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Abstract
A Bayesian design is proposed for randomized phase II clinical trials that screen
multiple experimental treatments compared to an active control based on ordinal
categorical toxicity and response. The underlying model and design account for
patient heterogeneity characterized by ordered prognostic subgroups. All deci-
sion criteria are subgroup specific, including interim rules for dropping unsafe
or ineffective treatments, and criteria for selecting optimal treatments at the
end of the trial. The design requires an elicited utility function of the two out-
comes that varies with the subgroups. Final treatment selections are based on
posterior mean utilities. The methodology is illustrated by a trial of targeted
agents for metastatic renal cancer, which motivated the design methodology.
In the context of this application, the design is evaluated by computer simula-
tion, including comparison to three designs that conduct separate trials within
subgroups, or conduct one trial while ignoring subgroups, or base treatment
selection on estimated response rates while ignoring toxicity.

KEYWORDS
Bayesian design, clustering, patient prognostic subgroups, treatment screening design, utility
function

1 INTRODUCTION

A new Bayesian design is proposed for randomized phase
II group sequential trials in settings where it is desired to
screen a set of experimental treatments, 𝐸1, … , 𝐸𝐾 , com-
pared to an active control treatment, 𝐶, based on ordinal
categorical response, 𝑌R , and toxicity, 𝑌T, and patients are
classified at enrollment into ordinal prognostic subgroups.
A utility function of 𝒀 = (𝑌R, 𝑌T) is used to quantify

risk–benefit trade-offs. All decisions are subgroup spe-
cific, with screening rules that drop any 𝐸𝑘 in any
subgroup where it has an unacceptably low response
rate or high toxicity rate. The goal is to select a
best acceptable 𝐸𝑘, if it exists, in each subgroup, for
future confirmatory evaluation in a phase III trial
based on survival or progression-free survival time.
This prospective evaluation of subgroup-specific effects
is intended to obviate post hoc assessments within
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selected subgroups, which may be considered data dredg-
ing, when evaluating treatments and planning future
trials.
The design is motivated by a randomized phase II trial

of first-line therapy using targeted agents for metastatic
clear cell renal cell carcinoma (mRCC). The trial compares
two new immunotherapy regimens, nivolumab plus ipil-
imumab (N+I) (Motzer et al., 2019) and pembrolizumab
plus lenvatinib (P+L) (Motzer et al., 2021), with the
active control targeted agent pazopanib (Pa) (Tannir et al.,
2020). Patients with mRCC often are classified using their
International Metastatic Renal-Cell Carcinoma Database
Consortium (IMDC) prognostic risk scores, which are
defined using biomarkers and clinical variables, includ-
ing anemia, thrombocytosis, neutrophilia, hypercalcemia,
performance status, and time from diagnosis to treat-
ment. IMDC scores are used to classify patients into three
prognostic subgroups: favorable (IMDC = 0), interme-
diate (IMDC = 1 or 2), and poor (IMDC ≥ 3) (Heng
et al., 2013). The ability of these prognostic subgroups
to account for outcome heterogeneity in mRCC has led
to their use as stratification factors in randomized phase
III trials in mRCC (Motzer et al., 2021; Rini et al., 2019).
IMDC risk score also is recommended by the National
Comprehensive Cancer Network (NCCN) guidelines to
guide treatment selection for mRCC (Msaouel et al., 2021).
However, to date there exist no randomized trial data
comparing N+I and P+L to Pa to determine which of
these three regimensmay be themost appropriate first-line
mRCC therapies for each IMDC subgroup (Adashek et al.,
2020).
Our proposed design was motivated by the unmet need

for a randomized comparison of the approved first-line
mRCC therapies, including treatment screening and selec-
tion for each IMDC subgroup. To be practical, particularly
in settings such as mRCC where pivotal phase III trials
have already led to regulatory approval of the treatments
of interest, the design must efficiently inform subgroup-
specific treatment decisions without necessitating large
sample sizes. A prior may be established using a com-
bination of elicited values and historical data. For our
application, prior information from the previously con-
ducted phase III trials was used. Details are provided
in Supporting Information B. When prior information is
sparse, a weakly informative prior can be used. The design
produces highly efficient and accurate screening and selec-
tion by borrowing information across subgroups through a
hierarchicalmodel including latent subgroupmembership
variables, illustrated in Section 5.
We index the ordered prognostic subgroups by 𝑔 ∈

{1, … , 𝐺}, with 𝑔 = 1 denoting the best and 𝑔 = 𝐺 the worst
prognosis. While we assume ordinal subgroups to reflect
the use of IMDC risk score to define subgroups in the

mRCC trial, this restriction may be dropped in settings
with nonordered subgroups, for example, if subgroups
correspond to histologic subtypes. The randomization is
restricted to balance the sample sizes of the treatments
within each subgroup. In the mRCC trial, 𝑌T is a binary
indicator of toxicity, and 𝑌R is ordinal with possible val-
ues 0 for progressive disease (PD), 1 for stable disease (SD),
2 for partial response (PR), and 3 for complete response
(CR). All decisions are based on posterior quantities char-
acterizing 𝐸𝑘-versus-𝐶 effects on 𝒀 = (𝑌R, 𝑌T) for each 𝑔

and 𝑘 = 1,… , 𝐾. To reduce notation, when no meaning is
lost, we identify treatments by the integers 𝑘 = 0 for 𝐶 and
𝑘 = 1,… , 𝐾 for 𝐸1, … , 𝐸𝐾 .
To enhance flexibility and borrow strength between

subgroups, the design uses model-based clustering of the
predefined subgroups to adaptively combine two or more
adjacent subgroups if the interim or final data show that
they have similar estimated outcome distributions. For
example, if the distributions of [𝒀|𝑘, 𝑔] and [𝒀|𝑘, 𝑔 + 1]

are determined to be similar for all treatments
𝑘 = 0, 1, … , 𝐾, then subgroups 𝑔 and 𝑔 + 1 are com-
bined to form the cluster {𝑔, 𝑔 + 1}, and the model
parameterization is reduced accordingly. The Bayesian
model yields a posterior distribution over all possible clus-
tering configurations. Averaging over the posterior cluster
distribution, rather than selecting one optimal clustering,
ensures that the design’s decisions account for uncertainty
in the subgroup clustering. Treatment selection is based on
an elicited utility function,𝑈𝑔(𝒀), that quantifies the risk–
benefit trade-off between 𝑌R and 𝑌T for each subgroup
𝑔 = 1,… , 𝐺. At the end of the trial, a best acceptable 𝐸𝑘 is
chosen for each 𝑔 by maximizing the posterior predictive
(PP) mean of 𝑈𝑔(𝒀).
Designs that do both screening and selection of multi-

ple experimental treatments in the same trial have been
considered by many authors in a variety of settings. In the
context of a simulation study comparing outcome adap-
tive to fair randomization in multiarm trials with a binary
response outcome 𝑌R , Wathen and Thall (2017) listed
design components that may be varied. These include out-
comes, choice of interim decision rules, whether sample
sizes of open treatment arms are enriched if inferior arms
are dropped early, selection criteria, and whether a con-
current control arm is included as a comparator. Multiarm
studies based on a binary response indicator 𝑌R that do
screening and selection using estimates of the comparative
effects Pr(𝑌R = 1|𝑘) − Pr(𝑌R = 1|0) for each 𝑘 = 1,… , 𝐾

often are called platform trials. Rossell et al. (2007) pro-
posed a Bayesian decision theoretic platform design that
may drop treatments or enter new treatments interimly,
with final decisions of whether a treatment should be
studied in a subsequent phase III trial. Other examples
of platform trials include a Bayesian design for studying
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molecularly targeted agents (Yuan et al., 2016), a design for
evaluating combination therapies (Kaizer et al., 2018), and
a method for adding new 𝐸𝑘 ’s during the trial (Ventz et al.,
2018), among many others.
Several phase II designs based on bivariate binary

(𝑌R, 𝑌T) have been proposed, including the single-arm
phase II designs of Conaway and Petroni (1995) and
Chen and Chi (2012) to evaluate one experimental treat-
ment. Buzaianu et al. (2022) proposed a randomized phase
II design to evaluate multiple experimental treatments,
using stochastic curtailment to define a closed sequential
procedure. However, none of these designs includes a ran-
domized control arm, accounts for patient heterogeneity,
or accommodates ordinal outcomes.
Our proposed designmay be considered a platform trial,

or a randomized multiarm controlled phase II trial with
a bivariate ordinal outcome, that evaluates all 𝐸𝑘’s from
the start, accounts for prognostic subgroups, does adap-
tive subgroup clustering, includes interim rules to drop
unsafe or ineffective𝐸𝑘’s within subgroups, and bases final
treatment selections on PP mean utilities. Since each of
these design elements has been used previously, the nov-
elty of our design lies in the fact that it includes all of these
features, and in the way that it combines them.
In Section 2, we describe our Bayesian probability

model, prior specification, subgroup clustering method,
and posterior computation. Section 3.1 describes the utility
functions and trial design. A heuristic method for deter-
mining maximum sample size is described in Section 4. A
simulation study to evaluate the proposed design’s operat-
ing characteristics (OCs) and compare it to three simpler
designs is presented in Section 5. We conclude with a brief
discussion in Section 6.

2 PROBABILITYMODEL

2.1 Sampling distribution

Let 𝑛(𝑡) denote the number of patients accrued up to trial
time 𝑡, and index patients by 𝑖 = 1, … , 𝑛(𝑡). For the 𝑖th
patient, denote treatment by 𝜏𝑖 ∈ {0, 1, … , 𝐾}, subgroup by
𝑥𝑖 ∈ {1, … , 𝐺}, and outcomes by 𝒀𝑖 = (𝑌𝑖,T, 𝑌𝑖,R), where
𝑌𝑖,𝑗 ∈ {0, … ,𝑀𝑗 − 1} for 𝑗 = 𝑇,𝑅. In themRCC trial,𝑌𝑖,T ∈

{0, 1} with𝑀T = 2, and 𝑌𝑖,R ∈ {0, 1, 2, 3} with𝑀R = 4.
For convenience, we denote each model’s parameter

vector by 𝜽. We specify a model for regression of 𝒀𝑖

on (𝜏𝑖, 𝑥𝑖) by defining 𝒀𝑖 in terms of latent real-valued
bivariate normal variables, 𝒁𝑖 = (𝑍𝑖,T, 𝑍𝑖,R). We assume
𝒁1, … , 𝒁𝑛(𝑡) are mutually independent given 𝜽, and con-
struct a model for each 𝒁𝑖 by introducing real-valued
latent patient-specific randomeffect vectors 𝝐𝑖 = (𝜖𝑖,T, 𝜖𝑖,R),

assuming 𝝐𝑖|Ω 𝑖𝑖𝑑
∼ N2(𝟎,Ω), where 𝟎 = (0, 0)′ and Ω is a

random 2 × 2 variance–covariance matrix. For each 𝑖 =

1, … , 𝑛(𝑡), we assume conditional independence of𝑍𝑖,T and
𝑍𝑖,R given 𝝐𝑖 , with marginals

𝑍𝑖,𝑗|𝑥𝑖 = 𝑔, 𝜏𝑖 = 𝑘, 𝜖𝑖,𝑗, 𝜽
𝑖𝑛𝑑𝑒𝑝
∼ N(𝜇𝑗,𝑘,𝑔 + 𝜖𝑖,𝑗, 𝜎2), for

𝑗 = 𝑇, 𝑅, (1)

and fixed 𝜎2. Wewill specify priors for {𝜇𝑗,𝑘,𝑔} andΩ below.
Patient randomeffects similar to {𝝐𝑖}have been usedwidely
tomodelmultivariate data in awide variety of settings. See,
for example, Gorfine and Hsu (2011) or Lee et al. (2019,
2021).
For each outcome 𝑗 = 𝑇, 𝑅 and treatment 𝑘, we use

cutoffs 𝑢𝑘
𝑗,0

< 𝑢𝑘
𝑗,1

< ⋯ < 𝑢𝑘
𝑗,𝑀𝑗

to define 𝑌𝑖,𝑗 = 𝑚 if and

only if 𝑢𝑘
𝑗,𝑚

< 𝑍𝑖,𝑗 ≤ 𝑢𝑘
𝑗,𝑚+1

for 𝑦𝑗 = 0,… ,𝑀𝑗 − 1, giving
the marginal conditional distribution

P(𝑌𝑖,𝑗 = 𝑚|𝑥𝑖 = 𝑔, 𝜏𝑖 = 𝑘, 𝜖𝑖,𝑗 , 𝜽) = Φ1

(
𝑢𝑘
𝑗,𝑚+1

|𝜇𝑗,𝑘,𝑔 + 𝜖𝑖,𝑗 , 𝜎
2
)

−Φ1

(
𝑢𝑘
𝑗,𝑚

|𝜇𝑗,𝑘,𝑔 + 𝜖𝑖,𝑗 , 𝜎
2
)
, (2)

where Φ𝑑 denotes the cumulative distribution function
(cdf) of a𝑑-variate normal distribution.Due to the assump-
tions on the distributions of 𝑍𝑖,𝑗 , the 𝒀𝑖s are also mutually
independent given 𝜽, and 𝑌𝑖,T and 𝑌𝑖,R are conditionally
independent given 𝝐𝑖 and 𝜽.
We let the cutoffs {𝑢𝑘

𝑗,𝑚
,𝑚 = 2,… ,𝑀𝑗 − 1} be random

for flexibility, set 𝑢𝑘
𝑗,1

= 0 for all (𝑗, 𝑘) to avoid non-
identifiabilty of the model, and also set 𝑢𝑘

𝑗,0
= −∞ and

𝑢𝑘
𝑗,𝑀𝑗

= ∞, so
∑𝑀𝑗−1

𝑚=0 P(𝑌𝑖,𝑗 = 𝑚|𝑥𝑖 = 𝑔, 𝜏𝑖 = 𝑘) = 1. We

will define priors for 𝒖 = {𝑢𝑘
𝑗,𝑚

, 𝑗 = 𝑇, 𝑅, 𝑚 = 2,… ,𝑀𝑗 −

1, 𝑘 = 0,… , 𝐾} for outcomes with 𝑀𝑗 > 2 below. Integrat-
ing over the distribution of 𝝐𝑖 gives the bivariate normal dis-
tribution 𝒁𝑖|𝑥𝑖 = 𝑔, 𝜏𝑖 = 𝑘

𝑖𝑛𝑑𝑒𝑝
∼ N2(𝝁𝑘,𝑔, Σ) with Σ = Ω+

𝜎2I2, which in turn implies that

P(𝒀𝑖 = 𝒚|𝑥𝑖 = 𝑔, 𝜏𝑖 = 𝑘, 𝜽) = Φ2

(
𝑢𝑘
T,𝑦T+1, 𝑢

𝑘
R,𝑦R+1|𝝁𝑔,𝑘, Σ

)

−Φ2

(
𝑢𝑘
T,𝑦T+1, 𝑢

𝑘
R,𝑦R

|𝝁𝑔,𝑘, Σ
)
− Φ2

(
𝑢𝑘
T,𝑦T

, 𝑢𝑘
R,𝑦R+1|𝝁𝑔,𝑘, Σ

)

+Φ2

(
𝑢𝑘
T,𝑦T

, 𝑢𝑘
R,𝑦R

|𝝁𝑔,𝑘, Σ
)
, (3)

for 𝒚 = (𝑦T, 𝑦R), where 𝝁𝑘,𝑔 = (𝜇T,𝑘,𝑔, 𝜇R,𝑘,𝑔). The 𝝐𝑖s
account for between-patient heterogeneity not explained
by the (𝑥𝑖, 𝜏𝑖)s, and for each 𝑖, correlation between 𝜖𝑖,T and
𝜖𝑖,R induces association between 𝑍𝑖,T and 𝑍𝑖,R , and thus
association between 𝑌𝑖,T and 𝑌𝑖,R .
If an alternative model including a shared scalar ran-

dom effect for 𝑍𝑖,T and 𝑍𝑖,R were assumed, it would induce
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a positive within-patient association, while our model
induces corr(𝑍𝑖,T, 𝑍𝑖,R) = Ω12∕(

√
Ω11 + 𝜎2

√
Ω22 + 𝜎2),

which allows both positive and negative association.
Because the conditional likelihoods of 𝒀𝑖 and 𝒁𝑖 given 𝝐𝑖
are products of the univariate normals in (2), this construc-
tion greatly simplifies posterior simulation of 𝜽, which
can be done using a Gibbs sampler (Zeger & Karim,
1991). We provide details in Section 2.3 and Supporting
Information C.
Temporarily suppress the patient index 𝑖. To characterize

regression of each outcome𝑌𝑗 on subgroup and treatment,
we define the means of the latent variable distribution in
(1) as

𝜇𝑗,𝑘,𝑔 = 𝜂𝑗,𝑘 + 𝛼𝑗,𝑘,𝑔, (4)

where 𝜂𝑗,𝑘 is the intercept for treatment 𝑘 and 𝛼𝑗,𝑘,𝑔 is
an additive treatment–subgroup interaction. This model
allows awide variety of treatment–subgroup curves of each
outcome, and it provides a flexible basis for subgroup-
specific treatment screening and selection. Since the prog-
nostic subgroups are ordinal, we impose the constraints
𝛼T,𝑘,1 ≤ … ≤ 𝛼T,𝑘,𝐺 and 𝛼R,𝑘,1 ≥ … ≥ 𝛼R,𝑘,𝐺 . This induces
a stochastic ordering of the distribution of each 𝑌𝑗 in 𝑔

for each 𝑘, with P(𝑌T ≤ 𝑦T|𝑔, 𝑘) ≥ P(𝑌T ≤ 𝑦T|𝑔′, 𝑘) and
P(𝑌R ≤ 𝑦R|𝑔, 𝑘) ≤ P(𝑌R ≤ 𝑦R|𝑔′, 𝑘) for 𝑔 < 𝑔′. In settings
with nonordinal subgroups, such as histological disease
subtypes, these constraints may be dropped.

2.2 Clustering subgroups

To adaptively combine adjacent subgroups that the
data show have similar treatment–subgroup interactions,
{𝛼𝑗,𝑘,𝑔}, we do model-based clustering, and assume that
treatment effects are identical within each cluster. We
implement this using latent cluster membership variables,
𝒔 = (𝑠1, … , 𝑠𝐺), where each 𝑠𝑔 ∈ {1, … , 𝐺}. If 𝑠𝑔 = 𝑠𝑔′ for
subgroups 𝑔 ≠ 𝑔′, then these subgroups belong to the same
cluster. Similarly to Lee et al. (2021), since the predefined
subgroups are ordinal, we set 𝑠1 = 1, require 𝑠1 ≤ … ≤ 𝑠𝐺 ,
and define a prior on 𝒔 by proceeding sequentially for
𝑔 = 2,… , 𝐺. We assume that subgroup 𝑔 ≥ 2 is combined
with subgroup 𝑔 − 1 in a cluster with fixed probability 𝜉,
and is not combined with subgroup 𝑔 − 1 with probability
1 − 𝜉. Formally, P(𝑠𝑔 = 𝑠𝑔−1|𝑠𝑔−1) = 𝜉 and P(𝑠𝑔 = 𝑠𝑔−1 +

1|𝑠𝑔−1) = 1 − 𝜉, and the prior on 𝒔 is

𝑝(𝒔|𝜉) =
𝐺∏

𝑔=2

𝑝(𝑠𝑔|𝜉, 𝑠𝑔−1) =

𝐺∏
𝑔=2

𝜉(𝑠𝑔=𝑠𝑔−1)(1 − 𝜉)1−(𝑠𝑔=𝑠𝑔−1), (5)

denoting the indicator (𝐴) = 1 if 𝐴 is true and 0 other-
wise. This construction allows only neighboring subgroups

to be combined. Let 𝐻 ≤ 𝐺 denote the number of distinct
clusters, with 𝑠𝐺 = 𝐻. Our motivating trial has 𝐺 = 3 pre-
defined risk subgroups, so there are four possible cluster
configurations, 𝒔 = (1, 1, 1), (1, 1, 2), (1, 2, 2), or (1, 2, 3),
which define, respectively, 𝐻 = 1, 2, 2, and 3 clusters.
For example, in the cluster configuration 𝒔 = (1, 2, 2),
subgroup 1 has its own cluster {1}, with 𝑠1 = 1, and sub-
groups 2 and 3 are combined as the cluster {2, 3}, with
𝑠2 = 𝑠3 = 2.
In settings where the subgroups are not ordinal, such as

disease subtypes, the ordering constraint on 𝒔 should be
dropped, and any clustering method may be used, such as
using a Gaussian mixture model (Chapple & Thall, 2018),
or a random partition (Xu et al., 2016).
To borrow strength using the clusters, given 𝒔, we define

cluster-specific treatment effects, 𝛼⋆
𝑗,𝑘,ℎ

, and assume that
all subgroups in a cluster have the same effects, that is,
𝛼𝑗,𝑘,𝑔 = 𝛼⋆

𝑗,𝑘,ℎ
for all 𝑔 with 𝑠𝑔 = ℎ. This implies that, for

each 𝐸𝑘, the distribution of 𝒀 is the same for all sub-
groups in a cluster, so the model dimension depends on𝐻.
For example, 𝒔 = (1, 2, 2) gives clusters {1} and {2, 3} with
𝐻 = 2. The distribution of 𝒀 for subgroup 1 has 𝜇𝑗,𝑘,1 =

𝜂𝑗,𝑘 + 𝛼⋆
𝑗,𝑘,1

for (4) since 𝑠1 = 1, and the likelihood is

P(𝑌𝑖,𝑗 = 𝑦𝑗|𝒔 = (1, 2, 2), 𝑥𝑖 = 1, 𝜏𝑖 = 𝑘, 𝜖𝑖,𝑗, 𝜽)

= Φ1

(
𝑢𝑘
𝑗,𝑦𝑗+1

|𝜂𝑗,𝑘 + 𝛼⋆
𝑗,𝑘,1

+ 𝜖𝑖,𝑗, 𝜎
2
)

−Φ1

(
𝑢𝑘
𝑗,𝑦𝑗

|𝜂𝑗,𝑘 + 𝛼⋆
𝑗,𝑘,1

+ 𝜖𝑖,𝑗, 𝜎
2
)
.

The 𝑌𝑖,𝑗s for subgroups 𝑔 = 2 and 𝑔 = 3 have the same
means, 𝜇𝑗,𝑘,2 = 𝜇𝑗,𝑘,3 = 𝜂𝑗,𝑘 + 𝛼⋆

𝑗,𝑘,2
since 𝛼𝑗,𝑘,1 = 𝛼𝑗,𝑘,2 =

𝛼⋆
𝑗,𝑘,2

, for 𝑗 =𝑇 or𝑅, and the same conditional likelihoods,

P(𝑌𝑖,𝑗 = 𝑦𝑗|𝒔 = (1, 2, 2), 𝑥𝑖 = 𝑔, 𝜏𝑖 = 𝑘, 𝜖𝑖,𝑗, 𝜽)

= Φ1

(
𝑢𝑘
𝑗,𝑦𝑗+1

|𝜂𝑗,𝑘 + 𝛼⋆
𝑗,𝑘,2

+ 𝜖𝑖,𝑗, 𝜎
2
)

−Φ1

(
𝑢𝑘
𝑗,𝑦𝑗

|𝜂𝑗,𝑘 + 𝛼⋆
𝑗,𝑘,2

+ 𝜖𝑖,𝑗, 𝜎
2
)
.

Our adaptive clustering method uses a distribution
over 𝒔 that stochastically combines adjacent prognostic
subgroups having similar treatment effects. Optimal treat-
ments are chosen for subgroups by marginalizing over the
posterior of 𝒔. The practical advantage is that borrowing
information through clustering improves estimation of the
distributions 𝑃(𝒀|𝑘, 𝑔, 𝜽), which in turn improves relia-
bility of subgroup-specific decision making. Alternatively,
one can view each value of 𝒔 as a model with a particular
subgroup clustering, with (5) defining a prior distribu-
tion over all possible models. To account for uncertainty
about model choice, we average over the models using the
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2462 LEE et al.

posterior of 𝒔, rather than conditioning on a selected
model. This is reflected in the design’s decisions for
subgroup-specific treatment screening and selection.
We next define a prior on the vector of cluster-specific

treatment effects, 𝜶⋆ = {𝛼⋆
𝑗,𝑘,ℎ

}, conditional on 𝒔. For iden-
tifiability, we set 𝛼⋆

𝑗,𝑘,1
= 0 for all 𝑗 and 𝑘, so 𝜇𝑗,𝑘,𝑔 = 𝜂𝑘,𝑗 if

𝑠𝑔 = 1.
Given 𝐻 > 1 clusters, we assume normal priors with

ordering constraints on 𝛼⋆
𝑗,𝑘,ℎ

for each ℎ > 1, as follows;

𝑝(𝛼⋆
T,𝑘,2

, … , 𝛼⋆
T,𝑘,𝐻

|𝒔, �̄�T, 𝑣
2
T)

∝

𝐻∏
ℎ=2

𝜙1(𝛼
⋆
T,𝑘,ℎ

|�̄�T,ℎ, 𝑣
2
T)I(𝛼

⋆
T,𝑘,ℎ

> 𝛼⋆
T,𝑘,ℎ−1

),

𝑝(𝛼⋆
R,𝑘,2

, … , 𝛼⋆
R,𝑘,𝐻

|𝒔, �̄�R, 𝑣
2
R)

∝

𝐻∏
ℎ=2

𝜙1(𝛼
⋆
R,𝑘,ℎ

|�̄�R,ℎ, 𝑣
2
R)I(𝛼

⋆
R,𝑘,ℎ

< 𝛼⋆
R,𝑘,ℎ−1

). (6)

The ordering constraints on 𝒔 and 𝜶⋆
𝑗
, imply that 𝛼T,𝑘,1 ≤

… ≤ 𝛼T,𝑘,𝐺 and 𝛼R,𝑘,1 ≥ … ≥ 𝛼R,𝑘,𝐺 for each treatment 𝑘.

2.3 Prior specification and posterior
computation

We complete the prior specification, to account for 𝜼 =

{𝜂𝑗,𝑘}, 𝒆 = {𝑒𝑘
𝑗,𝑚

}, and Ω. For outcome 𝑗 with 𝑀𝑗 > 2,
we assume 𝑢𝑘

𝑗,𝑚+1
= 𝑢𝑘

𝑗,𝑚
+ 𝑒𝑘

𝑗,𝑚
, 𝑚 = 1,… ,𝑀𝑗 − 2, and

let 𝑒𝑘
𝑗,𝑚

𝑖𝑛𝑑𝑒𝑝
∼ Ga(𝑒𝑗,𝑚𝜅𝑗, 𝜅𝑗) with fixed prior mean 𝑒𝑗,𝑚

and prior variance 𝑒𝑗,𝑚∕𝜅𝑗 . For treatment- and outcome-

specific intercepts, we assume 𝜂𝑗,𝑘
𝑖𝑛𝑑𝑒𝑝
∼ N(𝜂𝑗, 𝑤

2
𝑗
), with 𝜂𝑗

and 𝑤2
𝑗
fixed, and let Ω ∼ inv-Wishart(𝜈,Ω0) with E(Ω) =

Ω0∕(𝜈 − 3).
The vector of all model parameters is 𝜽 = (𝜼, 𝜶⋆, 𝒆,Ω),

aside from the random subgroup partition 𝒔. For the
renal cancer trial design, the hyperparameters 𝜽 charac-
terizing the priors were established using historical data
from Tannir et al. (2020) and Motzer et al. (2013, 2019,
2021), and elicited prior probabilities. General guidelines
for establishing fixed hyperparameters are in Supporting
Information A. Details of prior calibration for our mRCC
trial application are given in Supporting Information B.
The proposed procedure of calibrating the prior involves
preliminary simulation studies by varying values of 𝜽,
which also provides some empirical results on sensitivity
analyses of the design’s performance to the specification
of 𝜽.
The interim data 𝑛(𝑡) at trial time 𝑡 include all

outcomes and treatment assignments from previously

enrolled patients. Given 𝜽 and 𝑛(𝑡), the joint posterior
of 𝜽, the latent subgroup variables 𝒔, and patient-specific
latent random effects 𝝐 = {𝝐𝑖, 𝑖 = 1, … , 𝑛(𝑡)} is

𝑝(𝜽, 𝒔, 𝝐|𝑛(𝑡), 𝜽) ∝

𝑛(𝑡)∏
𝑖=1

𝑝(𝝐𝑖|Ω) ×

∏
𝑗=𝑇,𝑅

𝑝(𝑦𝑖,𝑗|𝑥𝑖, 𝜏𝑖, 𝜖𝑖,𝑗, 𝜽, 𝒔, 𝜽) 𝑝(𝜽|𝒔, 𝜽) 𝑝(𝒔|𝜉). (7)

We use Markov chain Monte Carlo (MCMC) simulation to
generate posterior samples by iteratively drawing (𝒔, 𝜽, 𝝐),
with each conditional on the values of the others at each
iteration through 𝒔, 𝜽, and 𝝐 . Recall that the values of 𝒔
define different models and the likelihood in (9) depends
on 𝒔, as illustrated in Section 2.2. Because the dimension of
𝜽 changes across themodels defined by 𝒔, we use reversible
jump sampling and construct an MCMC simulation that
moves among all possible models. The joint posterior of 𝒔
and 𝜽 determines all decision criteria used by the design,
and 𝑝(𝒔|𝑛(𝑡), 𝜽) is used to average over models. Com-
putational details are given in Supporting Information C.
A computer program “Treatment-Screen-Subgroup” for
implementing the proposed design is available from the
journal’s website as Supporting Information.

3 DECISION CRITERIA AND TRIAL
DESIGN

3.1 Utility function

The utility function accommodates the possibility that
clinicians may be more willing to accept a higher risk of
toxicity if disease status is likely to be improved for poor
risk patients. Thus, the utility function allows risk–benefit
preferences between 𝑌T and 𝑌R to differ between sub-
groups, with 𝑈𝑔(𝒀) assigned to outcome 𝒀 = (𝑌T, 𝑌R) for
subgroup 𝑔.
To apply the design, numerical utilities of the 𝑀T ×

𝑀R elementary outcomes must be elicited from the clin-
ical collaborators, with the numerical values reflecting
the physicians’ beliefs and preferences regarding patients’
risk–benefit trade-offs in each subgroup. We illustrate
how subgroup-specific utility functionsmay be established
using our motivating trial. We first specify the interval
[0, 100] as a convenient domain for numerical utilities,
and fix 𝑈𝑔(0, 3) = 100 and 𝑈𝑔(1, 0) = 0 for all 𝑔, since
these are the respective utilities for the best and worst
possible outcomes. Given these values, for each subgroup
𝑔, we elicit intermediate values for the remaining out-
comes. The numerical values must satisfy the consistency
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LEE et al. 2463

F IGURE 1 Illustration of subgroup-specific utilities 𝑈𝑔 of a
bivariate outcome 𝒀 = (𝑌T, 𝑌R), for subgroups 𝑔 = 1, 2, 3. 𝑌T = 0

and 1 represent no occurrence and occurrence of severe toxicity,
respectively. 𝑌R = 0, 1, 2, and 3 represent PD, SD, PR, and CR,
respectively. This figure appears in color in the electronic version of
this article, and any mention of color refers to that version.

conditions 𝑈𝑔(𝑦T, 𝑦R) < 𝑈𝑔(𝑦T, 𝑦R + 1) and 𝑈𝑔(0, 𝑦R) >

𝑈𝑔(1, 𝑦R). For the mRCC trial, there are eight elementary
outcomes, so six numerical utilities were elicited for each
of 𝐺 = 3 subgroups. In therapy of mRCC, patients with
favorable IMDC (𝑔 = 1) have more indolent disease and
more time to test other subsequent therapies than patients
with more aggressive disease (𝑔 = 2 or 3), and they are less
willing to tolerate toxicity even if CR is achieved. This was
reflected by calibrating the utilities across the three prog-
nostic subgroups, as follows. We required that 𝑈𝑔(𝑦T, 𝑦R)

for each (𝑦T, 𝑦R) with 𝑦R > 0 (SD or better) must be non-
decreasing in 𝑔, to reflect the belief that having some
response, that is, no PD, is more desirable for a higher risk
subgroup, regardless of 𝑦T. For the same reason, evenwhen
𝑦R = 3 (CR is achieved), having 𝑦T = 1 is penalized more
for a favorable risk subgroup, so 𝑈𝑔(1, 3) increases in 𝑔.
However, we let 𝑈𝑔(0, 0) decrease in 𝑔, while 𝑈𝑔(1, 0) = 0

for all 𝑔, since having PD is less desirable for a higher risk
group. Thus, a treatment with a high toxicity probability is
more likely to be optimal for higher risk subgroups if the
treatment has a good chance of efficacy.

The numerical utilities elicited for the mRCC trial are
illustrated graphically in Figure 1, which includes a table
of the utilities.
Themean utility of treating a patient in subgroup 𝑔with

𝐸𝑘 is

𝑈𝑔(𝑘|𝒔, 𝜽, 𝜽) =
𝑀T−1∑
𝑦T=0

𝑀R−1∑
𝑦R=0

𝑈𝑔(𝒚) × 𝑝(𝒚|𝑘, 𝑔, 𝒔, 𝜽, 𝜽),

where 𝑝(𝒚|𝑘, 𝑔, 𝒔, 𝜽, 𝜽) = ∫ 𝑝(𝒚|𝑘, 𝑔, 𝒔, 𝜽, 𝜽, 𝝐)𝑝(𝝐|𝜽, 𝜽)𝑑𝝐
is given in (3).
We use PP mean utilities as criteria for treatment selec-

tion. Given data𝑛(𝑡) at trial time 𝑡, the PP mean utility of
giving treatment 𝑘 to a future patient in subgroup 𝑔 is

𝑢𝑔(𝑘|𝑛(𝑡)) = 𝐸
{
𝑈𝑔(𝑘|𝒔, 𝜽, 𝜽)|𝑛(𝑡)

}

=
∑
𝒔
∫ 𝑈𝑔(𝑘|𝒔, 𝜽, 𝜽)𝑝(𝒔, 𝜽|𝑛(𝑡), 𝜽)𝑑𝜽.

(8)

Because there are no closed forms for the posterior dis-
tribution of (𝜽, 𝒔) or the PP distribution of 𝒀 for a future
patient, numerical approximation is used to compute (11).
We approximate𝑢𝑔(𝑘|𝑛(𝑡))using aMonteCarlo sample of
𝒔 and 𝜽 values simulated from the posterior𝑝(𝒔, 𝜽|𝑛(𝑡), 𝜽).
Computational details are given in Supporting Informa-
tion C.

3.2 Treatment screening criteria

A key component of a phase II design is a rule to stop
accrual to 𝐸𝑘 that observed interim data have shown is
unsafe. Our design is intended for clinical settings where
there is a treatment 𝐶 with established antidisease activ-
ity and safety. We include rules to stop accruing patients
to an 𝐸𝑘 in any subgroup where the data show that 𝐸𝑘

has an unacceptably high rate of toxicity or PD compared
to 𝐶. If all 𝐸𝑘’s are found to be unacceptable for a sub-
group, the design stops accrual and does not select any
𝐸𝑘 in that subgroup. The design terminates a trial if the
accrual is stopped for all subgroups. Recall that (𝑌T = 1) =

Toxicity and (𝑌R = 0) = PD.We denote the probabilities of
these eventswith treatment 𝑘 in subgroup 𝑔 by 𝜁T(𝑘, 𝑔) and
𝜁PD(𝑘, 𝑔). Any 𝐸𝑘 not satisfying the following rules is con-
sidered unacceptable for subgroup 𝑔, and accrual to such
𝐸𝑘 is stopped in 𝑔;

P(𝜁T(𝑘, 𝑔) < 𝜁T(0, 𝑔)|𝑛(𝑡)) < 𝑝⋆
T (Safety Criterion) (9)
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2464 LEE et al.

or

P(𝜁PD(𝑘, 𝑔) < 𝜁PD(0, 𝑔)|𝑛(𝑡)) < 𝑝⋆
R (PD Futility Criterion).

(10)
Typically, small positive values between 0.01 and 0.20 are
chosen for 𝑝⋆

T and 𝑝⋆
R . We chose 𝑝⋆

T = 𝑝⋆
R = 0.10 for the

renal cancer trial design based on preliminary simulations.
The rule in (12) says that, given the data𝑛(𝑡), it is unlikely
that the probability of toxicity with 𝐸𝑘 is lower than that
with 𝐶 for subgroup 𝑔, and (13) says it is unlikely that the
probability of PDwith 𝐸𝑘 is lower than that with𝐶 for sub-
group 𝑔. At the end of the trial, in each subgroup anoptimal
treatment is selected from the set of acceptable 𝐸𝑘’s. In the
simpler case where 𝑌R is a binary response indicator with
𝜁R(𝑘, 𝑔) = Pr(𝑌R = 1|𝑘, 𝑔, 𝒔, 𝜽), the stopping rule given in
terms of PD in (13) may be replaced by the futility stopping
criterion, similar to that used by Wathen and Thall (2017).
For a fixed value of 𝛿R ≥ 0, the futility rule is

P(𝜁R(𝑘, 𝑔) > 𝜁R(0, 𝑔) + 𝛿R|𝑛(𝑡)) < 𝑝⋆.

(Response Futility Criterion). (11)

Each 𝐸𝑘-versus-𝐶 comparison in the screening rules in
(12), (13), and (14) is based on randomization between 𝐸𝑘

and 𝐶, which ensures an unbiased comparison in each
rule. This contrasts with the biased comparisons obtained
if historical data on 𝐶 or clinical experience were used to
provide fixed numerical values, used in place of 𝜁T(0, 𝑔),
𝜁PD(0, 𝑔), and 𝜁R(0, 𝑔), to construct rules similar to (12),
(13), and (14). Our design does not include any provisions
for dropping the 𝐶 arm because this would do away with
these advantages.

3.3 Trial conduct

The design includes 𝐿 interim analyses done after succes-
sive cohorts of size ⌊ 1

𝐿+1
𝑁max⌋ each, with accumulated

sample size 𝑛𝓁 = ⌊ 𝓁

𝐿+1
𝑁max⌋ at the 𝓁th analysis for 𝓁 =

1,… , 𝐿, with 𝑛𝐿+1 = 𝑁max . For our motivating renal can-
cer trial, 𝐿 = 1 with one interim analysis done based on
data from 𝑛1 = ⌊𝑁max∕2⌋ patients and the final selection
performed at 𝑛2 = 𝑁max . While in general the design may
have 𝐿 > 1 interim looks, 𝐿 ≥ 3may not be logistically fea-
sible, unless the accrual rate is very low. Given the 12-week
outcome evaluation window in the mRCC trial, which is
typical for solid tumors, we chose 𝐿 = 1 to make the trial
feasible. For any 𝐿 > 0, the design parameters should be
calibrated carefully, including the 𝑝⋆

𝑗
cutoffs, using sim-

ulation to examine OCs and decide how to schedule the
interim looks.

Based on (12) and (13) computed using the current data
𝑛𝓁

, for subgroup 𝑔 let 𝓁(𝑔) denote the set of accept-
able𝐸𝑘’s. In each subgroup 𝑔, the randomization for cohort
𝓁 + 1 is restricted to the current set 𝓁(𝑔) of treatments
that are acceptable for 𝑔. Denote the patient entry times
by 0 ≤ 𝑒1 ≤ 𝑒2 ≤ …, and let 𝑛𝑘,𝑔(𝑒𝑖) denote the number
of patients in subgroup 𝑔 given treatment 𝑘 up to trial
time 𝑒𝑖 . For each 𝑔, the randomization probabilities are
proportional to 1∕{𝑛𝑘,𝑔(𝑒𝑖) + 1}. For example, if 𝐾 = 2,
𝑛0,𝑔(𝑒𝑖) = 1, 𝑛1,𝑔(𝑒𝑖) = 0, and 𝑛2,𝑔(𝑒𝑖) = 2, the randomiza-
tion probabilities in subgroup 𝑔 are 0.27, 0.55, and 0.18 for
treatments 𝑘 = 0, 1, 2, respectively. To obtain a practical
design, if 𝑔 has no acceptable treatments interimly, for-
mally if𝓁(𝑔) = ∅, then enrollment to 𝑔 is terminated, so
𝓁′(𝑔) = ∅ for all 𝓁′ > 𝓁. At the end of the trial, for each
𝑔 the final set 𝐿+1(𝑔) is computed and the best accept-
able 𝐸𝑘 is selected. No treatment is selected for 𝑔 if it has
no acceptable treatments, that is, if 𝐿+1(𝑔) = ∅. Regard-
less of what early treatment terminations may be done,
the planned overall maximum sample size 𝑁max is main-
tained rather than being reduced. This has the advantage
that, if some treatments are terminated interimly in a sub-
group 𝑔, the sample sizes of the acceptable treatments in
𝑔 are enriched, which improves the reliability of the final
optimal treatment selection. The trial may be conducted as
follows:
Steps for trial conduct

(1) Record the subgroup 𝑥𝑖 of the 𝑖th patient enrolled
at trial time 𝑒𝑖 , and randomize fairly among
{𝐸1, … , 𝐸𝐾, 𝐶} with probability proportional to
1∕{𝑛𝑘,𝑔(𝑒𝑖) + 1}.

(2) At each interim analysis 𝓁 = 1,… , 𝐿,
(a) if there is no acceptable 𝐸𝑘 for subgroup 𝑔, that

is, 𝓁(𝑔) = ∅, then terminate accrual to 𝑔, with
𝓁′(𝑔) = ∅ for all 𝓁′ > 𝓁 and no 𝐸𝑘 is selected in
subgroup 𝑔;

(b) if𝓁(𝑔) = ∅ for all 𝑔, terminate the trial and do not
select any 𝐸𝑘 for any 𝑔;

(c) for a patient in the 𝓁 + 1st cohort with 𝑥𝑖 = 𝑔,
if 𝓁(𝑔) ≠ ∅, assign the patient to treatment arm
𝑘 ∈ {0} ∪𝓁(𝑔) with probability proportional to
1∕{𝑛𝑘,𝑔(𝑒𝑖) + 1}.

(3) Select a final treatment for each subgroup 𝑔 with
𝐿+1(𝑔) ≠ ∅ based on all data𝑁max

subject to (12) and
(13) using the criterion

𝜏sel(𝑔) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘∈𝐿+1(𝑔)

𝑢𝑔(𝑘|𝑁max
),

with 𝜏sel(𝑔) = 0 denoting the case where no 𝐸𝑘 is
selected.
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LEE et al. 2465

4 DETERMINING SAMPLE SIZE

We recommend determining 𝑁max heuristically based on
𝐺, 𝐾, the anticipated accrual rate, resource limitations
including financial costs and trial duration, and design
OCs. A simulation study should be designed that includes
scenarios defined in terms of fixed outcome probabilities
not computed from the assumed underlying model. One
also should specify, for each subgroup 𝑔, fixed values cor-
responding to unacceptably high 𝜁T(𝑘, 𝑔) and 𝜁PD(𝑘, 𝑔),
and unacceptably low 𝜁R(𝑘, 𝑔). Nominally “good” OCs
have reasonably large subgroup-specific probabilities of (1)
screening out undesirable 𝐸𝑘’s and (2) selecting a desirable
𝐸𝑘, if it exists, for each 𝑔, across the scenarios considered.
Most applications should have𝐺 ≤ 6 subgroups and𝐾 ≤

3 𝐸𝑘’s, but in a given setting some prespecified values of
𝐺 or 𝐾 may not be feasible. To determine (𝑁max, 𝐺, 𝐾),
the following heuristic process may be carried out. This
requires preliminary simulations, and to facilitate the pro-
cess one may use a small number of repetitions for each
case, such as 𝐵 = 200 per scenario, and also examine a set
of scenarios smaller than the full set that will be given with
the final design. First, fix 𝐺 and 𝐾, with the possibility of
later reducing them, if necessary.One thenmay specify two
or three feasible 𝑁max values, simulate the trial for each
𝑁max , and evaluate the OCs. If a value of 𝑁max does not
give a designwith goodOCs, then smaller values of𝐺,𝐾, or
both may be considered, and the design then resimulated,
with this process repeated until values of 𝐺 and 𝐾 giving
goodOCs are obtained. A final (𝑁max, 𝐺, 𝐾)may be chosen
by considering the OCs of all combinations evaluated. For
themRCC trial, given𝐺 = 3,𝐾 = 2, and accrual rate of four
patients per month, we evaluated 𝑁max = 90 and 180, and
chose 90 on that basis since this gives a design with good
OCs. If, instead, we had begun with 𝐾 = 3 experimental
treatments, then examining the four combinations of 𝐾 =

2 or 3 and 𝑁max = 90 or 180 would have been appropriate.

5 SIMULATION STUDY

5.1 Simulation design

To evaluate the design’s performance, we simulated the
renal cancer trial under eight scenarios. For each scenario,
we assumed three subgroups, three treatments includ-
ing a control, and binary toxicity outcomes and four-level
ordinal efficacy outcomes, so 𝐺 = 3, 𝐾 = 2, 𝑀T = 2, and
𝑀R = 4. We simulated each 𝑥𝑖 from a trinomial distribu-
tion with equal probabilities, 1/3 for each subgroup. Each
trial had𝑁max = 90, so 10 patients were expected, on aver-
age, for each combination of (𝑘, 𝑔). While this maximum
sample size may seem large, it is needed to evaluate three

treatments reliably. Moreover, if the three subgroups have
equal proportions of 1/3 then the expected subsample size
in each subgroup is 30, which is close to what is used con-
ventionally. We studied the case with one interim analysis
at 𝑛(𝑡) = ⌊𝑁max∕2⌋, so 𝐿 = 1. For each scenario, we speci-
fied the true clustering of the three predefined subgroups,
𝒔true = (𝑠true1 , 𝑠true2 , 𝑠true3 ), the variance 𝜎2,true of the probit
scores, the covariance matrix Ωtrue for the random effect
vectors, and {𝜂true

𝑗,𝑘
, 𝑗 = 𝑇, 𝑅, 𝑘 = 0,… , 𝐾}, and 𝛼⋆,true

𝑗,𝑘,ℎ
, ℎ =

2,… ,𝐻true with 𝛼⋆,true
𝑗,𝑘,1

= 0, 𝑢𝑘,true
R,𝑚 , 𝑚 = 2, 3 while fixing

𝑢𝑘,true
𝑗,0

= −∞, 𝑢𝑘,true
𝑗,1

= 0, and 𝑢𝑘,true
𝑗,𝑀𝑗

= ∞. For each (𝑘, 𝑔),
we used (3) with assumed true parameter values and com-
puted the probability 𝜋true

𝑘,𝑔
(𝒚) of each of the 𝑀𝑇 × 𝑀𝑅 =

8 possible elementary outcomes. The true values of 𝜂true
𝑗,𝑘

,

𝑒𝑘,trueR,𝑚 , and 𝛼⋆,true
𝑗,𝑘,ℎ

are given in Supporting Information
Table 3. The true parameter values were specified arbitrar-
ily, not using the design’s assumed model, to examine the
robustness of our design. Supporting Information Table 4
illustrates 𝜋true

𝑘,𝑔
(𝒚) over all 𝒚 for each 𝑘 and 𝑔. We simu-

lated𝒀𝑖 = (𝑌𝑖,T, 𝑌𝑖,R)with probability𝜋true
𝑘,𝑔

(𝒚) conditional
on 𝑥𝑖 = 𝑔 and 𝜏𝑖 = 𝑘.
Table 1 gives true values of the marginal probabilities

𝜋true
T (𝑘, 𝑔) of severe toxicity, 𝜋true

PD (𝑘, 𝑔) of PD, and of the
expected utility, 𝑈true

𝑘,𝑔
, 𝑘 > 0, computed using 𝜋true

𝑘,𝑔
(𝒚).

For subgroup 𝑔, any 𝐸𝑘 having 𝜋true
T (𝑘, 𝑔) > 𝜋true

T (0, 𝑔) or
𝜋true
PD (𝑘, 𝑔) > 𝜋true

PD (0, 𝑔) is truly unacceptable, and the 𝐸𝑘

having maximum𝑈true
𝑘,𝑔

is truly optimal. Additional details
are given in Supporting Information D.
With 𝐺 = 3, four configurations of 𝒔true are possible

due to subgroup ordinality. Scenario 1 has 𝒔true = (1, 1, 1),
Scenarios 2 and 3 have 𝒔true = (1, 1, 2), Scenarios 4 and
5 have 𝒔true = (1, 2, 2), and Scenarios 6, 7, and 8 have
𝒔true = (1, 2, 3). Due to subgroup–treatment interactions
and the subgroup-specific utility function, the pattern of
true expected utilities across treatments varies with sub-
groups in all scenarios. In Scenario 1, 𝐸2 is optimal for all
subgroups, but the pattern of𝑈true

𝑘,𝑔
varies with 𝑔. In Scenar-

ios 2 and 4–7, because acceptability of the 𝐸𝑘’s and truly
optimal treatments vary by subgroups, subgroup-specific
decision making is critical. In Scenario 2, 𝐸1 is optimal
for subgroups 1 and 2, but 𝐸2 optimal for subgroup 3. In
Scenario 3, no 𝐸𝑘 is acceptable for any subgroup, so the
optimal decision is to stop the trial early and not select
either 𝐸𝑘. In Scenario 4, no 𝐸𝑘’s are acceptable for sub-
group 1, while both 𝐸1 and 𝐸2 are acceptable and 𝐸1 is
optimal for subgroups 2 and 3. In Scenario 8, all 𝐸𝑘’s are
acceptable for all subgroups, and the 𝑈true

𝑘,𝑔
s are very simi-

lar across treatmentswithin each subgroup,with𝐸2 having
slightly higher 𝑈true

𝑘,𝑔
for all 𝑔.

We call the proposed design “Sub.” In the simulation
study, we considered three comparators. “Sep” runs a
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2466 LEE et al.

TABLE 1 Simulation results

Treatment Arms 𝑪 𝑬𝟏 𝑬𝟐 𝑪 𝑬𝟏 𝑬𝟐

Scenario 1 (𝒔true = (1, 1, 1)) Scenario 2 (𝒔true = (1, 1, 2))

𝜋true
T (𝑘, 𝑔) 𝑔 = 1 0.20 0.15 0.15 0.20 0.10 0.15

𝑔 = 2 0.20 0.15 0.15 0.20 0.10 0.15
𝑔 = 3 0.20 0.15 0.15 0.46 0.44 0.25

𝜋true
PD (𝑘, 𝑔) 𝑔 = 1 0.25 0.20 0.10 0.20 0.05 0.15

𝑔 = 2 0.25 0.20 0.10 0.20 0.05 0.15
𝑔 = 3 0.25 0.20 0.10 0.46 0.44 0.34

𝑈true
𝑘,𝑔

𝑔 = 1 65.65 73.77 78.02 69.62

𝑔 = 2 67.96 77.59 81.86 73.02
𝑔 = 3 70.02 80.67 46.40 57.69

𝑝sel
𝑘,𝑔

Sub 𝑔 = 1 0.04 0.05 0.91 0.02 0.88 0.10

𝑔 = 2 0.05 0.06 0.90 0.02 0.89 0.09
𝑔 = 3 0.04 0.09 0.87 0.03 0.22 0.76

Sep 𝑔 = 1 0.19 0.25 0.56 0.08 0.85 0.08
𝑔 = 2 0.19 0.24 0.57 0.07 0.86 0.07
𝑔 = 3 0.18 0.25 0.57 0.11 0.18 0.72

Comb all 𝑔 0.05 0.04 0.92 0.03 0.42 0.55
Eff 𝑔 = 1 0.04 0.10 0.85 0.02 0.84 0.14

𝑔 = 2 0.05 0.11 0.85 0.02 0.84 0.14
𝑔 = 3 0.04 0.12 0.84 0.03 0.25 0.72

𝑝safe
𝑘,𝑔

Sub 𝑔 = 1 0.92 0.94 0.96 0.92

& Eff 𝑔 = 2 0.91 0.94 0.97 0.93
𝑔 = 3 0.91 0.94 0.86 0.94

Sep 𝑔 = 1 0.75 0.61 0.87 0.74
𝑔 = 2 0.75 0.61 0.88 0.74
𝑔 = 3 0.75 0.61 0.69 0.86

Comb all 𝑔 0.89 0.95 0.96 0.96
𝑛trt
𝑘,𝑔

Sub 𝑔 = 1 10.17 9.50 9.93 10.22 9.92 9.54

& Eff 𝑔 = 2 10.13 9.47 9.88 10.40 9.93 9.72
𝑔 = 3 10.03 9.47 9.77 10.08 9.46 9.88

Sep 𝑔 = 1 10.33 8.87 9.79 10.46 9.66 9.12
𝑔 = 2 10.34 8.85 9.80 10.50 9.65 9.19
𝑔 = 3 10.33 8.88 9.81 10.32 8.69 10.13

Comb 𝑔 = 1 8.65 8.08 8.68 8.68 8.29 8.69
𝑔 = 2 10.87 10.69 11.75 10.91 11.08 11.73
𝑔 = 3 9.83 9.49 10.03 9.79 9.86 10.02

(Continues)
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LEE et al. 2467

TABLE 1 (Continued)

Treatment Arms 𝑪 𝑬𝟏 𝑬𝟐 𝑪 𝑬𝟏 𝑬𝟐

Scenario 3 (𝒔true = (1, 1, 2)) Scenario 4 (𝒔true = (1, 2, 2))

𝜋true
T (𝑘, 𝑔) 𝑔 = 1 0.10 0.25 0.30 0.10 0.20 0.25

𝑔 = 2 0.10 0.25 0.30 0.49 0.28 0.58
𝑔 = 3 0.15 0.38 0.44 0.49 0.28 0.58

𝜋true
PD (𝑘, 𝑔) 𝑔 = 1 0.15 0.25 0.20 0.15 0.30 0.30

𝑔 = 2 0.15 0.25 0.20 0.54 0.39 0.44
𝑔 = 3 0.22 0.34 0.32 0.54 0.39 0.44

𝑈true
𝑘,𝑔

𝑔 = 1 58.24 63.44 60.83 59.52

𝑔 = 2 59.90 65.85 54.77 46.66
𝑔 = 3 52.76 55.95 54.04 45.32

𝑝sel
𝑘,𝑔

Sub 𝑔 = 1 0.77 0.10 0.13 0.30 0.56 0.14

𝑔 = 2 0.79 0.09 0.12 0.04 0.91 0.05
𝑔 = 3 0.80 0.11 0.09 0.03 0.87 0.10

Sep 𝑔 = 1 0.70 0.12 0.18 0.63 0.31 0.07
𝑔 = 2 0.73 0.10 0.18 0.09 0.77 0.14
𝑔 = 3 0.82 0.14 0.04 0.09 0.73 0.19

Comb all 𝑔 0.85 0.08 0.06 0.04 0.89 0.07
Eff 𝑔 = 1 0.77 0.10 0.13 0.30 0.50 0.20

𝑔 = 2 0.79 0.09 0.12 0.04 0.74 0.23
𝑔 = 3 0.80 0.10 0.11 0.03 0.74 0.24

𝑝safe
𝑘,𝑔

Sub 𝑔 = 1 0.16 0.14 0.63 0.44

& Eff 𝑔 = 2 0.14 0.12 0.95 0.69
𝑔 = 3 0.16 0.11 0.96 0.69

Sep 𝑔 = 1 0.20 0.19 0.33 0.15
𝑔 = 2 0.15 0.19 0.87 0.71
𝑔 = 3 0.16 0.06 0.88 0.71

Comb all 𝑔 0.11 0.07 0.93 0.69
𝑛trt
𝑘,𝑔

Sub 𝑔 = 1 8.34 7.24 7.09 10.30 9.78 8.50

& Eff 𝑔 = 2 8.14 7.19 7.03 10.51 10.27 8.83
𝑔 = 3 8.07 6.99 6.85 10.54 10.23 8.78

Sep 𝑔 = 1 8.73 7.33 7.69 8.70 7.57 7.22
𝑔 = 2 8.77 7.34 7.75 10.64 9.82 8.77
𝑔 = 3 8.00 6.86 7.04 10.65 9.83 8.76

Comb 𝑔 = 1 7.14 6.37 6.26 9.03 8.75 7.75
𝑔 = 2 8.71 7.45 7.40 11.71 11.62 10.19
𝑔 = 3 7.89 6.99 6.77 10.30 10.31 8.90

(Continues)
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2468 LEE et al.

TABLE 1 (Continued)

Treatment Arms 𝑪 𝑬𝟏 𝑬𝟐 𝑪 𝑬𝟏 𝑬𝟐

Scenario 5 (𝒔true = (1, 2, 2)) Scenario 6 (𝒔true = (1, 2, 3))

𝜋true
T (𝑘, 𝑔) 𝑔 = 1 0.20 0.15 0.15 0.05 0.20 0.15

𝑔 = 2 0.41 0.39 0.22 0.44 0.37 0.44
𝑔 = 3 0.41 0.39 0.22 0.54 0.66 0.68

𝜋true
PD (𝑘, 𝑔) 𝑔 = 1 0.20 0.05 0.15 0.05 0.20 0.20

𝑔 = 2 0.28 0.35 0.18 0.44 0.32 0.46
𝑔 = 3 0.28 0.35 0.18 0.54 0.78 0.70

𝑈true
𝑘,𝑔

𝑔 = 1 79.50 69.62 66.44 66.36

𝑔 = 2 55.26 69.48 57.92 47.89
𝑔 = 3 55.23 71.83 20.13 24.83

𝑝sel
𝑘,𝑔

Sub 𝑔 = 1 0.03 0.71 0.26 0.57 0.23 0.20

𝑔 = 2 0.03 0.04 0.93 0.18 0.65 0.17
𝑔 = 3 0.03 0.05 0.92 0.47 0.23 0.30

Sep 𝑔 = 1 0.20 0.64 0.16 0.72 0.14 0.14
𝑔 = 2 0.09 0.03 0.89 0.12 0.79 0.09
𝑔 = 3 0.08 0.03 0.88 0.69 0.14 0.17

Comb all 𝑔 0.03 0.06 0.92 0.23 0.56 0.22
Eff 𝑔 = 1 0.03 0.71 0.27 0.57 0.22 0.21

𝑔 = 2 0.03 0.13 0.84 0.18 0.59 0.23
𝑔 = 3 0.03 0.12 0.86 0.47 0.22 0.31

𝑝safe
𝑘,𝑔

Sub 𝑔 = 1 0.92 0.93 0.28 0.28

& Eff 𝑔 = 2 0.79 0.96 0.74 0.63
𝑔 = 3 0.78 0.96 0.31 0.38

Sep 𝑔 = 1 0.65 0.74 0.17 0.17
𝑔 = 2 0.51 0.91 0.86 0.70
𝑔 = 3 0.51 0.91 0.19 0.19

Comb all 𝑔 0.90 0.96 0.64 0.56
𝑛trt
𝑘,𝑔

Sub 𝑔 = 1 10.23 9.67 9.78 9.66 8.32 8.06

& Eff 𝑔 = 2 10.45 9.23 10.17 10.20 9.30 8.78
𝑔 = 3 10.34 9.08 10.12 9.82 7.97 8.32

Sep 𝑔 = 1 10.17 9.40 9.11 8.59 6.93 7.57
𝑔 = 2 10.31 8.29 10.29 10.44 9.48 8.89
𝑔 = 3 10.33 8.29 10.29 9.40 7.14 8.17

Comb 𝑔 = 1 8.86 7.89 8.88 8.71 7.64 7.34
𝑔 = 2 11.16 10.41 12.10 11.02 9.76 9.55
𝑔 = 3 10.03 9.31 10.29 9.64 8.90 8.45

(Continues)
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LEE et al. 2469

TABLE 1 (Continued)

Treatment Arms 𝑪 𝑬𝟏 𝑬𝟐 𝑪 𝑬𝟏 𝑬𝟐

Scenario 7 (𝒔true = (1, 2, 3)) Scenario 8 (𝒔true = (1, 2, 3))

𝜋true
T (𝑘, 𝑔) 𝑔 = 1 0.10 0.20 0.20 0.15 0.15 0.10

𝑔 = 2 0.54 0.32 0.61 0.22 0.22 0.15
𝑔 = 3 0.80 0.90 0.70 0.22 0.22 0.15

𝜋true
PD (𝑘, 𝑔) 𝑔 = 1 0.10 0.30 0.30 0.20 0.15 0.20

𝑔 = 2 0.49 0.44 0.54 0.32 0.30 0.32
𝑔 = 3 0.80 0.84 0.68 0.51 0.49 0.51

𝑈true
𝑘,𝑔

𝑔 = 1 63.82 62.84 66.70 68.39

𝑔 = 2 53.76 40.81 58.59 61.27
𝑔 = 3 12.42 26.92 46.19 47.16

𝑝sel
𝑘,𝑔

Sub 𝑔 = 1 0.49 0.32 0.19 0.10 0.29 0.61

𝑔 = 2 0.10 0.73 0.17 0.09 0.34 0.57
𝑔 = 3 0.10 0.14 0.76 0.08 0.39 0.53

Sep 𝑔 = 1 0.86 0.10 0.04 0.15 0.42 0.43
𝑔 = 2 0.12 0.76 0.12 0.25 0.35 0.40
𝑔 = 3 0.15 0.10 0.75 0.29 0.32 0.39

Comb all 𝑔 0.09 0.33 0.58 0.10 0.25 0.65
Eff 𝑔 = 1 0.49 0.27 0.25 0.10 0.34 0.56

𝑔 = 2 0.10 0.53 0.37 0.09 0.32 0.59
𝑔 = 3 0.10 0.16 0.74 0.08 0.32 0.60

𝑝safe
𝑘,𝑔

Sub 𝑔 = 1 0.40 0.34 0.81 0.84

& Eff 𝑔 = 2 0.85 0.72 0.81 0.83
𝑔 = 3 0.60 0.84 0.82 0.84

Sep 𝑔 = 1 0.12 0.06 0.70 0.71
𝑔 = 2 0.85 0.62 0.62 0.62
𝑔 = 3 0.49 0.80 0.61 0.60

Comb all 𝑔 0.79 0.81 0.80 0.83
𝑛trt
𝑘,𝑔

Sub 𝑔 = 1 9.78 8.75 8.24 10.07 9.30 9.30

& Eff 𝑔 = 2 10.28 9.80 8.98 10.30 9.45 9.55
𝑔 = 3 10.38 8.89 9.77 10.15 9.29 9.45

Sep 𝑔 = 1 8.55 7.04 7.39 10.26 8.77 9.36
𝑔 = 2 10.69 9.69 8.67 9.84 8.46 9.26
𝑔 = 3 10.57 7.69 10.28 10.15 8.57 9.36

Comb 𝑔 = 1 8.98 7.99 8.13 8.74 7.99 8.31
𝑔 = 2 11.41 10.47 10.89 11.03 10.52 11.11
𝑔 = 3 10.01 9.48 9.42 9.86 9.39 9.59

Note: 𝑝safe
𝑘,𝑔

= P(declare 𝐸𝑘 safe for subgroup 𝑔), 𝑝sel
𝑘,𝑔

= P(select 𝐸𝑘 as optimal for subgroup 𝑔), 𝑘 = 1, 2, and 𝑝sel
0,𝑔 = P(do not choose any 𝐸𝑘 as optimal in subgroup

𝑔). 𝑛trt
𝑘,𝑔

=mean number of patients treated with 𝑘 in subgroup 𝑔. Values for truly unacceptable and true optimal treatments are given in red italics and blue bold.
This table appears in color in the electronic version of this article, and any mention of color refers to that version.

separate trial for each subgroup, “Comb” ignores patient
subgroups and makes the same decisions for all patients
combined, and “Eff” selects the optimal 𝐸𝑘 in each sub-
group by maximizing the PP probability of PR or CR.
While it may appear that comparison to Eff is unfair, we
include it because most phase II designs and platform

trials are based on one binary efficacy outcome. More-
over, this comparison assesses the benefit of basing each
subgroup-specific treatment selection on utility functions
of (𝑌T, 𝑌R) rather than 𝑌R alone. While Comb and Sep
are simpler than Sub, because they use a utility based
on bivariate ordinal (𝑌T, 𝑌R) both designs still are more
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2470 LEE et al.

sophisticated than most randomized phase II screening
designs used in practice, as described in Section 1. Comb
and Sep are based on the same assumed model used for
Sub, but with the key simplification of (4) that no subgroup
effects are included. Thus, for these designs 𝜇𝑗,𝑘 = 𝜂𝑗,𝑘

with prior 𝜂𝑗,𝑘
𝑖𝑛𝑑𝑒𝑝
∼ N(𝜂′

𝑗
, 𝑤2

𝑗
), where 𝜂′

𝑗
is specified using

the elicited probabilities.
The Sep design runs separate trials in the three sub-

groups, and no information is borrowed between trials.
Since 𝑁max = 90 in Sub, to ensure a fair comparison, each
subgroup-specific trial in Sep has𝑁max = 30 patients, with
an interim analysis performed at 𝑛1 = 15. Since Comb
ignores subgroups, for this design we used 𝑈2(𝒀) as the
commonutility function. Under Comb, (1) if an𝐸𝑘 is found
to be unacceptable thenno later patientwill be treatedwith
𝐸𝑘 regardless of their subgroup, (2) if all 𝐸𝑘’s are identi-
fied as unacceptable then the trial is terminated, and (3)
a treatment is selected as optimal for all subgroups. The
Eff design assumes the same model as Sub, but selects the
optimal treatment for subgroup 𝑔 while ignoring toxicity,
using the probability of CR or PR as the criterion,

𝜏sel(𝑔) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘∈𝐿+1(𝑔)

P(𝑦R = 2 or 3|𝑘, 𝑔,𝑁max
).

We evaluated the designs using the following subgroup-
specific criteria. In subgroup 𝑔,

(1) 𝑝safe
𝑘,𝑔

= probability of declaring 𝐸𝑘 safe compared to 𝐶,
for 𝑘 = 1,… , 𝐾;

(2) 𝑝sel
𝑘,𝑔

= probability of selecting 𝐸𝑘 as optimal, for
𝑘 = 1,… , 𝐾;

(3) 𝑝sel
0,𝑔 = probability of not selecting any 𝐸𝑘 as optimal;

(4) 𝑛trt
𝑘,𝑔

=mean number of patients in subgroup 𝑔 treated
with 𝑘, for 𝑘 = 0, 1, … , 𝐾.

While 𝑝safe
𝑘,𝑔

and 𝑝sel
𝑘,𝑔

vary with 𝑔 under Sub, Sep, and Eff,
they are the same for all 𝑔 under Comb. Since Sub and
Eff are the same except that they use different criteria for
optimal treatment selection, they have the same values of
𝑝safe
𝑘,𝑔

and 𝑛trt
𝑘,𝑔
, but different values of 𝑝sel

𝑘,𝑔
and 𝑝sel

0,𝑔. Index
the simulated trials under each design by 𝑏 = 1,… , 𝐵. For
the 𝑏th trial, let 𝜏(𝑏)

𝑠𝑒𝑙
(𝑔) ∈ {0, 1, … , 𝐾} denote the treatment

selected for subgroup 𝑔, with 𝜏
(𝑏)
𝑠𝑒𝑙

(𝑔) = 0 if no𝐸𝑘 is selected,
𝑤

(𝑏)
𝑘

(𝑔) = 1 if treatment 𝐸𝑘 is identified as safe for sub-
group 𝑔 and 0 if not, and 𝑁(𝑏) the total number of patients
treated. For each scenario and design, we summarized
the simulation results by the following subgroup-specific
sample proportions:

𝑝safe
𝑘,𝑔

=
1

𝐵

𝐵∑
𝑏=1

𝑤
(𝑏)
𝑘

(𝑔), 𝑘 = 1,… , 𝐾,

𝑝sel
𝑘,𝑔

=
1

𝐵

𝐵∑
𝑏=1

(𝜏(𝑏)
𝑠𝑒𝑙

(𝑔) = 𝑘), 𝑘 = 0,… , 𝐾,

𝑛trt
𝑘,𝑔

=
1

𝐵

𝐵∑
𝑏=1

𝑁(𝑏)∑
𝑖=1

(𝜏(𝑏)
𝑖

= 𝑘 and 𝑥
(𝑏)
𝑖

= 𝑔), 𝑘 = 0,… , 𝐾.

5.2 Simulation results

A total of 𝐵 = 1000 trials with 𝑁max = 90 were simulated
under each scenario. The simulation results are summa-
rized in Table 1. Recall that, in subgroup 𝑔, an 𝐸𝑘 with
𝜋true
T (𝑘, 𝑔) > 𝜋true

T (0, 𝑔) or 𝜋true
PD (𝑘, 𝑔) > 𝜋true

PD (0, 𝑔) is truly
unacceptable, and the 𝐸𝑘 with maximum 𝑈true

𝑘,𝑔
is truly

optimal. Larger differences 𝜋true
𝑗

(𝑘, 𝑔) − 𝜋true
𝑗

(0, 𝑔) for 𝑗 =

𝑇 or 𝑃𝐷, or the largest 𝑈true
𝑘,𝑔

minus the second largest, are
more meaningful.
Overall, for each subgroup, the Sub design reliably iden-

tifies 𝐸𝑘 ’s that are either excessively toxic or have low
efficacy compared to 𝐶, with small 𝑝safe

𝑘,𝑔
obtained for truly

unacceptable 𝐸𝑘’s. When either of 𝜋true
T (𝑘, 𝑔) or 𝜋true

PD (𝑘, 𝑔)

for 𝐸𝑘 is substantively larger than the corresponding value
for 𝐶, 𝑝safe

𝑘,𝑔
is particularly small. When 𝐸𝑘 is truly unac-

ceptable for all subgroups, 𝑝safe
𝑘,𝑔

is small for all subgroups,
in part because the model improves reliability by borrow-
ing information across clustered subgroups through 𝛼⋆

𝑗,𝑘,𝑠𝑔
.

For example, under Scenario 3,where all𝐸𝑘’s are unaccept-
able for all subgroups, Sub yields at most 16% for 𝑝safe

𝑘,𝑔
for

all (𝐸𝑘, 𝑔) and selects no 𝐸𝑘 with probabilities 0.77, 0.79,
and 0.80 for the three subgroups. In Scenario 8, where
𝜋true
T (𝑘, 𝑔) − 𝜋true

T (0, 𝑔) or𝜋true
PD (𝑘, 𝑔) − 𝜋true

PD (0, 𝑔) for𝐸𝑘 are
very small or 0, 𝑝safe

𝑘,𝑔
is at least 0.81 for all 𝐸𝑘 and 𝑔.

In Scenario 4, 𝐸1 and 𝐸2 are truly unacceptable in
subgroup 1 but acceptable for subgroups 2 and 3. Sub incor-
rectly identifies those arms as acceptablewith probabilities
0.63 and 0.44 for subgroup 1, but the differences 𝜋true

T (1, 1)

– 𝜋true
T (0, 1) = 0.20 – 0.10= 0.10 and 𝜋true

T (3, 1) – 𝜋true
T (0, 1)

= 0.25 – 0.10 = 0.15 are small, with differences 0.15 for the
corresponding PD probabilities. It is unrealistic to expect
a screening rule with overall 𝑁max = 90 to reliably detect
such small differences in a setting with three treatments
and three subgroups. However, the 𝑝safe

𝑘,𝑔
values 0.63 and

0.44 for 𝑘 = 1 and 2 in subgroup 𝑔 = 1 obtained with𝑁max

= 90 drop to 0.42 and 0.25, respectively, for the larger
sample size 𝑁max = 180 (Supporting Information Table 7),
illustrating that the reliability of the design’s screening
rules increases with sample size.
The Sub design selects truly optimal safe treatments

with high probabilities. When an arm is optimal in more
than one subgroup, 𝑝sel

𝑘,𝑔
is especially high. For example,

in Scenario 1 where 𝐸2 is optimal for all subgroups, Sub

 15410420, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13738 by T
he U

niversity O
f T

exas M
d A

nderson, W
iley O

nline L
ibrary on [12/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LEE et al. 2471

selects 𝐸2 as optimal with probabilities 0.91, 0.90, and 0.87
for subgroups 1, 2, and 3, respectively. In Scenario 2, where
𝐸1 is optimal for subgroups 1 and 2, 𝐸1 is chosen as opti-
mal with probabilities 0.88 and 0.89 for those subgroups.
On the other hand, when a subgroup’s true optimal treat-
ment is different from that of the other subgroups and the
other subgroups have the same optimal treatment arm,
𝑝sel
𝑘,𝑔

is smaller for the subgroup having a different opti-
mal treatment arm. In Scenario 5 where 𝐸1 is truly optimal
for subgroup 1, and 𝐸2 is optimal for subgroups 2 and 3 in
Scenario 5, Sub selects the true optimal 𝐸𝑘 with probabil-
ities 0.71 for subgroup 1, and 0.93 and 0.92 for subgroups
2 and 3. In Scenario 8, although 𝑈true

𝑘,𝑔
is similar for all

treatments in each subgroup, Sub selects 𝐸2 as optimal
with probabilities 0.61, 0.57, and 0.53 for subgroups 1, 2,
and 3.
The mean sample sizes 𝑛trt

𝑘,𝑔
in subgroup 𝑔 show that

the design reliably identifies unacceptable 𝐸𝑘’s during a
trial and assigns fewer patients to truly unacceptable 𝐸𝑘’s,
as seen in Scenarios 3, 4, and 6. When any 𝐸𝑘 is truly
acceptable in those scenarios, more patients were treated
at the truly safe 𝐸𝑘 or 𝐶. Recall that the true values of
the parameters in the simulation setup are arbitrarily spec-
ified and very different from the prior means. Thus, in
terms of all criteria, Sub is robust in that it performs
well in a variety of scenarios not matching any particular
model.
Probabilities of identifying an 𝐸𝑘 as safe and of treat-

ment selection for the comparators, Sep, Comb, and Eff,
also are summarized in Table 1. Sub has greatly supe-
rior performance compared to these comparators, or very
similar performance, in nearly all scenarios. Sep performs
similarly to Sub, or slightly better in some scenarios, for
example, subgroup 1 in Scenario 4, subgroup 2 in Scenario
6, and Scenario 7. In Scenario 7,where not choosing any𝐸𝑘,
choosing 𝐸1, and choosing 𝐸2 are optimal for subgroups
1–3, respectively, Sub chooses them as optimal with prob-
abilities 0.49, 0.73, and 0.76, compared to 0.86, 0.76, and
0.75 with Sep. However, when more than one subgroup
has the same true optimal treatment, Sub often performs
much better than Sep. For example, in Scenario 1, where
𝐸2 is truly optimal for all subgroups, 𝑝sel

𝑔,2 is 0.87 to 0.91
under Sub versus 0.56 to 0.57 under Sep. In Scenario 2,
where 𝐸1 is truly optimal in subgroups 1 and 2, while 𝐸2

as truly optimal in subgroup 3, Sub has 𝑝sel
𝑘,𝑔

of the truly
optimal treatments 0.88, 0.89, and 0.76 versus 0.85, 0.86,
and 0.72 under Sep, for subgroups 1, 2, and 3. Moreover,
when the truly optimal 𝐸𝑘 is not selected, Sub tends to
select the second optimal 𝐸𝑘 more often than Sep. While
Sep is far less reliable than Sub in terms of correct selec-
tion, Sep is safe, as seen in Scenario 3, where Sep selects no
𝐸𝑘 with probabilities 0.70, 0.73, and 0.82 for subgroups 1, 2,
and 3.

Comb behaves very poorly when truly optimal
treatments differ between subgroups. For example, in
Scenario 2, Comb selects 𝐸2 as optimal with probabilities
0.55 for all subgroups, while the true optimal treatment
for subgroups 1 and 2 is 𝐸1. In Scenario 4, all 𝐸𝑘’s are truly
unacceptable for subgroup 1, Comb incorrectly selects 𝐸1

for subgroup 1 with probability 0.89. This because 𝐸1 is
truly optimal for subgroups 2 and 3 and Comb ignores
subgroups. Moreover, 𝐸1 and 𝐸2 are identified as accept-
able with probabilities 0.93 and 0.69 for all subgroups
including subgroup 1, when they are truly unacceptable
for subgroup 1.
Eff performs similarly to Sub in most scenarios, but

in scenarios where true response probabilities are similar
across subgroups and toxicity probabilities are substan-
tively different, the comparative performance of Eff is very
poor. In Scenario 4, the difference𝜋true

PD (2, 𝑔) − 𝜋true
PD (2, 𝑔)=

0.44 − 0.39 = 0.05 for subgroups 2 and 3, but 𝜋true
T (2, 𝑔) =

0.58 versus 𝜋true
T (1, 𝑔) = 0.28. This results in 𝐸1 being truly

optimal by awidemargin for both subgroups. Sub accounts
for the difference in𝜋true

T (𝑘, 𝑔) through the utility function,
with true utilities 54.77 for 𝐸1 versus 46.66 for 𝐸2 in sub-
group 2, and 54.04 for 𝐸1 versus 45.32 for 𝐸2 in subgroup
3. Thus, Sub correctly selects 𝐸1 as optimal with probabil-
ities 0.91 for 𝑔 = 2 and 0.87 for 𝑔 = 3. Because Eff ignores
the much greater toxicity probability of 𝐸2, it incorrectly
selects 𝐸2 as optimal with probability 0.74 in 𝑔 = 2 and in
𝑔 = 3. The extremely poor performance of Eff when some
treatments have unacceptable𝜋𝑡𝑟𝑢𝑒

T (𝑘, 𝑔) shows the advan-
tage of using 𝑈𝑔(𝑌R, 𝑌T), compared to the conventional
practice of using the response rate.
We also examined the effect of increasing 𝑁max to 180,

summarized in Supporting Information Table 3. Sub and
Sep have improved performances in all scenarios, with
smaller differences in 𝑝sel

𝑘,𝑔
, 𝑝safe

𝑘,𝑔
, and 𝑛trt

𝑘,𝑔
. The perfor-

mances of Comb and Eff do not improve with larger𝑁max ,
because they ignore information about either patient
heterogeneity or treatment toxicity.
As an additional comparator, following a reviewer’s sug-

gestion, we included the two-stage phase II trial design
of Conaway and Petroni (1995) (CP), which has a bivari-
ate binary response and toxicity outcome. The CP design
differs from the Sub design in that it (1) is singe arm and
evaluates one experimental treatment, (2) bases decisions
on a test of two-dimensional hypotheses with assumed
fixed null response and toxicity probabilities 𝑝R,0 and 𝑝T,0,
and (3) assumes patient homogeneity. Similar phase II
designs based on response and toxicity are given by Chen
and Chi (2012) and Buzaianu et al. (2022), who also con-
sider multiple 𝐸𝑘’s and apply stochastic curtailment. We
also added an additional scenario, Scenario 9, to show the
effects of differences between the proposed Sub design
and existing phase II designs. The simulations, given in
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Supporting Information SectionE, show that theCPdesign
performs poorly in many scenarios. Ignoring subgroups
causes the CP design to make the same decision for sub-
groups that may have very different treatment effects.
Additionally, the CP design’s assumed fixed (𝑝R,0, 𝑝T,0),
used as a basis for treatment evaluation in the test of
hypotheses, may differ substantially from the empirical
probabilities seen in the control arm used as comparator
by the Sub design. These limitations also exist for the other
phase II designs noted above.

6 DISCUSSION

The Sub design is necessarily complex because it evaluates
multiple treatments, accounts for subgroup effects, does
subgroup-specific screening and selection, and does adap-
tive subgroup clustering. Advantages of this complexity are
shown by the simulations. Across nine scenarios, the Sub
design is generally superior to all competitors considered,
and greatly superior in many cases. The subjectivity of the
utility function values is an advantage of themethod, since
the utility makes risk–benefit trade-offs explicit and pro-
vides a basis for including both good and bad outcomes in
the selection criterion.
Practical requirements of the Sub design include elicit-

ing subgroup-specific utilities and many prior parameters,
specifying complex simulation scenarios, and doing simu-
lations to calibrate prior hyperparameters and determine
feasible 𝑁max , 𝐾, and 𝐺 that give a design with good
OCs. The Sub design replaces𝐾𝐺 conventional single-arm
phase II trials, one for each (𝑘, 𝑔) combination, or 𝐾 con-
ventional trials if heterogeneity is ignored. Thus, while
𝑁max = 90 or 180 may seem large, for the mRCC trial
Sub replaces three to nine conventional trials. Once the
computer program for applying the screening and selec-
tion rules is in place, trial conduct is similar to that of a
conventional randomized multiarm trial.
The Sub design might be generalized to allow new

𝐸𝑘 ’s to be introduced interimly. While such an extension
might be logistically convenient, the design would need to
account for biasing effects due comparing nonconcurrent
treatment arms, as discussed by Karrison et al. (2003) and
illustrated by Freidlin and Korn (2021).
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