. These are important areas for future simulation study.
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Table 1: Simulation results for designs with a control arm in the null scenario with all pk = 0.20,

for N=250. n̄ = mean per-arm sample size. Each ηm = Pr(NC > Nk +m), the probability that the

number of patients randomized to arm C is at least m larger than the number randomized to arm

Ek. Values in the row E1 − E4 are per-arm.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1,0) C – – 33 (10, 63) –

E1-E4 0.01 0.67 42 (10, 135) 0.4, 0.27, 0.15

Total 202 (70, 250)

AR
(
1
2
, 0
)

C – – 40 (13, 69) –

E1 − E4 0.01 0.74 40 (10, 109) 0.44, 0.32, 0.19

Total 200 (70, 250)

AR
(

n
2N
, 0
)

C – – 38 (13, 65) –

E1 − E4 0.01 0.73 40 (10, 116) 0.43, 0.3, 0.18

Total 199 (70, 250)

AR(1, 0.1) C – – 38 (20, 63) –

E1 − E4 0.01 0.74 41 (10, 124) 0.44, 0.3, 0.16

Total 200 (70, 250)

ER C – – 58 (17, 98) –

E1 − E4 0.01 0.81 36 (10, 82) 0.6, 0.45, 0.33

Total 200 (70, 250)
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Table 2: Simulation results for designs with a control arm in LFC scenario, pC = p1 = p2 = p3 =

0.20, p4 = 0.40, for N=250. n̄ = mean per-arm sample size. Each ηm = Pr(NC > Nk + m), the

probability that the number of patients randomized to arm C is at least m larger than the number

randomized to arm Ek. Values in the row E1 − E3 are per-arm.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) C – – 23 (10, 58) –

E1-E3 0.02 0.40 23 (10, 69) 0.28, 0.15, 0.08

E4 0.44 0.07 152 (11, 201) 0.04, 0.03,0.02

Total 244 (140, 250)

AR
(
1
2
, 0
)

C – – 34 (11, 70) –

E1-E3 0.02 0.56 29 (10, 70) 0.42, 0.29, 0.18

E4 0.46 0.07 123 (10, 177) 0.05, 0.04,0.02

Total 243 (130, 250)

AR
(

n
2N
, 0
)

C – – 31 (12, 63) –

E1-E3 0.02 0.52 27 (10, 68) 0.39, 0.25, 0.13

E4 0.48 0.07 132 (11, 179) 0.04, 0.03,0.02

Total 243 (120, 250)

AR(1, 0.1) C – – 35 (23, 60) –

E1-E3 0.03 0.58 27 (10, 66) 0.44, 0.26, 0.11

E4 0.67 0.07 127 (10, 177) 0.05, 0.04,0.02

Total 243 (130, 250)

ER C – – 72 (37, 110) –

E1-E3 0.02 0.78 34 (10, 71) 0.73, 0.64, 0.56

E4 0.66 0.08 70 (10, 109) 0.23, 0.07, 0.03

Total 243 (130, 250)
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Table 3: Simulation results for designs with a control arm in staircase scenario, (pC , p1, p2, p3, p4) =

(0.20,0.25,0.30,0.35,0.40) for N=250. n̄ = mean per-arm sample size. Each ηm = Pr(NC > Nk +m),

the probability that the number of patients randomized to arm C is at least m larger than the

number randomized to arm Ek.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) C – – 20 (10, 51) –

E1 0.05 0.24 27 (10, 74) 0.17, 0.08, 0.04

E2 0.11 0.16 40 (10, 113) 0.12, 0.06, 0.03

E3 0.22 0.10 62 (10, 158) 0.08, 0.04, 0.02

E4 0.40 0.06 101 (10, 185) 0.05, 0.03, 0.02

AR
(
1
2
, 0
)

C – – 28 (11, 60) –

E1 0.06 0.33 32 (10, 73) 0.25, 0.16, 0.08

E2 0.14 0.22 44 (10, 93) 0.17, 0.11, 0.06

E3 0.26 0.13 60 (10, 121) 0.10, 0.07, 0.04

E4 0.45 0.06 84 (11, 149) 0.05, 0.04, 0.03

AR
(

n
2N
, 0
)

C – – 26 (11, 55) –

E1 0.06 0.31 31 (10, 72) 0.24, 0.13, 0.06

E2 0.13 0.21 42 (10, 97) 0.16, 0.09, 0.04

E3 0.25 0.12 61 (10, 130) 0.09, 0.06, 0.03

E4 0.45 0.07 90 (10, 156) 0.05, 0.04, 0.02

AR(1, 0.1) C – – 33 (23, 54) –

E1 0.10 0.36 31 (10, 70) 0.29, 0.16, 0.05

E2 0.21 0.22 41 (10, 99) 0.19, 0.10, 0.04

E3 0.38 0.13 58 (10, 131) 0.11, 0.07, 0.03

E4 0.61 0.06 86 (11, 151) 0.06, 0.04, 0.02

ER C – – 58 (40, 93) –

E1 0.08 0.49 39 (10, 65) 0.50, 0.38, 0.31

E2 0.22 0.29 46 (10, 72) 0.36, 0.24, 0.19

E3 0.44 0.15 51 (10, 79) 0.26, 0.14, 0.10

E4 0.66 0.07 55 (11, 86) 0.21, 0.07, 0.05
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Table 4: Simulation results for designs with a control arm comparing N=250 and N = 500 in LFC

scenario, p1 = p2 = p3 = pC = 0.20, p4 = 0.40. Values of n̄= mean per-arm sample size and 95% CI

are for E4.

N=250 N=500

AR(1,0)
Pr(Select E4 ) 0.44 0.53

n̄( 95% CI ) 152( 11, 201) 369 (11, 444)

AR
(
1
2
, 0
) Pr(Select E4 ) 0.46 0.67

n̄( 95% CI ) 123( 11, 177) 319 (11, 413)

AR
(

n
2N
, 0
) Pr(Select E4) 0.48 0.77

n̄( 95% CI ) 132( 11, 179) 321 (11, 406)

AR(1, 0.1)
Pr(Select E4) 0.67 0.87

n̄( 95% CI ) 127( 11, 177) 313 (11, 403)

ER
Pr(Select E4) 0.66 0.85

n̄( 95% CI ) 70( 10, 109) 175 (13, 238)
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Table 5: Simulation results for designs without a control arm in the null scenario p1 = · · · = p5 =

0.20, for N=250. Each ηm = Pr(NE1 > NEk
+ m), the probability that the number of patients

randomized to arm C is at least m larger than the number randomized to arm Ek. All values are

per-arm.

Method Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) 0.01 0.19 50 (10, 137) 0.42, 0.35, 0.28

Total 250 (250, 250)

AR
(
1
2
, 0
)

0.01 0.26 50 (10, 110) 0.41, 0.33, 0.26

Total 249 (250, 250)

AR
(

n
2N
, 0
)

0.01 0.25 50 (10, 118) 0.41, 0.34, 0.27

Total 249 (250, 250)

AR(1, 0.1) 0.01 0.24 50 (10, 128) 0.41, 0.34, 0.26

Total 250 (250, 250)

ER 0.01 0.32 50 (10, 97) 0.32, 0.23, 0.2

Total 248 (250, 250)
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Table 6: Simulation results for designs with no control arm in the LFC scenario p1 = p2 = p3 =

p4 = 0.20 and p5 = 0.40, for N=250. n̄ = mean per-arm sample size. Each ηm = Pr(NE1 > NEk
+m),

the probability that the number of patients randomized to arm E1 is at least m larger than the

number randomized to arm Ek. Values in the row E1 − E4 are per-arm.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) E1-E4 0 0.58 24 (10, 72) 0.27, 0.15, 0.08

E5 0.78 0.02 141 (11, 199) 0.03, 0.02,0.02

Total 236 (90, 250)

AR
(
1
2
, 0
)

E1-E4 0 0.74 29 (10, 74) 0.32, 0.21, 0.13

E5 0.81 0.02 102 (14, 164) 0.03, 0.02,0.02

Total 217 (80, 250)

AR
(

n
2N
, 0
)

E1-E4 0 0.71 27 (10, 69) 0.31, 0.19, 0.1

E5 0.82 0.02 107 (13, 169) 0.02, 0.02,0.01

Total 216 (70, 250)

AR(1, 0.1) E1-E4 0 0.68 26 (10, 71) 0.30, 0.17, 0.08

E5 0.80 0.02 123 (17, 184) 0.03, 0.02,0.02

Total 228 (80, 250)

ER E1-E4 0 0.79 36 (10, 89) 0.34, 0.26, 0.19

E5 0.75 0.02 61 (13, 103) 0.07, 0.02,0.01

Total 205 (70, 250)
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Table 7: Simulation results for designs with no control arm in the staircase scenario, (p1, p2, p3, p4, p5)

= (0.20,0.25,0.30,0.35,0.40), for N=250. n̄ = mean per-arm sample size. ηm = Pr( NE1 > NEj
+m ),

the probability that the number of patients randomized to E1 is at least m larger than the number

randomized to Ej.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) E1 0 0.61 19 (10, 52) –

E2 0 0.44 27 (10, 81) 0.17, 0.08,0.03

E3 0 0.30 39 (10, 115) 0.12, 0.06,0.03

E4 0.04 0.16 63 (10, 160) 0.08, 0.04,0.02

E5 0.21 0.07 101 (10, 184) 0.04, 0.02,0.01

AR
(
1
2
, 0
)

E1 0 0.79 22 (10, 58) –

E2 0 0.60 31 (10, 75) 0.2, 0.11,0.06

E3 0.01 0.39 44 (10, 100) 0.13, 0.08,0.04

E4 0.03 0.21 62 (10, 130) 0.08, 0.05,0.03

E5 0.21 0.07 87 (10, 152) 0.04, 0.03,0.02

AR
(

n
2N
, 0
)

E1 0 0.76 21 (10, 54) –

E2 0 0.58 29 (10, 75) 0.19, 0.1,0.05

E3 0 0.38 42 (10, 103) 0.13, 0.07,0.03

E4 0.04 0.20 62 (10, 136) 0.07, 0.04,0.02

E5 0.26 0.07 91 (10, 158) 0.04, 0.02,0.01

AR(1, 0.1) E1 0 0.75 21 (10, 52) –

E2 0 0.55 29 (10, 77) 0.19, 0.1,0.04

E3 0 0.34 41 (10, 113) 0.12, 0.06,0.02

E4 0.04 0.18 62 (10, 149) 0.08, 0.04,0.02

E5 0.23 0.07 94 (10, 172) 0.04, 0.03,0.01

ER E1 0 0.89 25 (10, 69) –

E2 0 0.71 36 (10, 82) 0.21, 0.14,0.09

E3 0 0.45 50 (10, 101) 0.14, 0.08,0.06

E4 0.03 0.22 62 (10, 108) 0.08, 0.05,0.03

E5 0.19 0.08 68 (10, 109) 0.05, 0.03,0.02
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Supplementary Tables - Additional Simulations
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Table S1: Simulation results for designs with a control arm in the null scenario with all pk = 0.20,

for N=500. n̄ = mean per-arm sample size. Each ηm = Pr(NC > Nk +m), the probability that the

number of patients randomized to arm C is at least m larger than the number randomized to arm

Ek. Values in the row E1 − E4 are per-arm.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) C – – 37 (10, 64) –

E1-E4 0.01 0.84 62 (10, 262) 0.4, 0.28, 0.16

Total 283 (70, 500)

AR
(
1
2
, 0
)

C – – 46 (17, 76) –

E1-E4 0.01 0.92 53 (10, 194) 0.5, 0.39, 0.26

Total 258 (70, 500)

AR
(

n
2N
, 0
)

C – – 49 (16, 79) –

E1-E4 0.01 0.92 51 (10, 198) 0.54, 0.43, 0.31

Total 252 (70, 500)

AR(1, 0.1) C – – 45 (21, 67) –

E1-E4 0.01 0.96 53 (10, 212) 0.51, 0.39, 0.25

Total 258 (80, 500)

ER C – – 74 (17, 157) –

E1-E4 0 0.99 42 (10, 128) 0.68, 0.54, 0.43

Total 242 (70, 500)
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Table S2: Simulation results for designs with a control arm in the LFC scenario pC = p1 = p2 =

p3 = 0.20, p4 = 0.40,, for N=500. n̄ = mean per-arm sample size. Each ηm = Pr(NC > Nk +m), the

probability that the number of patients randomized to arm C is at least m larger than the number

randomized to arm Ek. Values in the row E1 − E4 are per-arm.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) C – – 27 (10, 65) –

E1-E3 0.02 0.46 27 (10, 82) 0.34, 0.2, 0.1

E4 0.53 0.07 369 (11, 444) 0.03, 0.02,0.01

Total 477 (130, 500)

AR
(
1
2
, 0
)

C – – 47 (13, 95) –

E1-E3 0.03 0.70 36 (10, 101) 0.54, 0.42, 0.29

E4 0.67 0.09 319 (10, 413) 0.05, 0.04,0.03

Total 474 (130, 500)

AR
(

n
2N
, 0
)

C – – 47 (18, 88) –

E1-E3 0.04 0.70 35 (10, 91) 0.57, 0.43, 0.28

E4 0.77 0.09 321 (10, 406) 0.05, 0.04,0.03

Total 473 (130, 500)

AR(1, 0.1) C – – 58 (39, 83) –

E1-E3 0.05 0.81 35 (10, 89) 0.7, 0.59, 0.47

E4 0.87 0.08 313 (11, 403) 0.05, 0.05,0.04

Total 477 (130, 500)

ER C – – 177 (40, 238) –

E1-E3 0 0.98 41 (10, 121) 0.95, 0.93, 0.90

E4 0.85 0.09 175 (13, 238) 0.32, 0.18,0.08

Total 475 (140, 500)
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Table S3: Simulation results for designs with a control arm in staircase scenario, (pC , p1, p2, p3, p4) =

(0.20,0.25,0.30,0.35,0.40) for N=500. n̄ = mean per-arm sample size. Each ηm = Pr(NC > Nk +m),

the probability that the number of patients randomized to arm C is at least m larger than the

number randomized to arm Ek.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) C – – 25 (10, 63) –

E1 0.061 0.31 36 (10, 112) 0.22, 0.12,0.06

E2 0.13 0.22 61 (10, 207) 0.14, 0.07,0.04

E3 0.27 0.14 119 (10, 359) 0.08, 0.04,0.02

E4 0.49 0.076 251 (10, 417) 0.03, 0.02,0.01

AR
(
1
2
, 0
)

C – – 40 (12, 88) –

E1 0.10 0.47 48 (10, 120) 0.34, 0.24,0.15

E2 0.20 0.31 76 (10, 180) 0.2, 0.14,0.09

E3 0.40 0.18 123 (10, 269) 0.11, 0.08,0.05

E4 0.65 0.078 206 (11, 360) 0.05, 0.03,0.02

AR
(

n
2N
, 0
)

C – – 40 (16, 81) –

E1 0.14 0.46 45 (10, 111) 0.35, 0.23,0.13

E2 0.28 0.31 71 (10, 179) 0.22, 0.14,0.08

E3 0.49 0.17 119 (10, 285) 0.11, 0.07,0.04

E4 0.75 0.078 218 (12, 361) 0.05, 0.03,0.02

AR(1, 0.1) C – – 58 (43, 79) –

E1 0.19 0.58 46 (10, 107) 0.51, 0.41,0.32

E2 0.39 0.36 67 (10, 180) 0.31, 0.24,0.19

E3 0.62 0.19 113 (10, 300) 0.16, 0.12,0.1

E4 0.84 0.089 208 (10, 358) 0.07, 0.06,0.05

ER C – – 128 (86, 216) –

E1 0.08 0.77 59 (10, 123) 0.79, 0.72,0.67

E2 0.29 0.49 82 (10, 148) 0.58, 0.48,0.42

E3 0.60 0.24 104 (10, 170) 0.41, 0.27,0.21

E4 0.86 0.084 120 (11, 209) 0.32, 0.16,0.09
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Table S4: Simulation results for designs without a control arm in the null scenario p1 = · · · = p5 =

0.20, for N=500. n̄ = mean per-arm sample size. Each ηm = Pr(NC > Nk + m), the probability

that the number of patients randomized to arm C is at least m larger than the number randomized

to arm Ek. All values are per-arm.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) E1-E5 0.01 0.22 100 (10, 294) 0.46, 0.43, 0.39

Total 499 (500, 500)

AR
(
1
2
, 0
)

E1-E5 0.01 0.3 99 (10, 245) 0.45, 0.41, 0.37

Total 497 (500, 500)

AR
(

n
2N
, 0
)

E1-E5 0.01 0.31 99 (10, 255) 0.45, 0.41, 0.38

Total 495 (500, 500)

AR(1, 0.1) E1-E5 0.01 0.28 100 (10, 280) 0.45, 0.42, 0.39

Total 498 (500, 500)

ER E1-E5 0.01 0.38 98 (10, 221) 0.39, 0.31, 0.27

Total 492 (370, 500)
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Table S5: Simulation results for designs with no control arm in the LFC scenario p1 = p2 = p3 =

p4 = 0.20 and p5 = 0.40, for N=500. n̄ = mean per-arm sample size. Each ηm = Pr(NC > Nk +m),

the probability that the number of patients randomized to arm C is at least m larger than the

number randomized to arm Ek. Values in the row E1 − E4 are per-arm.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) E1-E4 0 0.81 28 (10, 93) 0.3, 0.2, 0.12

E5 0.95 0.017 289 (14, 435) 0.02, 0.02,0.01

Total 400 (80, 500)

AR
(
1
2
, 0
)

E1-E4 0 0.95 35 (10, 115) 0.33, 0.24, 0.17

E5 0.96 0.018 157 (13, 327) 0.01, 0.01,0.01

Total 296 (70, 500)

AR
(

n
2N
, 0
)

E1-E4 0 0.94 36 (10, 105) 0.35, 0.26, 0.19

E5 0.96 0.019 140 (11, 338) 0.02, 0.01,0.01

Total 282 (70, 500)

AR(1, 0.1) E1-E4 0 0.92 32 (10, 98) 0.32, 0.22, 0.15

E5 0.96 0.02 212 (12, 391) 0.02, 0.02,0.02

Total 340 (80, 500)

ER E1-E4 0 0.97 45 (10, 152) 0.37, 0.29, 0.23

E5 0.93 0.02 82 (11, 180) 0.07, 0.03,0.02

Total 260 (70, 500)
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Table S6: Simulation results for designs with no control arm in the staircase scenario,

(p1, p2, p3, p4, p5) = (0.20,0.25,0.30,0.35,0.40), for N=500. n̄ = mean per-arm sample size. Each

ηm = Pr(NC > Nk + m), the probability that the number of patients randomized to arm C is at

least m larger than the number randomized to arm Ek.

Method Arm Pr(Select) Pr(Stop) n̄(95% CI) η10, η20, η30

AR(1, 0) E1 0 0.78 23 (10, 69) –

E2 0 0.61 35 (10, 118) 0.2, 0.12,0.07

E3 0.002 0.41 62 (10, 214) 0.14, 0.08,0.05

E4 0.04 0.22 122 (10, 358) 0.07, 0.05,0.03

E5 0.39 0.067 246 (10, 416) 0.04, 0.03,0.02

AR
(
1
2
, 0
)

E1 0 0.95 26 (10, 87) –

E2 0 0.84 42 (10, 132) 0.21, 0.14,0.09

E3 0.002 0.56 73 (10, 195) 0.13, 0.09,0.06

E4 0.036 0.28 126 (10, 283) 0.07, 0.05,0.04

E5 0.38 0.076 199 (10, 338) 0.03, 0.03,0.02

AR
(

n
2N
, 0
)

E1 0 0.95 26 (10, 80) –

E2 0 0.81 41 (10, 118) 0.21, 0.14,0.08

E3 0.002 0.55 69 (10, 191) 0.13, 0.09,0.05

E4 0.04 0.27 123 (10, 294) 0.07, 0.05,0.04

E5 0.41 0.075 205 (10, 344) 0.03, 0.03,0.02

AR(1, 0.1) E1 0 0.93 25 (10, 75) –

E2 0 0.77 39 (10, 116) 0.21, 0.13,0.09

E3 0.002 0.502 66 (10, 200) 0.13, 0.09,0.06

E4 0.037 0.25 122 (10, 333) 0.07, 0.05,0.03

E5 0.38 0.069 226 (10, 382) 0.03, 0.03,0.02

ER E1 0 0.99 29 (10, 108) –

E2 0 0.90 50 (10, 162) 0.22, 0.15,0.11

E3 0.0019 0.66 88 (10, 218) 0.13, 0.09,0.07

E4 0.034 0.32 133 (10, 234) 0.08, 0.06,0.04

E5 0.33 0.08 146 (10, 236) 0.04, 0.03,0.02
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