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Prior Effective Sample Size in Conditionally
Independent Hierarchical Models

Satoshi Morita∗, Peter F. Thall† and Peter Müller‡

Abstract. Prior effective sample size (ESS) of a Bayesian parametric model was
defined by Morita, et al. (2008, Biometrics, 64, 595-602). Starting with an ε-
information prior defined to have the same means and correlations as the prior
but to be vague in a suitable sense, the ESS is the required sample size to obtain
a hypothetical posterior very close to the prior. In this paper, we present two
alternative definitions for the prior ESS that are suitable for a conditionally inde-
pendent hierarchical model. The two definitions focus on either the first level prior
or second level prior. The proposed methods are applied to important examples
to verify that each of the two types of prior ESS matches the intuitively obvi-
ous answer where it exists. We illustrate the method with applications to several
motivating examples, including a single-arm clinical trial to evaluate treatment
response probabilities across different disease subtypes, a dose-finding trial based
on toxicity in this setting, and a multicenter randomized trial of treatments for
affective disorders.

Keywords: Bayesian hierarchical model, Conditionally independent hierarchical
model, Computationally intensive methods, Effective sample size, Epsilon-information
prior

1 Introduction

Recently, a definition for the effective sample size (ESS) of a given prior π(θθθ) with
respect to a sampling model p(Y | θθθ) was proposed by Morita, Thall, and Müller (2008)
(MTM). The ESS provides an easily interpretable index of the informativeness of a prior
with respect to a given likelihood. The approach is to first define an ε-information prior
π0(θθθ) having the same means and correlations as π(θθθ) but being vague in a suitable
sense, and then define the ESS to be the sample size n of hypothetical outcomes Yn =
(Y1, · · · , Yn) that, starting with π0(θθθ), yields a hypothetical posterior πn(θθθ | Yn) very
close to π(θθθ). MTM define the distance between π(θθθ) and πn(θθθ | Yn) in terms of the
trace of the negative second derivative matrices of log{π(θθθ)} and log{πn(θθθ | Yn)}. The
ESS is defined as the interpolated value of n that minimizes this “prior-to-posterior”
distance. While this definition is suitable for a wide range of models and applications,
it fails for hierarchical models.
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In this paper, we propose two extensions of the definition for prior ESS that are
applicable to two-stage conditionally independent hierarchical models (CIHMs) (Kass
and Steffey, 1989). Our approach is pragmatic in that the ESS can always be evaluated
either analytically or by using a simulation-based approach. We validate the definitions
by verifying that they match the intuitively obvious answers in important special cases
where such answers exist. We focus on the class of CIHMs due to their practical impor-
tance in settings where data are collected from exchangeable subgroups, such as study
centers, schools, cities, etc. Important areas of application include meta-analysis (cf.
Berry and Stangl, 1996; Berlin and Colditz, 1999), and clinical trial design (cf. Thall et
al., 2003).

Moreover, we restrict attention to CIHMs as the most commonly used versions of
hierarchical models. For more complex hierarchical models, one might report prior ESS
values for appropriate sub-models, although it might become less meaningful to report
an overall ESS.

A two-level CIHM for K subgroups is defined as follows. Let Yk = (Yk,1, . . . , Yk,nk
)

denote the vector of outcomes for sub-group k and let YM = (Y1, ...,YK), with the K
vectors assumed to be distributed independently conditional on hyperparameters. We
use f(·) generically to indicate the sampling model of observable data, which may be a
single variable Yk,j , a vector Yk, or the vector YM of all n1 + · · ·+nK observations. The
nature of the argument will clarify the specific meaning of f(·). In the first level, Yk

follows distribution f(Yk | θθθk). In the second level, the subgroup-specific parameters
θθθ=(θθθ1, · · · , θθθK) are assumed to be i.i.d. with prior π1(θθθk | θ̃̃θ̃θ), where the hyperparameter
θ̃̃θ̃θ has a hyperprior π2(θ̃̃θ̃θ | φφφ) with known φφφ. The model is summarized in equation (1).

Sampling model f(YM | θθθ) =
∏K

k=1 f(Yk | θθθk)
(Level 1) Prior π1(θθθ | θ̃̃θ̃θ) =

∏K
k=1 π1(θθθk | θ̃̃θ̃θ)

(Level 2) Hyperprior π2(θ̃̃θ̃θ | φφφ).
(1)

A common example of a CIHM (1) is a conjugate normal/inverse χ2-normal-normal
model. Let Inv-χ2(ν, S) denote a scaled inverse χ2 distribution with ν degrees of free-
dom, mean νS

ν−2 for ν > 2, and variance 2ν2S2

(ν−2)2(ν−4) for ν > 4. This model has a normal
sampling distribution Yk,i | θk ∼ N(θk, σ2) with known σ2, where N(µ, σ2) denotes a
normal distribution with mean µ and variance σ2. Independent conjugate normal pri-
ors θk | µ̃, γ̃2 ∼ N(µ̃, γ̃2) on the location parameters θ1, · · · , θK are assumed, with a
normal/inverse χ2 hyperprior µ̃ | µφ, τ2

φ ∼ N(µφ, τ2
φ) and γ̃ 2| νφ, Sφ ∼ Inv-χ2(νφ, Sφ).

Once the methodology is established, we will explain how to compute ESS when σ2 is
not assumed to be known but rather is random with its own prior.

To compute an ESS under a CIHM, we will consider the following two cases, which
address different inferential objectives. In case 1, the target is the marginalized prior,

π12(θθθ | φφφ) =
∫

π1(θθθ | θ̃̃θ̃θ)π2(θ̃̃θ̃θ | φφφ)dθ̃̃θ̃θ. (2)

An example is a setting where θθθ1, . . . , θθθK are treatment effects in K different disease
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subtypes and they are the parameters of primary interest. In case 2, the target prior is

π2(θ̃̃θ̃θ | φφφ). (3)

For example, this would arise if an overall treatment effect θ̃̃θ̃θ obtained by averaging over
K clinical centers in a multi-center clinical trial is the parameter of primary interest.
We propose two definitions for the ESS under a CIHM, one for each case, allowing the
possibility that both types of ESS may be of interest in a given analysis. For later
reference we define the marginal likelihood

f1(Yk | θ̃̃θ̃θ) =
∫

f(Yk | θθθk)π1(θθθk | θ̃̃θ̃θ)dθθθk (4)

by integrating with respect to the level 1 prior.

Section 2 presents motivating examples. We briefly summarize the MTM formulation
in Section 3. The two definitions of ESS in CIHMs and accompanying computational
methods are given in Section 3. In Section 4 we compute the ESS for the three moti-
vating examples. In Section 5 we discuss some standard CIHMs, and we close with a
brief discussion in Section 6.

2 Motivating examples

2.1 A Single-Arm Sarcoma Trial

Thall et al. (2003) present a design for a single-arm phase II trial to examine the efficacy
of the targeted drug imatinib for sarcoma, a disease with many subtypes. Since sarcomas
are uncommon, the goal was to construct a design that allowed the efficacy of imatinib
to be evaluated in K = 10 sarcoma subtypes. This was achieved by assuming the
following CIHM, where the treatment effects differ across subtypes. The parameters of
primary interest were the subtype-specific tumor response probabilities, ξ1, · · · , ξ10. Let
Ga(aφ, bφ) denote a gamma distribution with mean aφ/bφ and variance aφ/b2

φ. Denoting
θk = log{ξk/(1 − ξk)}, it was assumed that θ1, . . . , θ10 were i.i.d. N(µ̃, γ̃−1) and that
µ̃ and the precision parameter γ̃ followed independent normal and gamma hyperpriors,
respectively. Elicitation of prior probabilities characterizing association between pairs
of ξk’s yielded the hyperpriors µ̃ ∼ N(−1.386, 10) and γ̃ ∼ Ga(2, 20), so that E(γ̃) =
.10 and var(γ̃) = .005. In summary, the trial design assumed the following model:

Sampling model Yk ,m | θk ∼ Bin(m, ξk) indep. for all k
Prior θk | µ̃, γ̃ ∼ N(µ̃, γ̃−1) i.i.d. for all k
Hyperpriors µ̃ ∼ N(−1.386, 10)

γ̃ ∼ Ga(2, 20).

(5)

Thall et al. (2003) used the marginal posterior probability Pr(ξk > 0.30|Y) to define an
early stopping criterion in disease subtype k, which was computed based on the posterior
π(θθθ | Y) under (5). Thus, 10 stopping rules were applied, one for each subtype. Note
that Y included the data from all ten subtypes in order to exploit the association among
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the θk’s induced by the hierarchical model. This rule was first applied after observing a
minimum of eight patients in each disease subtype, and subsequently at sample sizes of
17, 23, and 30 patients. Thus, an overly informative prior, for example, with a prior ESS
≥ 40 might be considered inappropriate since the prior, rather than patient response
data, would dominate early termination decisions. Because both a prior and hyperprior
were specified, the methods in MTM are not applicable, and it is not obvious how to
determine the ESS of this model. We will show below that the ESS can be determined
for this model using an approach that is coherent in the sense that it gives the intuitively
obvious answer in cases where the ESS exists.

2.2 A CRM Dose-finding Trial for Multiple Patient Subgroups

As an extension of the hierarchical model (HM) in (5) we consider a phase I dose-
finding trial with multiple patient subgroups using a model-based design. We assume an
implementation that generalizes the continual reassessment method (CRM) (O’Quigley
et al., 1990). Suppose that there are K = 4 subgroups (k = 1, . . . , 4) with population
proportions (.40, .30, .20, .10). Each patient in each subgroup receives one of six doses,
100, 200, 300, 400, 500, 600, denoted by d1, . . . , d6, with standardized doses xz =
log(dz) − 1/6

∑6
l=1 log(dl). The outcome variable is the indicator Yk,i = 1 if the ith

patient in subgroup k suffers toxicity, 0 if not. The probability of toxicity in subgroup
k under dose xi is denoted by pk(xi, αk, βk) = Pr(Yk,i = 1 | xi, αk, βk) with logit
{pk(xi, αk, βk)} = αk + βkxi, for k = 1, 2, 3, 4. We have a CRM-type goal of finding
the “optimal” dose x∗k in each subgroup k. Optimal is defined as the posterior mean
of pk(x∗k) being closest to some fixed target p∗. The maximum sample size is 36, with
the cohort size of 1, starting at the lowest dose d1, and not skipping a dose level when
escalating, with target toxicity probability p∗ = .30. The parameters of primary interest
are θθθk = (αk, βk), k = 1, 2, 3, 4. It is assumed that α1, . . . , α4 and β1, . . . , β4 are i.i.d.
N(µ̃α, σ̃2

α) and N(µ̃β , σ̃2
β), respectively, and that µ̃α and µ̃β follow independent normal

hyperpriors. For the variance hyperparameters σ̃2
α and σ̃2

β , following Gelman (2006,
Section 4.3) we assume that σ̃α and σ̃β are uniform on [0, Uφ]. Denoting the dose
assigned to the ith patient by x[i], in summary we assume

Sampling model Yk,i | θθθk, x[i] ∼ Bernoulli(pk(x[i], θθθk)) indep. for all k
Prior αk | µ̃α, σ̃2

α ∼ N(µ̃α, σ̃2
α) i.i.d. for all k

βk | µ̃β , σ̃2
β ∼ N(µ̃β , σ̃2

β) i.i.d. for all k
Hyperpriors µ̃α | µα,φ, σ2

α,φ ∼ N(µα,φ, σ2
α,φ)

µ̃β | µβ,φ, σ2
β,φ ∼ N(µβ,φ, σ2

β,φ)
σ̃α, σ̃β | Uφ ∼ U(0, Uφ).

(6)

We will later, in Section 3.4, discuss how the ESS in this example depends not only on
the assumed probability model and hyperparameters, but also on design choices like the
adaptive dose-finding algorithm, the population proportions, etc. Note that we assume
that (µ̃α, σ̃2

α) and (µ̃β , σ̃2
β) are independent, in order to have a reasonably parsimonious

model. We can use elicited information to solve for the hyperprior means µα,φ and
µβ,φ, as follows. Given the standardized doses, those hyperprior means are calculated
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based on the elicited values E{pk(x2 = −.403)} = .25 at the second lowest dose and
E{pk(x5 = .513)} = .75 at the second highest dose for all the subgroups. These give
µα,φ = -0.131 and µβ,φ = 2.398. We will evaluate the ESS under several combinations
of (σ2

α,φ, σ2
β,φ, Uφ) in a sensitivity analysis.

2.3 A Multicenter Randomized Trial

When analyzing data from a multicenter trial, it often is important to examine the
inter-center variability of treatment effects, i.e., treatment-by-center interaction (Gray,
1994), since substantial variation among treatment effects across centers may cause
a regulatory agency to question the generalizability of results obtained from such a
trial before giving approval for a new therapy. As a third example, we consider a
multicenter randomized clinical trial reported by Stangl (1996). The trial was carried
out to examine the inter-center variability of the effect of imipramine hydrochloride
for preventing the recurrence of depression. The primary outcome was time to the first
recurrence of a depressive episode, denoted by Tjk,1, ..., Tjk,njk

for njk patients receiving
treatment j at the kth center, for j = 1, 2 and k = 1, . . . ,K. A total of 150 patients
were enrolled in K = 5 centers. For each (j, k), the recurrence times Tjk,1, . . . , Tjk,njk

were assumed to be i.i.d. exponentially distributed with recurrence rate θjk. Working
with the transformed parameters ζk = log(θ1k/θ2k) and ηk = log(θ2k), the priors were
assumed to be ζk ∼ i.i.d. N(µ̃ζ , σ̃

2
ζ ) and ηk ∼ i.i.d. N(µ̃η, σ̃2

η). The hyperparameter σ̃2
ζ

of the inter-center heterogeneity of the treatment effect log ratios is of primary interest
in this example, while σ̃2

η represents the inter-center heterogeneity in the effect of the
control treatment arm. Lognormal hyperpriors were assumed with σ̃ζ ∼ LN(mφ, s2

φ),
and σ̃η ∼ LN(−0.22, 1), where LN(µ, σ2) denotes the lognormal distribution of eX for
X ∼ N(µ, σ2). The model is summarized as follows:

Sampling model Tjk,i | θjk ∼ Exp(θjk) indep. for j = 1, 2, and all k
Priors ζk | µ̃ζ , σ̃

2
ζ ∼ N(µ̃ζ , σ̃

2
ζ ) i.i.d. for all k

ηk | µ̃η, σ̃2
η ∼ N(µ̃η, σ̃2

η) i.i.d. for all k
Hyperpriors σ̃ζ | mφ, s2

φ ∼ LN(mφ, s2
φ),

σ̃η ∼ LN(−0.22, 12),
µ̃ζ , µ̃η ∼ U(−20, 20).

(7)

Stangl assumed two alternative sets of hyperparameters (mφ, s2
φ), to represent two types

of prior belief on σ̃2
ζ in a Bayesian sensitivity analysis. The first choice was (mφ, s2

φ) =
(−1.61, 0.502), which places substantial prior belief on smaller σ̃2

ζ , and the second was
(mφ, s2

φ) = (0, 0.502), which places prior weight on larger σ̃2
ζ . We will evaluate the ESS

of each prior on σ̃2
ζ under case 2 of our proposed methods.

Event time data, like the recurrence time, often includes extensive censoring. In the
presence of censoring, the amount of information, and thus the ESS, depends on the
number of observed events in addition to the sample size. The ESS computation in
this example, therefore, needs to account for censoring cases which can occur depending
on study duration. We will discuss details of the ESS computation in the presence of
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censoring and other relevant design details in Section 3.4.

In any CIHM, the prior choice is subject to two competing desiderata. On one
hand, an informative hyperprior that expresses a belief of strong association among
the θk’s is needed to borrow strength across subpopulations. In some settings, it is
appropriate to use an informative prior that reflects accurate and comprehensive prior
knowledge. If the hyperprior is elicited from an area expert, then the ESS provides an
easily understood numerical value that the expert may use, if desired, to modify his/her
original elicited values. On the other hand, in some settings it is necessary to avoid
excessively informative priors that may compromise the objectivity of one’s conclusions.
In practice, many arbitrary choices are made for technical convenience while formulating
a model. A skeptical reviewer may like to quantify the prior information as being
equivalent to a certain number of hypothetical observations, i.e., a prior ESS. Such a
summary immediately allows a reader to judge the relative contributions of the prior
and the data to the final conclusion.

3 Effective sample size in CIHMs

3.1 Prior Effective Sample Size in Non-hierarchical Models

In this subsection, we review and formalize the heuristic definition of ESS for non-
hierarchical models given by MTM. We give formal definitions of the ε-information
prior and a prior-to-posterior distance. The intuitive motivation for MTM’s method is
to mimic the rationale for why the ESS of a beta distribution, Be(a, b), equals a + b.
A binomial variable Y with binomial sample size n and success probability θ following
a Be(a, b) prior implies a Be(a + Y, b + n − Y ) posterior. Thus, saying that a given
Be(a, b) prior has ESS m = a + b requires the implicit reasoning that the Be(a, b) may
be identified with a Be(c + Y, d + m − Y ) posterior arising from a previous Be(c, d)
prior having a very small amount of information. A simple way to formalize this is to
set c + d = ε for an arbitrarily small value ε > 0 and solve for m = a + b − (c + d) =
a + b− ε.

In a generic, non-hierarchical model, let f(Y | θθθ) denote the distribution of a random,
possibly vector-valued outcome Y and π(θθθ | θ̃̃θ̃θ) the prior on the parameter vector θθθ =
(θ1, . . . , θd), with hyperparameters θ̃̃θ̃θ. The definition of the ESS of π(θθθ | θ̃̃θ̃θ) given f(Y | θθθ)
requires the notions of an ε-information prior and the distance between the prior and
a hypothetical posterior corresponding to a sample of a given size used to update an
ε-information prior. The following definition formalizes the heuristic definition given by
MTM. Denote σ2

π,j = varπ(θj).

Definition of epsilon-information prior: Let π(θθθ | θ̃̃θ̃θ) be a prior with σ2
π,j <

V̄j(θ̃̃θ̃θ) ≤ ∞, where V̄j(θ̃̃θ̃θ) is a fixed bound, for all j = 1, ..., d. Given arbitrarily small
ε > 0, the prior π0(θθθ | θ̃̃θ̃θ0) defined on the same domain and in the same parametric family
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as π(θθθ | θ̃̃θ̃θ) is an ε-information prior if Eπ0(θθθ) = Eπ(θθθ), Corrπ0(θj , θj ′) = Corrπ(θj , θj ′)
for all j 6= j′ and

{
V̄j(θ̃̃θ̃θ)− σ2

π0,j

V̄j(θ̃̃θ̃θ)− σ2
π,j

}
σ2

π,j

σ2
π0,j

< ε for j = 1, ..., d. (8)

In the case V̄j(θ̃̃θ̃θ) = ∞, condition (8) reduces to σ2
π,j/σ2

π0,j < ε. Thus, in this case
one may simply choose θ̃̃θ̃θ0, subject to the constraints on the means and correlations, so
that σ2

π0,j is large enough to ensure that this inequality holds. When V̄j(θ̃̃θ̃θ) < ∞, note
that (8) can be written in the form {V̄j(θ̃̃θ̃θ)/σ2

π0,j − 1} < ε{V̄j(θ̃̃θ̃θ)/σ2
π,j − 1}. Thus, in

this case one should choose θ̃̃θ̃θ0 so that σ2
π0,j is sufficiently close to V̄j(θ̃̃θ̃θ) from below to

ensure this inequality. For example, if π(θθθ | θ̃̃θ̃θ) is a beta distribution, Be(α̃, β̃), then σ2
π

= µ(1−µ)/(α̃ + β̃ + 1) and V̄ (θ̃̃θ̃θ) = µ(1−µ), where µ = α̃/(α̃ + β̃). One may construct
π0(θθθ | θ̃̃θ̃θ0) as a Be(α̃/c, β̃/c) by choosing c > 0 large enough so that 1/c < ε, since this
implies that the above inequality holds.

Alternatively, a proper non-informative prior could be considered for π0(θθθ | θ̃̃θ̃θ0).
However, this might not be appropriate for defining ESS. For example, the Jeffreys
prior for a binomial success probability is Be( 1

2 , 1
2 ), which gives ESS values that are too

large by an additive factor of 1 due to the implied sample size of 1.

To see how the definition works for θθθ of dimension > 1, consider a bivariate normal
distribution with mean µ̃ = (µ̃1, µ̃2)′, variances σ̃2

1 , σ̃2
2 and covariance σ̃12. An ε-

information prior is specified by using the same means µ̃ but variances c2
1σ̃

2
1 and c2

2σ̃
2
2

and covariance c1c2σ̃12 for arbitrarily large c1 > 0 and c2 > 0. As a practical guideline,
we suggest choosing c large enough so that a further increase would not change the ESS
by more than 0.1.

Given the likelihood f(Yn | θθθ) =
∏n

i=1 f(Yi | θθθ) of an i.i.d. sample Yn = (Y1, . . . , Yn)
and ε-information prior π0(θθθ | θ̃̃θ̃θ0), the posterior is

πn(θθθ | θ̃̃θ̃θ0,Yn) ∝ π0(θθθ | θ̃̃θ̃θ0)f(Yn | θθθ).
MTM define a distance between the prior π(θθθ | θ̃̃θ̃θ) and πn(θθθ | θ̃̃θ̃θ0,Yn) obtained from
a hypothetical sample Yn of size n starting with π0. To do this, MTM use the prior
variance σ2

π,j and the average posterior variance σ2
π0,j,n under the ε-information prior.

The average is with respect to the prior predictive distribution f(Yn|θ̃̃θ̃θ) =
∫

f (Yn |
θθθ)π(θθθ | θ̃̃θ̃θ)dθθθ. Let σ2

π0,j,n(Yn) denote the posterior variance of θj conditional on Yn,
under the ε-information prior π0. Then σ2

π0,j,n =
∫

σ2
π0,j,n(Yn) df(Yn|θ̃̃θ̃θ). In cases

where these variances cannot be computed analytically, we use approximations, denoted
by σ̂−2

π,j and σ̂−2
π0,j,n. For example, one could use the negative second derivatives of the

log distributions, as in MTM. We define the distance between π and π0,n to be

∆(n, π, π0) =
d∑

j=1

|σ−2
π,j − σ−2

π0,j,n|. (9)
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When interest focuses on only one of the parameters, say θj , then we use |σ−2
π,j −σ−2

π0,j,n|
to define a distance between the marginal prior on θj versus the marginal posterior on
θj under the ε-information prior and a sample of size n.

Definition of ESS in the non-CIHM case: The effective sample size (ESS) of
a parametric prior π(θθθ | θ̃̃θ̃θ) for which σ2

π,j < ∞ for all j = 1, ..., d, with respect to the
likelihood f(Yn | θθθ) is the interpolated integer n that minimizes the distance ∆(n, π, π0).

Computation of ∆(n, π, π0) is carried out either analytically or using a simulation-based
numerical approximation.

3.2 Conditionally independent hierarchical models

We extend the definition of ESS to accommodate two-level CIHMs in a balanced study
design with K subgroups each having sample size m, i.e., Yk = (Yk,1, · · · , Yk,m) for
each k = 1, · · · ,K and the total sample size of YM = (Y1, . . . ,YK) is M = m × K.
To accommodate the hierarchial structure, we propose the following two alternative
definitions of ESS for CIHMs. Recall the discussion following (1). Under a CIHM
interest may focus on θθθ1, . . . , θθθK (case 1) or on θ̃̃θ̃θ (case 2).

Case 1: When θθθ = (θθθ1, . . . , θθθK) are the parameters of primary interest, the ESS is a
function of the target marginal prior π12(θθθ | φφφ) and the sampling model f(·). In this
case, we constructively define an ε-information prior, π12,0(θθθ | φφφ), as follows. First,
specify an ε-information prior π1,0(θθθ | θ̃̃θ̃θ) of π1(θθθ | θ̃̃θ̃θ), as described in Section 3.1, and
use this to define π12,0(θθθ | φφφ) =

∫
π1,0(θθθ | θ̃̃θ̃θ)π2(θ̃̃θ̃θ | φφφ)dθ̃̃θ̃θ. A proof that π12,0 defined in

this way is in fact an ε-information prior is given in the appendix.

An alternative way to define an ε-information prior for case 1 could be to first specify
π12(θθθ | φφφ) and then compute π12,0. However, this approach is tractable only if π12(θθθ | φφφ)
can be specified analytically. Consequently, we do not use this alternative approach.

Given the likelihood f(YM | θθθ) =
∏K

k=1 f(Yk | θθθk) and π12,0(θθθ | φφφ), we denote the
hypothetical posterior by π12,M (θθθ | φφφ,YM ) ∝ π12,0(θθθ | φφφ)f(YM | θθθ). Denote θ̄θθ12 =
Eπ12(θθθ | φφφ), the prior mean of θθθ under π12(θθθ | φφφ) and let YM = E(YM | θθθ12) denote
the prior mean of YM under θθθ12. We will later discuss how to proceed in problems
where YM is not meaningfully defined, due to censoring, the use of covariates, and
other reasons. Let Σπ12 denote the marginal variance-covariance matrix of θθθ under π12,
and similarly for Σπ12,M

(YM ) under π12,M (θθθ | φφφ,YM ). Often exact evaluation is not
possible and approximations Σ̂π12 and Σ̂π12,M must be used. For example, one could
use the negative inverse Hessian matrices of log(π12) and log(π12,M ) evaluated at θ̄θθ12.
Similarly to ∆(·) in equation (9) for a non-hierarchical model, in case 1 of a CIHM we
define the distance between π12(θθθ | φφφ) and π12,M (θθθ | φφφ,YM ) to be

∆1(M, π1, π2, π1,0) =
∣∣∣det(Σ−1

π12
)− det{Σ−1

π12,M
(YM )}

∣∣∣ . (10)
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Definition of ESS for Case 1: The ESS of π12(θθθ | φφφ) with respect to f(·), de-
noted by ESS12(θθθ | φφφ), is the interpolated value of the sample size M minimizing
∆1(M, π1, π2, π1,0).

We use determinants in the definition of ∆1 to incorporate the off-diagonal elements
of the variance/covariance matrices and thereby account for association induced by
the hyperprior among the parameters, θ1, . . . , θK , which is a key aspect of a CIHM.
The determinants quantify the total amounts of variability of the prior π12 and the
hypothetical posterior π12,M . The same definition of distance could be used for non-
hierarchical models in place of (9). However, the trace used in (9) is easier to evaluate
and leads to exactly the same ESS in all cases that we considered. Although our
choice seems to make sense intuitively, it still is arbitrary. We validate the definition
by investigating important cases of CIHMs, given in Section 5 and the supplementary
materials.

Case 2: When the hyperparameters θ̃̃θ̃θ are of primary interest, the ESS is a function of
the target prior π2(θ̃̃θ̃θ | φφφ) and the marginal likelihood (4). We define an ε-information
prior, π2,0(θ̃̃θ̃θ | φφφ0), and use the marginal likelihood f1(YM | θ̃̃θ̃θ) to update π2,0(θ̃̃θ̃θ | φφφ0)

to obtain the hypothetical posterior π2,M (θ̃̃θ̃θ | φφφ0,YM ). Let θ̃̃θ̃θ2 = Eπ2(θ̃̃θ̃θ | φφφ) denote the

prior mean of θ̃̃θ̃θ under π2(θ̃̃θ̃θ | φφφ), and let YM,2 = E(YM | θ̃̃θ̃θ2). We define a distance
between π2(θ̃̃θ̃θ | φφφ) and π2,M (θ̃̃θ̃θ | φφφ0,YM ) for sample size M as in the definition in (11),
using the variance/covariance matrices Σπ2 under the prior π2(θ̃̃θ̃θ | φφφ) and Σπ2,M

(YM,2)
under π2,M (θ̃̃θ̃θ | φφφ0,YM,2). When the variance/covariance matrices are not available in
closed form, one can again use a numerical approximation.

Definition of ESS for Case 2: The ESS of π2(θ̃̃θ̃θ | φφφ) with respect to fM (YM | θ̃̃θ̃θ),
denoted by ESS2(θ̃̃θ̃θ | φφφ), is the interpolated value of M minimizing

∆2(M, π2, π2,0) =
∣∣∣det(Σ−1

π2
)− det{Σ−1

π2,M
(YM,2)}

∣∣∣ . (11)

Definition (11) is equivalent to the non-hierarchical ESS definition, simply because after
marginalizing with respect to the group specific parameters θk the hierarchical model
(1) reduces to a non-hierarchical model. If interest is focused on a subvector θ̃̃θ̃θs of θ̃̃θ̃θ,
the ESS can be determined similarly in terms of the marginal hyperprior π2(θ̃̃θ̃θs | φφφ).

An important aspect of the definition is that the ESS could be infinite when it is
not possible to achieve a comparably informative posterior with any finite sample size.
For example, recall the stylized normal/normal CIHM introduced after (1). Assume
we fix γ̃2 = 1, µ̃ ∼ N(0, 0.01) and K = 10. In particular, we keep the number K
of subpopulations fixed and consider an increasing number of samples per group. No
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matter how many observations, it is impossible to match the prior variance Var(µ̃) =
0.01 as the posterior variance under π0,n. Formally, the minimization (11) has no
solution. This is desireable. The informative prior µ̃ ∼ N(0, 0.01) cannot be interpreted
as the posterior under any hypothetical sample having finite sample size, because, in
this example, the number of groups is fixed at K = 10. However, while no sample size
of a hypothetical prior study under the same experimental design, i.e., fixed K, can
justify the employed prior, it still is possible to report a meaningful finite ESS under
an alternative experimental design. For example, one could report the required sample
size of a hypothetical prior study with fixed m = 20, σ2 = 1, and increasing K. In this
example we find ESS = 2100 with K = 105.

3.3 Algorithm for ESS Computation

Let θ̄θθ12 denote the prior mean vector of θθθ under π12(θθθ | φφφ), and let θ̃̃θ̃θ2 denote the prior
mean vector of θ̃̃θ̃θ under π2(θ̃̃θ̃θ | φφφ). Let Mmax = mmax×K be a positive integer multiple
of K chosen so that it is reasonable to assume that ESS ≤ Mmax.

Algorithm 1, ESS for Case 1:

Step 1. Evaluate the target marginal prior π12(θθθ | φφφ).

Step 2. Evaluate ε-information prior π12,0(θθθ | φφφ).

Step 3. For each M = 0,K, 2K, . . . , Mmax, compute ∆1(M, π1, π2, π1,0).

Step 4. ESS12(θθθ | φφφ) is the interpolated value of M minimizing ∆1(M, π1, π2, π1,0).

When Σ−1
π12

cannot be evaluated analytically, then one can use the negative Hessian of the
log prior as approximation Σ̂−1

π12
= −Hπ12(θθθ12). The Hessian Hπ12 is the matrix of second

derivatives of the log(π12) with respect to θj . The Hessian is evaluated at θθθ12. When
π12(θθθ | φφφ) itself is not available in closed form, then we use the following simulation-
based approximation. First, simulate a Monte Carlo sample θ̃̃θ̃θ(1), . . . , θ̃̃θ̃θ(T ) from π2(θ̃̃θ̃θ | φφφ)
for large T , e.g. T = 100,000. Use the Monte Carlo average T−1

∑T
t=1

∂
∂θk

π1(θθθ | θ̃̃θ̃θ(t)) in
place of

∫
∂

∂θk
π1(θθθ | θ̃̃θ̃θ)π2(θ̃̃θ̃θ | φφφ)dθ̃̃θ̃θ, and similarly for the second order partial derivatives.

When θ̄θθ12 = Eπ12(θθθ | φφφ) cannot be computed analytically, first simulate a Monte Carlo
sample θθθ(1), . . . , θθθ(T ) from π12(θθθ | φφφ) =

∫
π1(θθθ | θ̃̃θ̃θ)π2(θ̃̃θ̃θ | φφφ)dθ̃̃θ̃θ for large T , and compute

the mean T−1
∑T

t=1 θθθ(t). Similarly, when Σ−1
12,M (YM ) is not available in closed form one

can use the negative Hessian of log π12,M (θθθ12 | YM ,φφφ) as a convenient approximation,
Σ̂−1

12,M (YM ) = −Hπ12,M (θθθ12,YM ). The posterior π12,M is evaluated conditional on YM

and the Hessian is evaluated at θθθ12.

Algorithm 2, ESS for Case 2:



S. Morita, P. F. Thall, and P. Müller 601

Step 1. Specify π2,0(θ̃̃θ̃θ | φφφ0).

Step 2. For each M = 0,K, 2K, . . . , Mmax, compute ∆2(M, π2, π2,0).

Step 3. ESS2(θ̃̃θ̃θ | φφφ) is the interpolated value of M minimizing ∆2(M, π2, π2,0).

When Σ−1
π2

or Σ−1
π2,M (YM,2) is not available in closed form we proceed similarly as

before, using the negative Hessians to approximate Σ−1
π2

or Σ−1
π2,M . The posterior π2,M

is evaluated conditional on YM,2. The Hessian is evaluated at θ̃̃θ̃θ2. In many cases, steps
2 and 3 may be repeated to compute ESS2(θ̃̃θ̃θ | φφφ) for subvectors of θ̃̃θ̃θ that are of interest.

3.4 Numerical Evaluation of ESS

Equations (10) and (11) define a distance between prior and posterior as a difference
of determinants of a prior precision matrix versus a posterior precision matrix. The
posterior precision matrix is evaluated using the plug-in values YM in ∆1 and YM,2

in ∆2, respectively. In some studies, however, the definition of YM or YM,2 as an
expectation is simply not meaningful. This is explained most easily by the following
examples. Many phase I studies involve choosing doses for future patients as a function
of the outcomes of earlier patients. In such settings, it is not meaningful to represent
a sample of size M by a mean YM or YM,2. More generally, outcome adaptive designs
for clinical studies make it difficult to meaningfully define YM . Similar difficulties arise
when studies involve censored outcomes or regression on covariates.

In these cases, we use an extended definition of ∆1 that replaces the plug in of YM by
full prior predictive marginalization. Specifically, we replace det{|Σ−1

π12,M
(YM )|} by an

expectation of det{|Σ−1
π12,M

(YM )|}, averaging over possible study realizations YM with
M patients. The sampling scheme might include additional variables, like assigned dose,
patient-specific covariates, or censoring times. Let xi denote these additional variables
for the ith patient. Let g(xi | Y1, . . . , Yi−1, x1, . . . , xi−1, θ12) denote a probability model
for xi. When xi is a deterministic function of the conditioning variables, we interpret
g(·) as a degenerate distribution with a single point mass. For example, in the case of an
adaptive dose escalation design, the dose for the ith patient is a function of the earlier
outcomes. Thus, the outcomes are not independent, making the interpretation of YM

tricky. We replace use of the plug in YM by the expectation of det{|Σ−1
π12,M

(YM )|} with
respect to the marginal model,

fM (YM | θ12) =
∫ M∏

i=1

f(Yi | Y1, . . . , Yi−1, xi, θ12)

g(xi | Y1, . . . , Yi−1, x1, . . . , xi−1,θ12) dx1 · · · dxM . (12)

In words, fM (·) is the marginal distribution of possible study outcomes when we carry
out the study under a given design, and the prior mean θ12. The predictive model
(12) highlights the fact that ESS is defined in the context of an assumed experimen-
tal design. This includes details like the expected extent of censoring, distribution of



602 Prior Effective Sample Size in CIHMs

covariates xi, and more. Recall the stylized normal/normal CIHM stated below (1).
One could consider two alternative experiments, either increasing the number of obser-
vations within each subpopulation, k = 1, . . . ,K for fixed K, or alternatively one could
consider increasing the number of groups K with a fixed number of observations per
group. The two experiments naturally report different ESS values for the same prior,
simply because the information that is being accrued with hypothetical future patients
differs.

In the definition of the ESS, Case 1, for such studies we replace det{|Σ−1
π12,M

(YM )|}
in the definition of ∆1 by

∫
det{Σ−1

π12,M
(YM )} fM (YM | θ12)dYM (13)

where Σ−1(YM ) = Var(θ | YM ) is the posterior variance under data YM and prior π12.
Similarly, we replace det{|Σ−1

π2,M
(YM,2)|} in the definition of ∆2 in Case 2 by

∫
det{Σ−1

π2,M
(YM )} fM,2(YM | θ̃2)dYM (14)

where

fM,2(YM | θ̃2) =
∫ ∫ M∏

i=1

f(Yi | Y1, . . . , Yi−1, xi, θ)

× g(xi | Y1, . . . , Yi−1, xi, . . . , xi−1,θ) dx1 · · · dxM π1(θ | θ̃2) dθ. (15)

For the standard CIHMs discussed later, in Section 5, the definitions using (13) instead
of det{|Σ−1

π12,M
(YM )|} and (14) in place of det{|Σ−1

π2,M
(YM,2)|} in the definitions of ∆1

and ∆2, respectively, give the same ESS as the original definitions. That is why we
recommend using the simplified definitions (10) and (11) when possible. We recommend
using the extended definitions only for problems where the definition of YM or YM,2 is
not meaningful.

Algorithms 1 and 2 remain unchanged. The only additional detail is the evaluation
of ∆1 and ∆2. For ∆1, we use numerical evaluation of the integral (13).

Algorithm 3, Numerical Evaluation of ∆1: Evaluation of (13) as a Monte Carlo
integral.

Repeat L iterations of Steps 1 – 6:

Step 1: Generate Y1 ∼ f(Y1 | x1,θ12).
Repeat for i = 2, . . . , M :

Step 2: Evaluate g(xi | Y1, . . . , Yi−1, xi, . . . , xi−1, θ12). If g(·) is a determin-
istic function (as in dose allocation), record the value as xi. If g(·) is a
non-degenerate distribution generate xi accordingly.
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Step 3: Generate Yi ∼ f(Yi | Y1, . . . , Yi−1, xi, θ12), using xi from Step 2.

Step 4: Simulate the outcome vector YM = (Y1, . . . , YM ).
Step 5: Evaluate the posterior variance covariance matrix Σ(θ | YM ). This eval-

uation might require Markov chain Monte Carlo integration when the model
is not conjugate.

Step 6: Evaluate det(Σ−1(YM )).
Step 7: Approximate the desired integral by averaging over all L iterations of

Steps 1 through 6,

1
L

∑
det(Σ−1(YM )) ≈

∫
det{Σ−1(YM )} fM (YM | θ12)dYM , (16)

The sum is over the L repeat simulations of Steps 1 through 6, plugging in
the vector YM that is generated in each step of the simulation.

With a minor variation, the same algorithm can be used to evaluate (14). Step 1 is
replaced by

Step 1′: Generate θ ∼ π1(θ | θ̃2) and generate Y1 ∼ f(Y1 | x1, θ).

The rest of the algorithm for computing ESS remains unchanged, with θ replacing θ12.
It is important that a new value θ is generated for each of the L repetitions of Steps 1
through 6. This approximates the outer integral with respect to θ.

4 Application to the motivating examples

4.1 ESS for the sarcoma trial

The goal of the sarcoma trial was to estimate the efficacy of a molecularly targeted drug
within each disease subtype. Recall that ξk was the response probability in subtype k,
and θk = log{ξk/(1−ξk)}. The likelihood for M patients with m patients in each subtype
having response indicators Yk ,m = (Yk1, . . . , Ykm) is

f(YM | θθθ) ∝
K∏

k=1

m∏

i=1

ξk(θk)Yki{1− ξk(θk)}1−Yki . (17)

For this example, based on the normal-gamma hierarchical prior described in Section
2, a closed form of the target prior in case 1 can be found analytically, as we will show
in Section 5. Based on this prior and the likelihood (17), applying Algorithm 1 of
subsection 3.3 gives ESS12(θθθ | φφφµ̃ = (−1.386, 10),φφφγ̃ = (2, 20)) = 2.6. This ESS value
is reasonable, since a separate early stopping rule was applied for each subtype in this
study. For comparison, if one assumes instead that φφφµ̃ = (-1.386,1) and φφφγ̃ = (20, 1),
then ESS12(θθθ | φφφµ̃) = 702.2. This illustrates the important practical point that a
seemingly reasonable choice of φφφµ̃ = (µφ, τ2

φ) and φφφγ̃ = (aφ, bφ) may give an excessively



604 Prior Effective Sample Size in CIHMs

informative prior. Figure 1 gives plots of the ESS12 values as a function of τ2
φ for each

of the four pairs φφφγ̃ = (2,20), (5,20), (10,20), and (10,10), when µφ = -1.386. Figure 1
shows that, as the variance parameter τ2

φ in the hyperprior of µ̃ gets larger, the ESS12

values decrease, which is intuitively correct. Similarly, ESS12 increases with the prior
mean of the precision parameter γ̃ under π2(γ̃ | φφφγ̃).

If one wishes to focus, instead, on the overall mean treatment effect across all disease
subtypes, (case 2), it leads to consideration of the hyperprior π2(µ̃ | φφφµ̃). The ESS in
this case may be computed using Algorithm 2 of subsection 3.3, which gives ESS2(µ̃ | φφφ)
= 3.7. We conclude that the hierarchical prior used by Thall et al. (2003) is reasonable
under both points of view, either when one is concerned with inference on success
probabilities for the sarcoma subtypes, or when one is interested in the average response
probability for all sarcomas.

Figure 1: Plots of ESS12 as a function of variance parameter τ2
φ in the hyperprior of µ̃

for the four sets of φφφγ̃ = (2,20), (5,20), (10,20), and (10,10), when µφ = -1.386.

4.2 A CRM Dose-finding Trial for Multiple Patient Subgroups

In the second example, the goal of the CRM-type dose-finding study is to find the
optimal dose in each subgroup. Recall that the probability of toxicity in each subgroup
is modeled by pk(xi, θθθk) with logit{pk(xi, θθθk)} = αk + βkxi, where θθθk = (αk, βk). Let
m1,m2,m3,m4 denote the number of patients in the four subgroups, let xk,[i] denote the
dose assignment for the ith patient in subgroup k, and let Dmk

= {Yk,1, xk,[1], . . . , Yk,mk
,
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xk,[mk]} denote the dose assignments and the responses observed in subgroup k. The
likelihood for all M =

∑4
k=1 mk patients is

f(YM | xM , θθθ) ∝
4∏

k=1

mk∏

i=1

pk(xk,[i], θθθk)Yk,i{1− pk(xk,[i], θθθk)}1−Yk,i . (18)

Following the extended ESS definition given in Section 3.4, we compute ESS values
under several combinations of (σ2

α,φ, σ2
β,φ, Uφ) for σ2

α,φ = σ2
β,φ using Algorithm 3. Dose

levels are determined on the basis of the observed data. As mentioned before, ESS is
always defined in the context of an assumed experimental design. In the case of this
study, the assumed relative accrual rates (0.4, 0.3, 0.2, 0.1) are part of the design, and
are used in the evaluation of ESS.

Posterior summaries are evaluated using Markov chain Monte Carlo posterior simu-
lation (with three parallel chains of length 5,000 with a burn-in of 500). The posterior
means at the six dose levels in each subgroup are required in the dose-escalation/de-
escalation algorithm for the respective new cohort. Table 1 summarizes the results of
the computations, including the subgroup ESS values based on the assumed relative
accrual rates (0.4, 0.3, 0.2, 0.1). Those computations suggest that, considering the max-
imum sample size of 36, the prior choices that are summarized in the first two rows of
the table are defensible. The implied ESS is reasonably small compared to the sample
size, since in these cases the per-subgroup sample size is less than 2. The prior in the
third row may or may not be considered suitably non-informative for a dose-finding
trial, but the prior in row 4 clearly is far too informative. Without computing ESS, it
would be very difficult to make such determinations.

Table 1: ESS values computed for several sets of level 2 prior parameters (σ2
α,φ, σ2

β,φ, Uφ).
The per-subgroup ESS values are based on assumed relative accrual rates .40, .30, .20,
.10 for k = 1, 2, 3, 4.

Per-subgroup ESS
σ2

α,φ = σ2
β,φ Uφ ESS 1 2 3 4

100 5 6.6 2.6 2.0 1.3 0.7
25 5 7.1 2.8 2.1 1.4 0.7
4 5 9.1 3.6 2.7 1.8 0.9
25 2 25.8 10.3 7.7 5.2 2.6

Computation of frequentist operating characteristics (OCs) by computer simulation,
and calibration of prior hyperparameters as well as design parameters on that basis, has
become standard practice in Bayesian clinical trial design. An important question is
how computing the prior’s ESS can improve this process. This is especially important



606 Prior Effective Sample Size in CIHMs

logistically because obtaining both prior ESS and the design’s OCs are computationally
intensive. However, computing an ESS takes even less time than the time required for
OCs under only one scenario. This is the case because in contrast to OC simulation,
the evaluation of ESS does not require the simulation of complete trial histories. Also,
in practice, after establishing hyperparameters that determine prior mean values, one
guesses numerical values of second order hyperparameters, including variances and cor-
relations, simulates the trial using that prior, and examines the resulting OCs. Since
the numerical values of prior hyper-variances have no meaning per se, in the absence
of ESS, one must rely on the OCs alone to determine whether the prior is acceptable
and reasonable. This process often is repeated many times, until satisfactory choices
are found, and is quite time-consuming and tedious. When the ESS of each prior is
computed, however, it may be used to calibrate the hyper-variances so that they give a
reasonable ESS, before running any simulations of complete trial histories. This saves a
great deal of time because, as noted above, computing an ESS is far less time-consuming
than running simulations.

Table 2: Simulation study of the CRM dose-finding trial with heterogeneous subgroups
assuming the prior with level 2 prior parameters σ2

α,φ = σ2
β,φ = 25 and Uφ = 2. The

percentage of times that the method selected each dose level as the final MTD in each
subgroup (%recommendation) and the numbers of patients who were treated at each
dose level (No. of patients) out of 36 patients are summarized. Correct selections are
marked in bold-face.

Subgroup Dose level d1 d2 d3 d4 d5 d6

1 True prob. tox .05 .10 .15 .30 .50 .65
%recommendation .05 .16 .30 .36 .07 .04

No. of patients 2.1 3.1 4.5 3.6 1.1 .4
2 True prob. tox .10 .20 .30 .45 .60 .70

%recommendation .08 .26 .39 .24 .02 .01
No. of patients 1.8 2.9 3.3 2.0 .6 .1

3 True prob. tox .15 .30 .45 .55 .65 .75
%recommendation .12 .34 .32 .16 .02 .01

No. of patients 1.2 2.2 1.9 1.0 .3 .1
4 True prob. tox .10 .10 .10 .20 .20 .20

%recommendation .05 .20 .32 .31 .09 .02
No. of patients .5 .9 1.0 .8 .2 .1

Aside from obtaining a design’s OCs, because the ESS is readily interpretable, it
is a useful tool for deciding whether a prior is reasonable per se. Recall that the ESS
is a property of the prior, likelihood, and experimental design. In contrast, obtaining
the OCs of a given design also requires the specification of particular scenarios (fixed
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outcome probabilities) under which the design is evaluated. In the absence of ESS, it
is possible to obtain OCs that look reasonable when in fact the prior is undesirably
informative. That is, one may unknowingly be misled by simulation results. This is
especially worrying when the clinical outcome is a complex function of treatment, as
in a dose-response setting. As an example, consider the CRM dose-finding trial with
heterogeneous subgroups under the prior with level 2 prior parameters σ2

α,φ = σ2
β,φ =

25 and Uφ = 2 in the last row of Table 1. Recall that the ESS = 25.8 for that prior.
A simulation of the trial assuming these level 2 hyper-prior parameters is summarized
in Table 2, which shows that, despite the overly informative prior in terms of ESS, the
subgroup-specific CRM design is most likely to choose the right doses in subgroups 1, 2,
and 3. In contrast, the dose selection is clearly wrong in subgroup 4, since the highest
dose level would be most desirable in that subgroup. In the assumed scenario, the dose-
toxicity curve in subgroup 4 is qualitatively different from the other subgroups, with
true p4(xi) = .10 or .20 for all doses, well below the target of .30. Since subgroup 4 has
the lowest accrual rate of 10% and thus accrues on average .10 × 36 = 3.6 patients, the
data from the trial cannot overcome the overly informative prior (ESS = 2.7) in this
subgroup. Based on the ESS, however, one would never assume the prior with σ2

φ = 25
and Uφ = 2. This example shows how use of the prior ESS complements the evaluation
of OCs. In summary, in the context of Bayesian clinical trial design, prior ESS is both
a tool for calibrating hyper-variances and thus speeding up the process of simulation to
obtain the design’s OCs, and also a simple summary statistic that helps investigators
decide whether a prior is acceptable.

4.3 ESS for a Multicenter Randomized Trial

In the third example, recall that θ1k and θ2k denote the affective disorder recurrence
rates in the two treatment arms for trial center k, and these are reparameterized as ζk

= log(θ1k/θ2k) and ηk = log(θ2k). Recall that Tjk,i is the time to the event for patient
i receiving treatment j at center k. Denote the observed time to an event at T or right-
censoring by T o and δ = I[T o = T ]. Let T o

M and δδδM denote the vectors of all event
observation times and indicators in the sample of M = m×K patients. The likelihood
under the exponential model is

f(T o
M , δδδM | θθθ) =

K∏

k=1

2∏

j=1

mj,k∏

i=1

{θjkexp(−θjkTjk,i)}δjki
{
exp(−θjkT o

jk,i)
}1−δjki , (19)

where θ1k = exp(ζk + ηk) and θ2k = exp(ηk). Recall that the hyperparameter σ̃2
ζ

characterizing inter-center variability is of primary interest (Case 2). Based on the
hierarchical model described in Section 2 and the likelihood (19), we use Algorithm 2
to compute ESS2(σ̃2

ζ | mφ, s2
φ), which are ESS2(σ̃2

ζ | mφ = −1.61, s2
φ = 0.52) = 27.6 and

ESS2(σ̃2
ζ | mφ = 0, s2

φ = 0.52) = 9.1. The two ESS values indicate that the first prior
may be too informative, since the total sample size of the trial is 150. One may obtain
a less informative hyperprior for σ̃2

ζ by specifying larger s2
φ. For example, s2

φ = 0.752,
1.02, and 1.252 give ESS2(σ̃2

ζ | mφ = 0, s2
φ) = 5.0, 1.4, and 0.4. Table 3 summarizes the

ESS2(σ̃2
ζ | mφ, s2

φ) values computed for several sets of (mφ, s2
φ) pairs.
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As we mentioned in Section 2.3, the ESS computation in this example accounts for
censoring in the process of numerical computation of the distance between the prior and
posterior. For the above computations, we set-up the study duration at 2 years, as it
was done in Stangl’s study design. That is, patients are followed for 2 years, or until
they experience the event. If patients do not experience the event by the end of the
study, they are treated as censored cases. Given the event rates in the two treatment
groups, the proportion of censored cases goes up as the study duration becomes shorter.
When the study duration is 2 years, the ESS is computed to be 27.6, as shown in the
first row of Table 3. When the study duration is 10 years, the ESS value is computed to
be 24.5, while the ESS is 36.3 when the duration is 0.5 years. That is, as the proportion
of censored cases rises, the ESS goes up, and vice-versa.

Table 3: ESS2(σ̃2
ζ | mφ, s2

φ) values computed for several sets of (mφ, s2
φ), where σ̃2

ζ repre-
sents the inter-center heterogeneity of the treatment effect, and mφ and s2

φ respectively
denote the mean and variance parameters of the lognormal hyperprior of σ̃ζ .

mφ s2
φ ESS2

−1.61 0.52 27.6
−1.61 0.752 12.1
−1.61 1.02 8.4
−1.61 1.252 6.6
−0.5 0.52 15.5
−0.5 0.752 8.0
−0.5 1.02 5.7
−0.5 1.252 2.1
0.0 0.52 9.1
0.0 0.752 5.0
0.0 1.02 1.4
0.0 1.252 0.4

From Figure 7 of Stangl (1996), it can readily be seen by inspection that prior 1 is
too informative by comparing the posterior and prior of the 3rd stage variances. The
ESS formalizes this judgment by quantifying the informativeness of prior 1. Moreover,
the ESS validates prior 2 as being reasonable, whereas this in not obvious using only a
graphical evaluation.
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5 Validation in Some Standard CIHMs

The aim of the proposed ESS definitions is to provide an easily interpretable way to
quantify the prior informativeness of commonly used CIHMs. The definition of ESS ob-
tained by matching a given prior with a posterior distribution under an ε-information
prior could be argued to be a natural choice. In order to formalize this, however, many
detailed technical choices must be made. The definitions that we have proposed here
are two of many possible formalizations. We arrived at the definitions after consider-
ing many alternatives, and evaluating the performance of each for several widely used
CIHMs. The examples (one is in this section and two are in the supplementary materi-
als) report the implied ESS for these models. As standard CIHMs, we use hierarchical
extensions of standard models listed in Chapter 5 of Congdon (2005). In this section,
we show how to compute the ESSs in cases 1 and 2 analytically in the normal CIHM
with known sampling variance, and we argue that the obtained ESSs are sensible. In
the supplementary materials, we provide computational details for a hierarchical model
for binary responses recorded over different subpopulations as in the sarcoma trial of
Section 2.1, and also for an alternative hierarchical model for the multicenter random-
ized trial analysis given in Section 2.3, assuming an exponential sampling model for the
observed recurrence times.

Perhaps the most widely used CIHM is a hierarchical model with normal sampling
model and conjugate prior and hyperprior. A typical example of such a CIHM is dis-
cussed in Gelman et al. (1995, Section 5.5), for a study of special coaching programs
to prepare students for the Scholastic Aptitude Test (SAT). The observed outcomes
are SAT scores, where Yki denotes score of the i-th student in school k. The scores
are assumed to be normally distributed with school specific means θ1, ..., θK and known
variance σ2. The model is completed with conjugate hyperpriors, as follows:

Sampling model Yk,1, · · ·Yk,m | θk, σ2 ∼ N(θk, σ2) indep. for all k
Prior θk | µ̃, γ̃2 ∼ N(µ̃, γ̃2) i.i.d. for all k
Hyperpriors µ̃ | µφ, τ2

φ ∼ N(µφ, τ2
φ)

γ̃2 | νφ, Sφ ∼ Inv − χ2(νφ, Sφ).

Thus, for K schools, µ̃ represents an overall effect and γ̃2 represents inter-school vari-
ability. The fixed hyperparameters are φφφµ̃ = (µφ, τ2

φ) and φφφγ̃2 = (νφ, Sφ). Let r =
τ2
φ/(γ̃2 + τ2

φ) denote the intra-class correlation. In this model the ESS in both cases 1
and 2 can be found analytically, because both the marginal prior π12 and the posterior
π12,M are multivariate normal, thus the information matrices of the prior and poste-
rior can be obtained analytically as the inverses of their variance-covariance matrices.
Details are given in the supplementary materials.

Case 1: When the main goal is inference on the school-specific SAT scores θθθ1, . . . , θθθK ,
assuming fixed prior variance γ̃2,

ESS12(θθθ | φφφµ̃) =
σ2

γ̃2

(
1− r

1 + (K − 1)r

)1/K

×K. (20)
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This formula confirms what one would expect intuitively. The precision 1/γ̃2 of the
conjugate normal prior for each school is equivalent to σ2/γ̃2 observations (SAT scores).
Thus K independent priors for θ1, ..., θK , corresponding to r = 0, would be equivalent
to Kσ2/γ̃2 observations. The second factor in (20) is obtained analytically from the
determinant of the information matrix of π12 for the normal CIHM with conjugate priors
(computational details are given in the supplementary materials). This factor accounts
for the dependence among θ1, . . . , θK in the two-level prior. Given K, as the correlation
among θ1, . . . , θK increases, this factor reduces the ESS12. That is, as r → 1, the

ESS12 → 0. In particular, for K = 2 schools, ESS12(θθθ | φφφµ̃) = σ2

γ̃2

(
1−r
1+r

)1/2

× 2. Figure

2 shows a plot of ESS12(θθθ | φφφµ̃) as a function of r and γ̃2 for K = 5 and σ2 = 1.0.

Figure 2: Plots of ESS12(θθθ | φφφµ̃) as a function of prior variance γ̃2 and r for the
normal/inverse χ2-normal-normal model, when K = 5 and σ2 = 1.0.

To validate the plausibility of (20), we consider three limiting cases, each of which
leads to a non-hierarchical model having an obvious prior ESS. (i) Given γ̃2, as r → 0, i.e.
as τ2

φ → 0, which is the limiting case with K independent schools, ESS12 → K × σ2/γ̃2

and σ2/γ̃2 is the ratio of the data variance to the prior variance, which is the prior ESS
of a non-hierarchical model (Spiegelhalter et al. 1994, Section 3.1.2; MTM, Section 5,
Example 3). (ii) In contrast, given γ̃2, as τ2

φ → +∞, and consequently r → 1, and there
is one common effect θ = θ1 = . . . = θK , i.e. this limiting case is a non-hierarchical
model where schools are ignored. The marginal prior variance γ̃2 + τ2

φ for the common
effect diverges, however, which is reflected by the fact that ESS12 → 0, as desired. (iii)
On the other hand, consider the case where τ2

φ is fixed and γ̃2 → 0. Again, the model
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reduces to one common effect θ = θ1 = . . . = θK , but now with finite marginal prior
variance τ2

φ. In this case, to learn with certainty that all effects are equal would require
extremely reliable data, i.e., a very large number of students in each school, which is
(correctly) reflected by the fact that ESS12(θθθ | φφφµ̃) → +∞. If we allow γ̃2 to be random,
ESS12(θθθ | φφφ) takes the same form as expression (20), but with γ̃2 replaced by its prior
mean µγ̃2 . (See Supplementary Materials, Section 1.)

Case 2: If the primary focus is the population parameter µ̃, averaging across all schools,

ESS2(µ̃ | φφφ) =
σ2

τ2
φ

(
1− µγ̃2

τ2
φK

)−1

, (21)

under the restriction that τ2
φ > K−1µγ̃2 . An explanation of this restriction is given in

the supplementary materials, Section 1 (Normal/Inverse χ2-Normal-Normal Model).

6 Discussion

We have proposed two practical definitions for the prior ESS of a conditionally indepen-
dent hierarchical model. The main limitations are the need for numerical evaluations
in many cases and the use of several arbitrary choices in the definitions. The arbitrary
choices in the definition include the construction of an ε-information prior, evaluation
of the posterior variance/covariance matrices conditional on YM and YM,2, and evalu-

ation of the distances ∆1 and ∆2 at the prior means θ̄θθ12 and θ̃̃θ̃θ2. The definitions of the
two distances, based on the determinants of the information matrices, are reasonable
but arbitrary. Alternative choices could be investigated. For example, one could use
L2 distance after a transformation of the variance-covariance matrix to some suitable
standard form. For instance, the Cayley transformation maps the variance-covariance
matrix Σ to the orthogonal matrix (I−Σ)(I +Σ)−1. The main strengths of the method
are the constructive nature of the definitions, and validation by matching prior ESS
values obtained by the method with intuitively correct prior ESS values in special but
important cases.

One of the reasons for the big success of hierarchical models, in particular, in infer-
ence for biomedical studies is the following feature. The hierarchical model constructs
an informative prior for any given subgroup by borrowing strength from other sub-
groups and using the information contained in the data. If this feature is important,
then the investigator might wish assurance that the hyperprior should not be excessively
informative. The proposed ESS facilitates such judgements.

An important area of practical application for the proposed prior ESS summaries
is design and inference for early phase clinical trials with small to moderate sample
sizes. A concern about inappropriately influential prior information is one of the main
impediments to a more widespread use of Bayesian methods in clinical trials. With the
ever growing pressure for efficient use of resources and higher ethical standards, clini-
cal trial designs are becoming increasingly more complex. Trial designs now routinely
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include the use of multiple outcomes, borrowing strength across different disease sub-
types or patient subpopulations, the use of biomarkers, adaptive allocation, sequential
stopping, etc. Such complexity may lead naturally to the use of a CIHM. The ability
to compute prior ESS in such models provides a natural basis for calibrating priors as
well as explaining the model to non-statisticians. Prior ESS values provide a similar
tool when using a CIHM in a meta-analysis, which is an area of extensive activity. The
two case studies in Section 2 are typical examples. It may be argued that, without an
understanding of the prior ESS, it is impossible to carry out a fair regulatory review
of a clinical trial protocol using a method based on a Bayesian CIHM. The proposed
methodology may be used to mitigate this concern.

Overall, we believe that reporting ESS is most useful in judging the relative role of
the prior, either informative or non-informative, in a clinical trial design, and as a tool
to greatly facilitate the process of design simulation to calibrate the prior and obtain
OCs. In this setting, both investigators and regulators may be very concerned that
the trial conduct should not be overly biased by (sometimes inappropriately) optimistic
priors. The ESS also is helpful to report and interpret the results of a data analysis,
since comparing the ESS to the data sample size allows one to judge the prior’s relative
informativeness.
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Appendix

In Case 1 of a CIHM, the fact that constructing an ε-information prior π1,0(θθθ | θ̃̃θ̃θ) for
π1(θθθ | θ̃̃θ̃θ) ensures that π12,0(θθθ | φφφ) =

∫
π1,0(θθθ | θ̃̃θ̃θ)π2(θ̃̃θ̃θ | φφφ)dθ̃̃θ̃θ is an ε-information prior for

π12(θθθ | φφφ) can be proved as follows:

Assume for simplicity that V̄j = ∞; the proof in the case V̄j < ∞ is similar. Ac-
counting for the variability at both levels of the CIHM, the variance of each θj can be
written in the expanded form σ2

π12
(θj) = Eπ2{σ2

π1
(θj |θ̃̃θ̃θ)} + σ2

π2
{Eπ1(θj |θ̃̃θ̃θ)}. Similarly,

using π1,0 in place of π1, σ2
π12,0

(θj) = Eπ2{σ2
π1,0

(θj |θ̃̃θ̃θ0)} + σ2
π2
{Eπ1,0(θj |θ̃̃θ̃θ0)}. Since

the definition of ε-information prior ensures that Eπ1,0(θj |θ̃̃θ̃θ0) = Eπ1(θj |θ̃̃θ̃θ), the second
terms of the two expansions are identical. Denoting this common term by cj , and also
denoting aj = Eπ2{σ2

π1
(θj |θ̃̃θ̃θ)} and bj = Eπ2{σ2

π1,0
(θj |θ̃̃θ̃θ0)}, the ratio of variances may

be written as
σ2

π12
(θj)

σ2
π12,0

(θj)
=

Eπ2{σ2
π1

(θj |θ̃̃θ̃θ)}+ cj

Eπ2{σ2
π1,0

(θj |θ̃̃θ̃θ0)}+ cj

=
aj + cj

bj + cj
. (22)

Given θ̃̃θ̃θ, under the assumption V̄j = ∞ one can choose θ̃̃θ̃θ0 so that cj/σ2
π1,0

(θj |θ̃̃θ̃θ0) < ε/2
and σ2

π1
(θj |θ̃̃θ̃θ)/σ2

π1,0
(θj |θ̃̃θ̃θ0) < ε/2. Writing these inequalities as cj − σ2

π1,0
(θj |θ̃̃θ̃θ0)ε/2 < 0

and σ2
π1

(θj |θ̃̃θ̃θ) − σ2
π1,0

(θj |θ̃̃θ̃θ0)ε/2 < 0, taking the expectations with respect to π2 and
reversing the algebra in each inequality, it follows that cj/Eπ2{σ2

π1,0
(θj |θ̃̃θ̃θ0)} = cj/bj <

ε/2 and Eπ2{σ2
π1

(θj |θ̃̃θ̃θ)}/Eπ2{σ2
π1,0

(θj |θ̃̃θ̃θ0)} = aj/bj < ε/2. Writing the right-hand side of
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(22) as (aj/bj +cj/bj)/(1+cj/bj), since cj/bj > 0 this is bounded above by aj/bj +cj/bj ,
which by the foregoing is bounded above by ε/2 + ε/2 = ε.


