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A Decision-Theoretic Comparison of
Treatments to Resolve Air Leaks After Lung
Surgery Based on Nonparametric Modeling

Yanxun Xu∗,†, Peter F. Thall‡, Peter Müller§, and Mehran J. Reza¶

Abstract. We propose a Bayesian nonparametric utility-based group sequential
design for a randomized clinical trial to compare a gel sealant to standard care
for resolving air leaks after pulmonary resection. Clinically, resolving air leaks
in the days soon after surgery is highly important, since longer resolution time
produces undesirable complications that require extended hospitalization. The
problem of comparing treatments is complicated by the fact that the resolution
time distributions are skewed and multi-modal, so using means is misleading. We
address these challenges by assuming Bayesian nonparametric probability models
for the resolution time distributions and basing the comparative test on weighted
means. The weights are elicited as clinical utilities of the resolution times. The
proposed design uses posterior expected utilities as group sequential test criteria.
The procedure’s frequentist properties are studied by extensive simulations.
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1 Introduction

1.1 The motivating clinical trial

Intraoperative air leaks (IALs) occur in 48 to 75% of patients after pulmonary resec-
tion (Serra-Mitjans and Belda-Sanch́ıs, 2005). Despite the routine use of intraoperative
sutures and stapling devices, IALs remain a significant problem in the practice of tho-
racic surgery. IALs that persist beyond the immediate postoperative period of five days
may result in longer chest tube drainage, greater postoperative pain, increased risk of
infection, empyema, thromboemboli, and increased length of hospitalization (Merritt
et al., 2010; Singhal et al., 2010). Air leaks are a particularly severe problem in patients
with emphysematous lungs or who have undergone extensive visceral pleural denuding
procedures, such as pleurectomy decortication. This is a surgical procedure in which the
lining surrounding one lung first is removed (pleurectomy), and then any tumor masses
that are growing inside the chest cavity are removed (decortication). In addition to the
noted risks to the patient, the economic impact of a prolonged air leak is significant,
primarily due to increased hospital stay. Because the standard procedure of suturing
visible leaks and using staple reinforcement gives unpredictable results, an alternative
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technique to control IALs is the use of liquid sealants, which are thick fluids instilled in
the areas of leaks. Progel (Neomend, Inc., Irvine, CA) is a polymeric biodegradable hy-
drogel sealant, that currently is the only FDA approved sealant to control IALs during
pulmonary resection (Kobayashi et al., 2001).

Despite FDA approval, the true benefit of Progel in reducing the rate of occurrence
or duration of IALs in lung resection patients has not been established, and therefore it is
not used routinely. Researchers have conducted two studies comparing Progel (treatment
group) with standard care (control group) to demonstrate the safety and efficacy of
Progel (Allen et al., 2004; Klijian, 2012). Because the study of Allen et al. (2004) varied
the application of Progel based on the size of the air bubbles seen in each patient, and the
precise methodology of how this was done was not explained in sufficient detail to enable
replication, the results of this trial are of limited use for a general comparison of Progel
to standard care. The study of Klijian (2012) was retrospective and not randomized.
Given these limitations of existing data, the desire to obtain a prospective randomized
comparison of Progel to standard care motivated the clinical trial described in this
paper. The trial has passed IRB (internal review board) approval and is scheduled to
start accrual at The University of Texas M.D. Anderson Cancer Center.

1.2 Modeling considerations

Denote by T the days to resolve IALs, allowing the possibility that an air leak may
not develop, represented by T = 0. Allen et al. (2004) and Klijian (2012) compared
μ0 and μ1, the means of T in a control and treatment group, respectively, using a
standard t-test, and concluded that Progel was superior to standard care in reducing
IALs. Figure 1 plots the histogram of T obtained from non-randomized historical data in
the clinical database of the Department of Thoracic and Cardiovascular Surgery at M.D.
Anderson Cancer Center. The histogram suggests that a standard parametric model is
inappropriate to describe air leak resolution time distributions. For example, a normal
or log normal distribution would fail to allow for the observed multi-modality and late
resolution times. Moreover, some patients treated with Progel after resection may be
free of air leaks immediately following surgery, corresponding to a positive probability
mass at T = 0.

Let G1 denote the distribution of T in the treatment (Progel) group and G0 the
distribution of T with the control (standard care). We will represent each Gj , j = 0, 1
as a mixture of a point mass δ0 at 0 and a hypothesized distribution Mj for non-zero
resolution times, with M1 a left-shifted version of M0 to formalize the assumption that,
stochastically, IAL resolution times with Progel are no longer than with standard care.
This order constraint is motivated by several medical considerations: Progel is inert, and
thus it cannot react chemically with the patient’s lung tissue, is not a potential source of
infection, and does not slow down the healing process. Moreover, Progel cannot make an
air leak worse because it does not contribute to air leak formation. These considerations
motivate a priori stochastic ordering of G1 and G0, which effectively says that, in terms
of time to resolve an IAL, Progel may be better than standard care, but it cannot be
worse. Nevertheless, for comparison we later report also inference under an otherwise
equivalent model without the stochastic ordering constraint.
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Figure 1: Histogram of times to resolve lung air leaks, from the historical dataset.

An important consideration in developing a trial design is that the use of an expected
value as the target for a comparative test is inappropriate and inadequate, both because
the historical distribution is skewed with a long right tail, and because a change in the
early days after surgery is clinically more important than a comparable change in later
days. Also, a standard test of μ1 = μ0 versus μ1 < μ0 would require an impractically
large sample size to achieve any reasonable power. These complications are the principal
reasons why designing a randomized trial to compare Progel to standard care is non-
trivial, and why the use of Progel has not been widely accepted among surgeons who
perform pulmonary resections.

The desire to obtain reliable confirmatory evidence to evaluate the comparative
benefit of Progel motivates the randomized trial described in this paper. The goal of the
trial is to assess the extent to which Progel is superior to standard care. The comparison
also allows for the possibility no difference.

1.3 Stochastic ordering and Bayesian nonparametric priors

The time until resolution of air leaks for patients treated with Progel is a priori expected
to be shorter than under standard care. This introduces a stochastic ordering constraint
on G0 and G1. Formally, a distribution G1 is stochastically smaller than G0, denoted by
G1 � G0, if the corresponding cumulative distribution functions satisfy F1(t) ≥ F0(t)
for all t. Lehmann and Romano (2006) and Randles and Wolfe (1979) have modeled
stochastic ordering parametrically. Although straightforward, these approaches are lim-
ited by the requirement that a parametric family must be specified.
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To compare distributions of air leak resolution times, detailed features (e.g., skewed
or multi-modal) of the distributions are important, leading us to consider a Bayesian
nonparametric (BNP) approach. Importantly, uncertainties about the inference on these
details are critical, as posterior probabilities about comparisons drive the decisions about
sequential continuation and the terminal decision. Such descriptions of uncertainties are
best considered in the framework of a probability model on the unknown distributions,
as they are implemented in BNP models.

Formally, BNP refers to prior models for infinite dimensional unknown quantities.
Inference for random distributions, like G0 and G1 here, is a typical example. A common
feature of BNP models is their large support, which allows one to approximate essen-
tially arbitrary distributions (Ishwaran and James, 2001). For the proposed design, we
use a model based on the Dirichlet process (DP) prior (Ferguson, 1973), which is by far
the most commonly used BNP model for a random distribution. MacEachern (1999)
introduced the dependent DP (DDP), which extended the DP to a probability model
for a family {Gx, x ∈ X} of random probability measures, indexed by some covariate
x. The special case of a finite family, like {G0, G1} in our application, was discussed in
De Iorio et al. (2004). Several authors have considered BNP models for stochastically or-
dered distributions. Gelfand and Kottas (2001) started with two DP random probability
measures G0 and G1, and used the product of the corresponding cumulative distribu-
tion functions to define a pair of stochastically ordered random probability measures. A
general methodology for stochastic ordering by considering probability measures con-
strained to a convex set was proposed by Hoff (2003). Finally, Dunson and Peddada
(2008) incorporated stochastic ordering constraints in the DDP prior. In this paper,
we use a simple implementation of this finite DDP model with order constraint as the
prior probability model for the distributions G1 and G0 of leak resolution times under
Progel and control. Details are discussed in Section 3. For more extensive reviews of
BNP methods, see, for example, Hjort et al. (2010).

Based on the proposed BNP model, we define a utility-based decision criterion to
develop a clinical trial design. To our knowledge, there is no literature on using BNP
stochastic ordering models in construction of clinical trial designs. The main novelties
in the proposed approach are the successful use of utilities in a small scale clinical
trial, a convincing case for the need of a full probabilistic description of uncertainties
on random probability measures, and a simple and practicable construction of a BNP
prior on stochastically ordered random probability measures with point masses. The
trial will be conducted in The University of Texas M.D. Anderson Cancer Center, with
a co-author of this paper (RM) its Principal Investigator.

Important practical advantages of the proposed approach are that it allows mean-
ingful borrowing of information from historical data (by centering the BNP model),
borrowing across treatments (by constructing correlated priors on G0 and G1), and the
exploitation of stochastic ordering constraints, if warranted and approved in IRB re-
views. The use of utility weighting for the outcomes, as in this application, is particularly
natural under a BNP model because it allows inference about all aspects of the event
time distribution, without constraint to parametric families. Together, these features
allow the investigators to plan a much smaller sample size than what would be required
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T (days) 0 5 10 15 20 25 30 35 ≥ 40
Utility 100 50 10 6 5 4 3 2 0

Table 1: Elicited utility u(T ) for T = days to resolve intra-operative air leak.

by a conventional trial design. For example, based on the historical mean of 8 days and
standard deviation 8.76, a two sample one-sided 0.05-level t-test with power 0.80 to
detect a 25% drop in the mean, from 8 to 6 days, would require a sample of n = 476
patients. This is impossible for this single-institution trial. Given the realistic maximum
target accrual of 48 patients, the question is whether a design can be constructed that
has reasonably high power to conclude that Progel is superior to standard care under
clinically meaningful alternatives. We will show that the proposed design, based on dif-
ferences in mean utilities evaluated from the posterior under the BNP model, has very
desirable operating characteristics with n = 48 patients. The impact is the opportunity
to establish what is expected to be a greatly superior treatment option for patients,
with reasonable cost and effort.

2 Utilities and trial design

The primary outcome is T , the time (in days) to resolve an air leak in the lungs following
surgery, and we define Y = log(T+1). The possibility that an air leak may not develop is
represented by T = Y = 0. The mean, or any other single measure of central tendency
of Y , is not an appropriate summary for treatment comparisons. Instead, we take a
utility-based approach. Utility-based decision criteria have been used recently in clinical
trial designs (Thall and Nguyen, 2012; Lee et al., 2015). We use utilities to weight the
importance of air leak resolution times after surgery. For example, a difference of a few
days in time to resolution of air leaks in the days immediately after surgery is far more
important than a comparable difference in later days. We performed a formal utility
elicitation with our clinical collaborator RM. The rationale of the utility elicitation
includes: 1) the most desirable resolution time is T = 0 (free of air leaks immediately
after surgery, although this ideal outcome is almost never seen with standard care); 2)
early (1 ≤ T ≤ 5) resolution of air leaks is very desirable and therefore the interval [1, 5]
received a relatively high utility; 3) the utilities drop off steeply for later resolution times
(T > 5). These considerations are both medical and economic, and they motivated the
elicited utilities u(Y ) for Y = log(T + 1) in Table 1. In the table, the numerical utility
50 assigned to the outcome T = 5 days corresponds to the subjective assessment of RM
that this comparatively favorable outcome is half as desirable as the ideal outcome of
having no air leak at all. Similarly, the utility for T = 10 days reflects that this outcome,
which involves a long hospital stay and the complications described earlier, is 1/5 as
desirable as the outcome T = 5 days. We now are ready to define the expected utility
for each group as

U j =

∫
u(Y )Gj(dY ), j = 0, 1, (1)

where Gj is a sampling model for the outcome in treatment group j. This expectation is
over the distribution of the outcome T , and is conditional on the unknown distribution
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Gj . We do not need to make any specific assumptions about Gj yet, except for the
existence of such a distribution.

Based on the probability model and the utilities of Table 1, we now define a design
for the Progel trial. There are two types of decisions to be considered. At each interim
test in the group sequential procedure, we make a stopping decision di ∈ {0, 1} to stop
(di = 0) or continue (di = 1). If we reach a predetermined maximum sample size, N,
we set dN = 0 by definition. Upon stopping, a terminal decision a ∈ {0, 1} reports the
final recommendation, with a = 1 denoting a recommendation for Progel and a = 0 for
standard care. A decision-theoretic optimal solution would require backward induction
(Bellman, 1957) to solve the full sequential decision problem. We stop short of carrying
out this computationally prohibitive solution. Instead, we propose to conduct the trial
as follows.

Sequential stopping rule Patients are enrolled in the trial sequentially in cohorts of
size m = 16 until a maximum of N = 48 patients is reached or early stopping is
indicated. All patients are randomized equally to control group and treatment group,
with the restriction of perfect balance after each cohort, when the continuation decisions
di are made.

Denote Yn = {Yji, i = 1, . . . , n/2, j = 0, 1}, the observed data for the first n treated
patients, that is n/2 patients in each group under the restricted equal randomization
(rounding n/2 for odd n). The proposed decision criterion is the posterior probability

η(εU ,Yn) = p(U1 > U0 + εU | Yn), (2)

where εU ≥ 0 is a minimum clinically meaningful difference in expected utility. Because
the sequential rule makes multiple decisions, as with any group sequential procedure the
decision boundaries must be calibrated to control the design’s overall false positive error
rate. This is similar to the use of so-called alpha-spending functions in conventional fre-
quentist group sequential designs. Like other frequentist summaries, false positive error
rate (type-I error) is a probability under an assumed truth, with respect to repeated
simulations of the entire trial. In the context of clinical trial designs such summaries
under repeated simulations are also known as (frequentist) operating characteristics
(OCs). Because evaluating the design’s OCs analytically is far too complex, we do this
by repeated computer simulations of the design, under an array of different possible
scenarios. This follows routine practice in evaluating the behavior of sequentially adap-
tive clinical trial designs. In the present setting, the OCs are the type I error, mean
sample size, and probabilities of different possible decisions (correct decision, stop due
to futility, stop due to superiority). Details are reported in Tables 3 and S1 (Xu et al.,
2016).

After each cohort, we carry out Markov chain Monte Carlo posterior simulation and
evaluate the posterior estimates η̂(εU ,Yn). Let ξU be an upper probability boundary
for which the trial will be terminated early and the treatment arm declared superior
if η̂(εU ,Yn) ≥ ξU . Similarly, let ξL be a lower boundary for which the trial will be
terminated early due to futility, with the null hypothesis accepted, if η̂(εU ,Yn) ≤ ξL.
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The bounds ξL and ξU are chosen by preliminary simulations to obtain a design with
desirable frequentist OCs. In Section 4, we will illustrate how one may calibrate these
bounds. In summary, the sequential stopping decision at any point of the trial is: dn = 1
if ξL < η̂(εU ,Yn) < ξU ; dn = 0 otherwise.

Terminal decision rule Upon stopping, we record the terminal decision a = 1 if
η̂(εU ,Yn) > 1

2 and a = 0 otherwise. Assuming that ξL < 0.5 < ξU , the rule simply
records whether we stop due to crossing either the upper or lower bound, respectively.
If the trial reaches the maximum number of patients, N = 48, the terminal decision
uses the threshold η̂ > 0.5 to determine a recommendation for Progel.

3 Probability model

3.1 Model and properties

We now construct a prior probability model for Gj , the sampling model for Yij for
patients under control (j = 0) and Progel (j = 1). Because some patients may be free
of air leaks immediately following surgery, we allow a point mass at Yji = 0 by defining
Gj , j = 0, 1, as mixtures

Gj = νj0δ0 +

∞∑
h=1

νjhN(θjh, σ
2) = νj0δ0 + (1− νj0)

∞∑
h=1

whN(θjh, σ
2)

= νj0δ0 + (1− νj0)Mj , (3)

where
∑∞

h=1 wh = 1. Also, we impose a constraint ν10 ≥ ν00 on the probabilities ν10
and ν00, and M1 � M0, formalizing the prior belief that patients are more likely to
be free of an air leak in the treatment group than in the control group. For Mj =∑∞

h=1 whN(θjh, σ
2), j = 0, 1, we use a DDP prior with common weights and dependent

atoms. The common weights wh have the DP stick-breaking prior, wh = vh
∏

�<h(1−v�)
with vh ∼ Beta(1, α). The dependent prior on the atoms is constructed as follows,
to ensure M1 � M0. We assume θh = (θ0h, θ1h) ∼ M�, where M� is a truncated
multivariate normal base measure, including a positive probability κ for ties θ0h = θ1h:

M�(θh) = N(θ1h | μ1, σ
2
1)

(
κI(θ0h = θ1h) + (1− κ)N+(θ0h | θ1h, τ2)

)
, (4)

where N+(x | m,V ) refers to a truncated normal random variable x subject to x ≥ m,
and κ = p(θ0h = θ1h). For comparison we will also consider inference under a variation
of model (4) without the order constraint, replacing the N+ kernel by an unconstrained
normal N(θ1h, τ

2).

Denote M̃j =
∑

h whδθjh , where δθjh denotes a point mass at θjh, j = 0, 1. It is

straightforward to show that M̃1 � M̃0, which implies M1 � M0, and this in turn
implies G1 � G0, as desired. Barrientos et al. (2012) study the support properties of
various DDP models. Applying Theorem 2 of Barrientos et al. (2012), it follows that
the proposed model has full support over all pairs of stochastically ordered random
probability measures.
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For reference we state the complete model,

Yji | νj0, νj1,M0,M1 ∼ Gj = νj0δ0 + (1− νj0)

∞∑
h=1

whN(Yji | θjh, σ2)

(θ0h, θ1h) | μ1, σ1, κ, τ ∼ M�. (5)

We complete the model specification with choices for the hyperparameters νj0, νj1, σ
2,

κ, μ1, σ1, τ . In the context of clinical trial design, the hyperparameters should not intro-
duce inappropriately strong information into the prior. To ensure this, we provide the
following guidelines.

We first standardize the data by subtracting the sample mean Ȳ1 of the Y1i’s of
the treatment group and scaling with the sample standard deviation s1, mapping Yji →
(Yji−Ȳ1)/s1. This is done to mitigate sensitivity to the measurement scale. We fix μ1 = 0
and σ1 = 1, to reflect the standardization. For σ2, we assume p(1/σ2) = Ga(0.001, 0.001)
to ensure that the prior is not too informative, where Ga(a, b) denotes a gamma distri-
bution with mean a/b. To allow for a wide range of shifts in the response density, we
specify p(1/τ2) = Ga(0.5, 0.5). This implies a Cauchy distribution for θ0h, which often
is used as a robust choice in parametric models. To satisfy the constraint ν10 ≥ ν00, we
let ζ0 = ν00, ζ1 = ν10 − ν00, and assume p(ζ0, ζ1) = Dirichlet(0.1, 0.1, 0.1). Finally, we
assume p(κ) = Beta(1, 1) and p(α) = Ga(1, 1). The conjugacy of the implied normal on
θh in (4) and the normal kernel in (5) greatly simplify posterior inference. Any Markov
chain Monte Carlo (MCMC) scheme for DP mixture model as described, for example, in
Neal (2000), can be applied. In our implementation, we used an implementation based
on the finite DP (Ishwaran and James, 2001), which truncates the infinite sum in the
DP mixture model after a finite number of terms. We used H = 10, following a recom-
mendation based on Theorem 1 in Ishwaran and James (2002) that gives tight bounds
on the approximation error, well below what is clinically relevant in this application.
Details of the MCMC implementation are presented in Supplement A.

We carried out a preliminary simulation study to better understand the nature and
accuracy of posterior inference under the proposed model for a reasonable sample size.
The simulation setup and results are summarized in Supplement B. The inference under
the proposed method incorporating the stochastic ordering constraint performed well,
indicating small bias even with moderate sample size.

4 Trial simulation study

To assess average behavior of the proposed BNP trial design, we performed an extensive
simulation study under a variety of scenarios that were constructed to mimic the Progel
trial. For the proposed stopping and decision rules, we fixed the parameters as ξU =
0.9, ξL = 0.05, based on preliminary studies (described later) and examining the OCs of
the proposed BNP design. In all scenarios, we set the maximum number of patients to be
N = 48, randomized equally between the control and treatment group, with cohorts of
16 patients. The smallest clinically meaningful improvement used to define the decision
criterion η(εU ,Yn) was determined by our clinical collaborator (RM) to be εU = 18,
given the numerical utilities of IAL resolution times in Table 1.
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Scenario Uo
1 − Uo

0 Group Uo
j Simulation truth Go

j

Progel - Resample from historical data
1 0

Control - Resample from historical data
Progel 23.44 0.1δ0 + 0.63N(2, σ̄2) + 0.27N(3, σ̄2)

2 0
Control 23.44 0.1δ0 + 0.63N(2, σ̄2) + 0.27N(3, σ̄2)
Progel 57.25 0.3δ0 + 0.49N(1, σ̄2) + 0.14N(2, σ̄2) + 0.07N(3.5, σ̄2)

3 41.64
Control 15.61 0.1δ0+0.63N(2.5, σ̄2)+0.18N(3, σ̄2)+0.09N(4.5, σ̄2)
Progel 48.94 0.2δ0 + 0.56N(1.5, σ̄2) + 0.24N(2, σ̄2)

4 19.15
Control 29.79 0.1δ0 + 0.63N(1.8, σ̄2) + 0.27N(3, σ̄2)
Progel 64.82 0.4δ0 + 0.48N(1, σ̄2) + 0.12N(2.5, σ̄2)

5 29.68 Control 35.14 0.1δ0 + 0.54N(1.5, σ̄2) + 0.18N(2.5, σ̄2) +
0.18N(3.5, σ̄2)

Progel 60.80 0.4δ0 + 0.36N(1, σ̄2) + 0.12N(2, σ̄2) + 0.12N(3, σ̄2)
6 34.15

Control 26.65 0.1δ0 + 0.36N(1.5, σ̄2) + 0.54N(3.5, σ̄2)
Progel 55.33 0.3δ0 + 0.3Exp(1) + 0.4Exp(0.5)

7 43.47
Control 11.86 0.1δ0 + 0.4N(3, 0.22) + 0.5N(4, 0.22)
Progel 45.08 0.2δ0 + 0.4Weib(1, 2) + 0.4Weib(0.7, 2)

8 8.13
Control 36.95 0.2δ0 + 0.5N(1.8, 0.22) + 0.3N(2.5, 0.32)
Progel 55.33 0.3δ0 + 0.3Exp(1) + 0.4Exp(0.5)

9 10.25
Control 45.08 0.2δ0 + 0.4Weib(1, 2) + 0.4Weib(0.7, 2)

Table 2: In each scenario, the models Go
j in the right column are the simulation truths.

Here σ̄ = 0.3 and Exp(·),Weib(·, ·) denote an exponential distribution and a Weibull
distribution, respectively. Uo

j reports the expected utilities under the simulation truth
Go

j . The second column reports the true difference Uo
1 − Uo

0 .

We considered nine scenarios, and simulated 100 trials for each scenario. The re-
sponse outcomes Yji were generated from the simulation truth Go

j shown in the last
column of Table 2. Other columns in the same table show the true utilities Uo

j =∫
u(y) dGo

j(y) for each arm and the differences Uo
1 − Uo

0 .

To calculate type I error and power, we define the null hypothesis H0 : G1 = G0.
Under the proposed design, the test rejects H0 in favor of Progel if η̂(εU ,Yn) ≥ ξU
interimly with early stopping at n=16 or 32, and if η̂(εU ,YN ) ≥ 0.5 for the terminal
rule at N = 48. Similarly, the test fails to reject H0 if η̂(εU ,Yn) ≤ ξL (n = 16, 32), with
early stopping for futility, and if η̂(εU ,YN ) < 0.5 at N = 48.

We fixed the hyperparameters as described earlier in Section 3 and fit the proposed
BNP model (5) to each simulated data set. Table 3 summarizes the OCs of the proposed
BNP utility-based design for nine scenarios. The OCs include the average number of
patients treated, type I error, the probabilities of making the correct decision (PCD),
stopping the trial early due to either superiority, Pr(EarS), or futility, Pr(EarF) and,
in a final analysis without early stopping, declaring superiority, Pr(FinS), or futility
Pr(FinS). For comparison we also implemented inference under a variation of the model
without the stochastic ordering constraint, that is, model (4) with an unconstrained
normal N(θ0h | θ1h, τ

2) replacing the truncated normal in (4). Scenarios 1a and 2a
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Scenario Uo
1 − Uo

0 MSS TIE PCD Pr(EarS) Pr(FinS) Pr(EarF) Pr(FinF)

1 0 16.80 0.00 1.00 0.00 0.00 1.00 0.00

1a 0 16.32 0.00 1.00 0.00 0.00 1.00 0.00

2 0 28.80 0.02 0.98 0.01 0.01 0.64 0.34

2a 0 28.00 0.01 0.99 0.00 0.01 0.69 0.30

3 41.64 29.12 - 1.00 0.81 0.18 0.01 0.00

4 19.15 40.16 - 0.63 0.15 0.48 0.15 0.22

5 29.68 31.68 - 0.93 0.60 0.33 0.04 0.03

6 34.15 29.92 - 0.94 0.65 0.29 0.05 0.01

7 43.47 28.64 - 0.96 0.77 0.19 0.04 0.00

8 8.13 34.08 - 0.79 0.04 0.17 0.45 0.34

9 10.25 34.88 - 0.74 0.10 0.13 0.34 0.43

Table 3: Trial simulation results. MSS = mean sample size, TIE = type I error, PCD
= probability of making the correct decision, Pr(EarS) = probability of stopping early
due to superiority, Pr(EarF) = probability of stopping early due to futility, Pr(FinS)
= probability of declaring superiority in a final analysis without early stopping, and
Pr(FinF) = probability of declaring futility in a final analysis without early stopping.
All probabilities are computed by repeated simulations.

show summaries of inference under this unconstrained version of the model, using the
same simulation truths as in scenarios 1 and 2.

Details of the simulation results are discussed in Supplement C. Scenarios 1 and 2
are null scenarios; in Scenario 3 we assumed a large treatment effect of Uo

1 − Uo
0 =

41.6, far beyond εU = 18; Scenario 4 has a small treatment effect of Uo
1 − Uo

0 = 19.2,
barely beyond εU ; under Scenarios 5 and 6 we assumed a moderate treatment effect; and
the last three Scenarios 7, 8, and 9 have simulation truths different from the assumed
mixture of normal distributions.

For reference we also evaluated summaries related to estimation. Denote the true
utility difference under the simulation truth by ΔU� = Uo

1 −Uo
0 , and ΔU = U1−U0. For

each scenario, we computed the estimation bias E{ΔU −ΔU�} and root mean squared
error (RMSE)

√
E{(ΔU −ΔU�)2}, where the expectation is over repeated simulations

under each scenario. The results are given in Table S1.

The OCs under all nine scenarios are given in Table 3, and show a favorable eval-
uation of the proposed design. The results under scenarios 1a and 2a, compared to
scenarios 1 and 2, show that the design’s frequentist OCs appear to be robust with
respect to the inclusion or not of the constraint G0 < G1 in the prior. The simulation
truths in scenarios 7, 8, and 9 are different from the assumed mixture of normal distribu-
tions with equal variance. The results under these scenarios demonstrate the flexibility
of BNP mixture models with a common variance parameter. In summary, inferences
under the proposed BNP model and trial monitoring rules exhibit desirable OCs across
all nine scenarios.
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Scenario True Diff Group MSS PCD Pr(EarS) Pr(FinS) Pr(EarF) Pr(FinF)

BNPSO 29.12 1.00 0.81 0.18 0.01 0.00
3 41.64

Z-Weib 44.32 0.65 0.10 0.52 0.04 0.34

BNPSO 40.16 0.63 0.15 0.48 0.15 0.22
4 19.15

Z-Weib 42.40 0.17 0.03 0.14 0.18 0.65

BNPSO 29.92 0.94 0.65 0.29 0.05 0.01
6 34.15

Z-Weib 40.00 0.85 0.28 0.57 0.02 0.13

BNPSO 28.64 0.96 0.77 0.19 0.04 0.00
7 43.47

Z-Weib 41.92 0.87 0.20 0.65 0.04 0.11

BNPSO 34.08 0.79 0.04 0.17 0.45 0.34
8 8.13

Z-Weib 45.28 0.42 0.06 0.50 0.05 0.39

Table 4: Comparisons in selected scenarios under the proposed BNP model with stochas-
tic ordering (BNPSO) versus an alternative parametric model with a zero-enriched
Weibull (Z-Weib).

Parametric models and sensitivity analyses For comparison, we implemented alterna-
tive inference under a parametric model assuming a zero-enriched Weibull distribution,

that is, a mixture of point mass at 0 and Weibull distribution. We assumed Tij
i.i.d.∼

GW
j , i = 1, . . . , nj for groups j = 0 and j = 1, using GW

j = πjδ0+(1−πj)Weib(λ1j , λ2j).
We completed the model with a prior p(πj) = Beta(0.1, 0.1) and a conjugate prior
p(λ2j) = InvGa(b1j , b2j). The hyperparameters b1j and b2j were determined by match-
ing the prior mean of λ2j with a maximum likelihood estimate and assuming a prior
variance of 10. Finally, for λ1j there is no conjugate prior. We followed Fink (1997) by

assuming p(λ1j) ∝ λ
a1j

1j exp(−a2jλ1j −
a
λ1j
3j

λ2j
), with a1j = 1, a2j = log(

∏nj

i=1 Tij) + 2, and

a3j = 2, j = 0, 1.

Table 4 shows the OCs comparing the inferences under the proposed model ver-
sus the zero-enriched parametric Weibull model in some (arbitrarily) selected scenarios.
The proposed BNP model with stochastic ordering compares quite favorably, with much
larger probabilities of making a correct decision and correctly stopping early for supe-
riority.

Finally, we carried out an alternative analysis to understand how much the re-
sults might change if different utilities u(t) were elicited. Table S2 in the supplement
presents the results of a sensitive analysis using different utilities. In summary, while
the actual decisions naturally change, the frequentist OCs change only slightly. Differ-
ent decisions are desirable, under different utilities that reflect different clinical prefer-
ences.

A final set of simulations explored robustness with respect to the decision boundaries
ξU and ξL for the continuation decision. Table S3 summarizes OCs under Scenarios 2, 3,
and 4. Again, while some summaries, like the probability of early stopping for futility,
change in the expected direction, the nature of the overall comparison across scenarios
remains unchanged under different criteria.
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5 Conclusions and discussion

We developed a Bayesian nonparametric (BNP) utility-based group sequential design
to compare Progel with standard care in resolving air leaks after lung surgery. In
this setting, standard statistical tests or parametric models are not appropriate for
trial designs or to describe air leak resolution time distributions. We solved the prob-
lem by developing a BNP model with a stochastic ordering constraint and propos-
ing a trial design based on expected utility, computed from elicited utility values.
The model assessment and trial simulation studies show unbiased results and desir-
able OCs.

Beyond the application discussed in this paper, the proposed BNP utility-based
method can be extended to many other contexts. For example, in applications that
involve multiple groups, one may replace the truncated bivariate normal base measure
M∗ in (5) with a truncated multivariate normal distribution that incorporates the de-
sired stochastic ordering constraints. Furthermore, the hypothesis testing framework
discussed in Section 4 can be extended easily to testing equalities in multiple distribu-
tions that are stochastically ordered.

Finally, we note that the BNP model could be replaced by a sufficiently flexible
parametric model without any substantial change in the performance of the proposed
design. For example, one could use a mixture of H = 5 normals as the model. However,
the computational effort for posterior simulation in any finite mixture of normal model
is nothing less than in the proposed DDP model. We prefer the BNP model for reasons
of conceptual clarity and, in principle, natural scaling to larger sample sizes and greater
precision.

Supplementary Material

Supplement: A Decision-Theoretic Comparison of Treatments to Resolve Air Leaks Af-
ter Lung Surgery Based on Nonparametric Modeling (DOI: 10.1214/16-BA1016SUPP;
.pdf). It includes all the MCMC implementation details, model assessment simulation,
more trial simulation results, and sensitivity analyses.
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