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SUMMARY. In addition to their desired anticancer effects, most cancer treatments may also cause transient 
toxicity, permanent organ damage, or death. A critical question in comparing an experimental treatment to 
a standard is haw much increase in an adverse event rate is an acceptable trade-off for achieving a targeted 
improvement in efficacy, or vice versa. We consider settings where one may characterize patient outcome 
as a bivariate (efficacy, safety) variable and quantify treatment effect as a corresponding two-dimensional 
parameter. A set of target parameters, each representing a clinically meaningful improvement over the 
standard, are elicited from the physician. Each target is a two-dimensional generalization of the usual one- 
dimensional shift parameter. We define the alternative hypothesis in the two-dimensional effect space as 
the convex hull of the sets of parameters that are at least as desirable as each target point. The rejection 
region is obtained by shifting the alternative toward (0,O) to achieve a given type I error, with sample size 
computed to achieve a given power at the targets. The method is illustrated by application to two cancer 
chemotherapy trials. 
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1. Introduction 
An inherent problem in cancer therapeutics is that, in addi- 
tion to their desired anticancer effects, treatments may also 
cause transient toxicity, permanent organ damage, or death. 
In many oncology trials, an experimental treatment may have 
not only a greater efficacy than the standard therapy but also 
a higher adverse event rate. For example, a higher chemother- 
apy dose for treatment of soft tissue sarcoma increases the 
probabilities of both tumor shrinkage and life-threatening 
toxic effects on the kidneys and nervous system. In chemother- 
apy of acute leukemia, the first goal is to achieve complete 
remission (CR), as this is a necessary precursor to long-term 
survival. Unfortunately, experimental treatments for leukemia 
often increase the rates of both CR and myelosuppression. Al- 
logeneic bone marrow or peripheral blood stem cell transplan- 
tation, in which cells from a matched donor are infused into 
the patient, carries the risk of graft-versus-host disease, which 
may be fatal. Because the brain is thought to be a site of lung 
cancer metastasis, prophylactic irradiation of the brain may 
be prescribed for certain lung cancer patients. In this case, 
loss of brain function may be the price paid for a decreased 
risk of brain cancer. 

Each of these examples illustrates the antagonistic relation- 
ship between efficacy and safety in cancer therapeutics. If the 

primary goal of a clinical trial is to improve efficacy by some 
targeted amount, then a critical question is how much of an 
increase in the risk of a severe adverse event is an acceptable 
trade-off for achieving the targeted improvement in effcacy. 
The analogous question is how much drop in efficacy, if any, 
is acceptable to achieve a targeted improvement in safety. 

In this paper, we address these considerations by formii- 
latiiig hypotheses in terms of a multidimensional parameter 
characterizing efficacy and safety outcomes together, rather 
than regarding one as the primary endpoint and the other as 
the secondary. We consider a class of testing problems moti- 
vated by comparative clinical trials where the patient outconie 
can be characterized by a bivariate (efficacy, safety) variable 
and specific clinical goals can be quantified in terms of a two- 
dimensional treatment effect parameter A = (Al ,  Az), where 
A1 accounts for efficacy and A2 for safety. We propose a ge- 
ometric method for constructing two-sample tests tailored to 
these clinical goals. This method first requires the specifica- 
tion of a set of target points (1, . . . , ( K  in A-space that con- 
stitute clinically meaningful improvements over the null hy- 
pothesis 0 = (0,O).  The target points are elicited from the 
physician. Each ( is a two-dimensional generalization of the 
usual one-dimensional shift used to construct tests based on 
a single parameter. We define the alternative hypothesis in 
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this t’wo-dimensional effect space to be the convex hull of the 
sets of A that are at least as desirable as the target points. 
The rejection region of the test, defined in terms of a consis- 
tent estimator A of A, is obtained by shifting the boundary 
of the alternative toward 0 to achieve a given type I error. 
Sample size is computed similarly to the usual method for 
achieving a given power, with the important difference being 
that here the power figures at all K-targeted alternatives are 
considered. 

In recent years, there have been many proposals for con- 
structing tests based on multiple outcomes in clinical trials 
(O’Brien, 1984; Wei and Lachin, 1984; Pocock, Geller, and 
Tsiatis, 1987; Tang, Gnecco, and Geller, 1989; Wei, Lin, and 
Weissfeld, 1989; Wei, Su, and Lachin, 1990; Su and Lachin, 
1992). Tests based on the consideration of the two-dimensional 
structure of the space of parameters characterizing safety and 
efficacy have been proposed by Jennison and Turnbull (1993) 
for randomized trials and, for single-arm phase I1 trials, by 
Bryant and Day (1995) and Conaway and Petroni (1995, 
1996). We are similarly motivated by the geometry of the 
two-dimensional parameter space. Cook and Farewell (1994) 
and Cook (1994, 1996) dealt with the sequential testing prob- 
lem for safety and efficacy by defining bivariate error spend- 
ing functions, thereby extending the fundamental idea of Lan 
and DeMets (1983). Williams (1996) addressed the sequen- 
tial monitoring problem in the case of multiple time-to-event 
outcomes. A general approach to group-sequential trials ac- 
commodating multivariate outcomes and covariates has been 
given by Jennison and Turnbull (1997). 

The remainder of the paper is organized as follows. In Sec- 
tion 2 ,  we formally define the proposed method. Numerical 
computation is discussed in Section 3. Section 4 presents two 
illustrative applications. We close with a discussion in Sec- 
tion 5 .  

2. Constructing Two-Dimensional Tests 
Let T and C index the experimental treatment and the stan- 
dard control, respectively, and let Y1 and Y2 denote the effi- 
cacy and safety outcomes, respectively. Our method requires 
the specification of a two-dimensional treatment effect pa- 
rameter A = (Al ,  A2) such that A, and A2 are real-valued 
T-versus-C efficacy and safety effects, respectively, with 0 = 
(0,O) the null point corresponding to no treatment difference. 
Thus, positive values of A1 and A2 correspond to superior ef- 
ficacy and superior safety, respectively, with T compared with 
C ,  whereas negative values correspond to superiority of C over 
T. If the average behavior of Y = (Yl, Y2) under treatment i is 
characterized by the parameter 8, = (8 i , l ,  0 ~ )  for i = T,  C, 
then one may define the effects as AJ = g ( @ ~ , j )  - g(8c.j) 
for j = 1,2 ,  for an appropriate transformation g. For the bi- 
variate binary Y, where 8 i , ~  = Pr(Yt,j = l), g may be the 
identity function, the variance stabilizing transformation g(0) 
= or a link function such as the logit, probit, or 
complementary log-log. Nonnegative-valued Yj ’s may moti- 
vate the use of A j  = l 0 g ( 8 ~ , ~ )  - log(Qc,j), with 8i, j  the mean 
or median of YJ under treatment i or the more general pa- 
rameter A j  = Pr(Yc,j < Y - - - , j )  - Pr(YT,j < Yc,~) ,  which is 
defined without reference to any intermediate 8j ’s. 

Our aim is to construct one-sided tests of whether T is 
superior to C that quantify specific clinical goals in terms 
of both the efficacy effect A1 and the safety effect Az. Our 

construction of the alternative hypothesis 51, C R2 first re- 
quires the specification of one or more target parameters < 
= ((I,&), with the requirement that at least one entry of 
each target < is positive. The relationship between each 6 and 
(0,O) here is a two-dimensional generalization of that in the 
one-parameter case between a targeted improvement ( > 0, 
where the test’s power is computed, and the null effect, 0. We 
will refer to a target parameter for which either (1 > 0 > ( 2  

or (1 < 0 < ( 2  as a trade-off  target. In the first case, the drop 
(2  in safety is the trade-off for the improvement ( 1  in efficacy. 
In the second case, the drop (1 in efficacy is the trade-off for 
the improvement ( 2  in safety. A more optimistic target spec- 
ifies either an improvement in efficacy with no drop in safety, 
specifically (1 > 0 = ( 2 ,  or an improvement in safety with no 
drop in efficacy, given by (1 = 0 < (2. The most optimistic 
type of target has both (1 > 0 and ( 2  > 0. In practice, the 
targets are elicited from the physician so that they quantify 
the clinical goals of the trial. We have found it most natu- 
ral to elicit the targets in terms of parameters with which 
the physician is familiar, such as Pr(Y, = 1) in the binary 
outcome case or median(Yj) for time-to-event outcomes, and 
to then transform them to real-valued ([I, [z) ,  as described 
earlier for mathematical convenience. 

Given the targets 61,. . . , <K,  we construct the alternative 
51, as follows. For each k = 1,. . . , K ,  define the set A(&) = 
{A : 2 <k, l  and A2 2 ( k , ~ }  of points that are at least as 
desirable as <k.  The alternative R, is then defined to be the 
convex hull of UF==, A(&). That is, we require that if A1 and 
A2 are desirable alternatives, then so is AAl + (1 - A)Az for 
each 0 < A < 1. If one or more of the <k’s is already inside 
the convex hull defined by the other target points, then any 
such <k’S are superfluous and may be dropped for simplicity 
without altering &. In most applications, K = 1, 2, or 3. The 
targets must be defined so that the null (0,O) is outside a,; 
otherwise, the construction makes no sense. The boundary 
30, of 51, is a polygonal line with the &’s at its vertices, 
illustrated by the solid line in Figure 1. 

We construct a test of 0, versus (0,O) as follows. Assume 
that a consistent estimator A of A is available and that, for 
a trial with 2n patients randomized equally between T and 

,-. 

Figure 1. 
sign 1 for the trial of ifosfamide in soft tissue sarcoma. 

Alternative hypothesis and test boundary of De- 
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C ,  (2n)1/z(Z - A) is asymptotically bivariate normal with 
mean (0,O) and covariance matrix C, denoted (2n)'/'(A - 
A) -- A N ( 0 ,  C). Also assume that a consistent estima- 
tor C of C is available. The test is defined in terms of A. 
The rejection region is obtained by shifting f i a  the necessary 
distance toward (0,O) along the 45' line {A : A1 = &}, 
given by the dotted line in Figure 1, to achieve a specified 
type I error probability a. Formally, the rejection region is 
R(ca) = Ra - (ca, c a ) ,  where c ,  is the largest value such that 
Pr{A f R(ca) I A = 0) 5 a. The test accepts Ra and con- 
cludes that T is superior to C if E R(ca). Note that the null 
hypothesis may be defined as {A : A j  5 0 , j  = 1,2} with- 
out altering the test. The boundary of the rejection region is 
illustrat,ed by the dashed line in Figure 1. 

To verify that the power function 4(A) = Pr{A E R(ca) 1 
A} of the test is nondecreasing in each of its two arguments, 
we proceed similarly to Jennison and Turnbull (1993) by first 
defining the standardized variables Zj = (A, - AJ)/Zj, j = 
1,2,  where a; = var(Aj). Thus, (21,Zz)  is approximately 
bivariate normal with standard normal marginals. Denote the 
boundary of R(ca) by dR(c,). It follows from the definitions 
of Ra and R(cCY) that, for any correlation between 21 and 2 2 ,  

4(A) = Pr{3 ( d l , d 2 )  E aR(cCY) 3 sj >_ d j ,  j = 1 , 2  I A} 
= Pr{3 (d1,dz)  E aR(c,) 3 Zj 2 (d j  - Aj ) /a j ,  j = 1,2} 
is nondecreasing in each A,. Because, in general, +(el), . . . , 
$(&) may take on different values, in practice, the sample 
size 2n may be chosen either to achieve a desired power 4* at a 
particular target <k or to ensure that minl<k<K 4(&) 1 q5*. 
We have found it useful to collaborate w i t h  the physician 
when examining 4(<1), . . . , $(&) over a range of n, so that 
61, . . . , may be appropriately modified to obtain a realistic 
test and sample size. 

Two common clinical trial settings where the method may 
be applied are those where both entries of Y are either binary 
or nonnegative valued. In the binary case, Y1 is the indicator 
of the efficacy event, such as 250% tumor shrinkage, whereas 
Y2 indicates that the adverse event, such as toxicity, did not 
occur. An important special case is when the occurrence of 
both the efficacy and adverse events is impossible, such as 
when the adverse event is death. Hence, there are three pos- 
sible patient outcomes rather than four. The second setting 
typically arises when Y1 is the time to relapse or death, sub- 
ject to the usual independent right censoring, and Yz quan- 
tifies safety or quality of life. For example, if the treatment 
is known to cause damage to a specific organ, Y2 might be a 
quantitative index of organ function. The distribution theory 
for these data structures is given in the Appendix. 

3. Computation 
For convenience and simplicity, we illustrate the method in the 
case of bivariate binary outcomes with the effects defined as 
A j  = sin-1(OT,j)1/2 -sin-1(Oc,j)1/2 for j = 1,2,  to stabilize 
the binomial variances. To facilitate presentation, we discuss 
parameter and trade-off values in the probability domain- 
as we do when communicating with physicians while devel- 
oping a design-with the targets denoted by p1, . . . , PK to 
avoid confusing them with their corresponding transformed 
values (1,. . . , ( K .  As noted in the Appendix, in this case, 
(an) '/'(A - A) is asymptotically bivariate normal with mean 
0, both variances 1, and correlation PA = ( p c  + pr ) /2 ,  where 

h 

h 

p c  and pr are the respective correlations between Y1 and Yz 
under treatments C and T.  Given the null probability Bc, pc:, 
the targets p1,.  . . , p ~ ,  and the sample size 2n, the rejection 
region R(c,) is uniquely determined by the type I error a, 
as Pr{A E R(c,) 1 A = 0) is monotonically increasing in a. 
Thus, R(ca) is easily obtained from a monotone search in c. 

In general, the power function +(A) depends on A, n, 
and the correlation PA. Thus, given R(ca)  and n, to com- 
pute q$([k) for k = 1 , .  . . , K ,  a value of pa must be chosen 
at each &. Although the intuitive choice PA = p c  = p~ for 
all .$k might seem reasonable, in general, for given marginal 
probabilities ( & I ,  BQ) for i = T ,  C, not all values of PA in 
[-1, 11 are feasible. We thus chose to characterize association 
in terms of a common odds ratio $ = $c = $ T ,  as this may 
be carried out for all 8c and 8~ corresponding to a consis-. 
tent probability distribution on the 2 x 2 table of outcomes. 
Therefore, PA generally varies with A, with the provision that 
PA = 0 if 11, = 1. 

All numerical calculations were carried out in S-plus on ii 
Sun SPARC Station 20. We used the ACM Transactions on 
Mathematical Software Fortran algorithms 706 (Berntsen and 
Espelid, 1992) and 725 (Drezner, 1993) to compute approxi- 
mations to bivariate normal probabilities, defined as integrals 
over convex sets obtained as unions of rectangles and trian- 
gles. Given a,  the sample size 2n, the null OC, the targets 
p1,. . . , p ~ ,  and a common odds ratio $, the S-plus program 
computes the rejection region R(ca) ,  the correlations p ( & ) ,  
and the power figures 4(&) for each k = 1,. . . , K .  The sample 
size is then sequentially modified until minl<k<K $(&) 2 $* 
for a desired power 4* . Computations for thecase of nonnega- 
tive-valued outcomes are carried out similarly, based on the 
parameterization and distribution theory discussed in the Ap- 
pendix. 

4. Illustrations 
4.1 Higher Ifosfamide Dose for Soft Tissue Sarcoma 
A standard chemotherapeutic regimen for untreated meta- 
static soft tissue sarcoma is 10 g/m2 of ifosfamide. This 
dose not only achieves 250% tumor shrinkage, the efficacy 
outcome, in 20% of patients, but it also causes life-threatening 
(grade 3 or 4) nephrotoxicity or neurotoxicity in 5% of 
patients. Thus, by denoting the indicators of the efficacy 
outcome by Yl and the absence of both of these toxicities 
by Y2, E(YC,1, Y ~ J )  = ( B c , l , O ~ , 2 )  = (.20,.95) under this 
standard treatment. The clinician indicated that these efficacy 
and toxicity events occur independently; hence, 11, = 1. It 
was hypothesized that by increasing the dose to 16 g/m2, the 
experimental treatment might improve O C , ~  without causing 
too much of a decrease in O c , Z .  Specifically, the three target 
points p1 = (.50,.85), p 2  = (.40,.90), and p3 = (.35,.95) 
were specified by the clinician. The first target, p1, allows 
a drop of 62 = -.lo in safety as a trade-off for an increase 
of 61 = .30 in efficacy, p2 targets the smaller increments 
62 = -.05 and 61 = .20, and p3 targets the smallest clinically 
meaningful improvement 61 = .15, for which no drop in safety 
is acceptable (62 = 0). This is summarized in Table 1 as Design 
1, which requires a sample size of 2n = 226 to achieve size 
.05 and power .80. The alternative determined by these three 
targets is illustrated in Figure 1. 

h 
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Table 1 
Three designs for the trial of 

ifosfamide an soft tissue sarcomaa 

Design 6 = (sl,sz) ec + 6 6 k  2n 

1 p1 (0.30, -0.10) (0.50, 0.85) (0.322, -0.172) 226 
p2 (0.20, -0.05) (0.40, 0.90) (0.221, -0.096) 
p3 (0.15, 0) (0.35, 0.95) (0.169, 0) 

2 p1 (0.30, -0.15) (0.50, 0.80) (0.322, -0.238) 232 
p2 (0.20, -0.10) (0.40, 0.85) (0.221, -0.172) 
p3 (0.15, -0.05) (0.35, 0.90) (0.169, -0.096) 

3 p1 (0.30, -0.10) (0.50, 0.85) (0.322, -0.172) 486 
p2 (0.20, -0.05) (0.40, 0.90) (0.221, -0.096) 
p3 (0.10, 0) (0.30, 0.95) (0.116, 0) 

Table 2 
FOW designs for the trial of gemcy wersus ara-C in AML" 

Design 6 = ( w 2 )  ec + 6 E k  2n 

p2 (0, 0.25) (0.70, 0.87) (0, 0.295) 
1 PI (0.20, -0.05) (0.90, 0.57) (0.258, -0.051) 334 

2 p1 (0.20, -0.05) (0.90, 0.57) (0.258, -0.051) 436 
p2 (0, 0.20) (0.70, 0.82) (0 ,  0.226) 

3 p1 (0.20, -0.05) (0.90, 0.57) (0.258, -0.051) 744 
p 2  (0.10, 0) (0.80, 0.62) (0.116, 0) 
ps (0, 0.25) (0.70, 0.87) (0, 0.295) 

4 pi (0.20, 0.05) (0.90, 0.67) (0.258, 0.052) 240 
p 2  (0.05, 0.20) (0.75, 0.82) (0.056, 0.226) 

~ ~~ 

a(Bc,l,B~,2) = (.20, .95) and (k,j = sin-l(BC,j + 6 j ) 1 / 2  - 
sin-' ( Q c . ~ ) ' / ~  for the kth target, for j = 1 , 2 .  

A number of other possible designs were also considered, 
two of which are summarized in Table 1 as Designs 2 and 
3. Under Design 2, each slippage 62 in safety is .05 larger 
than the corresponding value under Design 1. This difference, 
however, has a trivial effect on the sample size. In contrast, 
although the only difference between Designs 3 and 1 is that 
the efficacy component p s , ~  of p3 is .05 closer to 0, this more 
than doubles the sample size. 

4.2 Chemotherapy of Acute Leukemza 
Our second illustration arises from an experimental trial 
of the combination chemotherapy gemcitabine + cyclo- 
phosphamide (gemcy) versus the standard of cytosine 
arabinoside (ara-C)-based regimens for treatment of good- 
prognosis acute myelogenous leukemia (AML) or myelodys- 
plastic syndrome patients. The efficacy outcome was the 
indicator Y1 that the patient achieved CR, whereas "toxicity" 
was the event that the patient either died or suffered severe 
myelosuppression during the first 5 weeks. Thus, Y2 was the 
indicator of no toxicity. The historical probabilities of these 
events with ara-C-based treatments were B c , ~  = .70 and B c , ~  
= .62, with the odds ratio +c = 3.05. The positive association 
between Y1 and Y2 may be expressed in more clinical terms 
by the fact that the CR rate was higher among patients not 
experiencing toxicity, specifically Pr(Yc,l = 1 I Y c , ~  = 1) = 
,790, whereas Pr(Yc%l = 1 I Y c , ~  = 0) = ,553. 

Four possible designs, summarized in Table 2 and 
illustrated in Figure 2, were considered for this trial. All 
tabulated sample sizes correspond to a = .05 and $* = .80. 
In Design 1, pz targets a .25 increase in B c , ~  from .62 to 
.87, equivalent to a drop in toxicity probability from .38 to 
.13, with no change in efficacy. The other target, p1, allows 
a drop of .05 in safety as a trade-off for an increase of .20 in 
efficacy. Design 2 differs from Design 1 only in that p2 ,2  = 
.20 rather than .25; this increases the sample size from 334 to 
436. Design 3 differs from Design 1 in that an additional third 
target is specified. This has the effect of greatly increasing the 
sample size, from 334 to 744, because the additional target is 
much closer to 0,  as shown in Figure 2. Each of the Designs, 
1, 2, and 3, specifies an alternative in which no drop in 

efficacy is desirable, regardless of how safe the experimental 
treatment might be. Similarly, each of these designs allows 
at most a small drop in safety, regardless of efficacy. In our 
experience constructing this type of design to compare an 
experimental cancer treatment with an established standard 
regimen, we have found that oncologists often place such 
absolute lower limits on efficacy, safety, or both. This attitude 
reflects the fact that either failing to achieve the efficacy 
outcome or experiencing the adverse outcome may have severe 
consequences for the patient. Design 4 is the most optimistic, 
in that each of its two targets specifies an improvement in both 
efficacy and safety. These four designs illustrate the general 

Figure 2. 
gemcy versus ara-C trial in AML. 

Alternative hypotheses of four designs for the 
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phenomenon that alternatives that are closer to (0,O) require 
larger sample sizes. Specifically, if two alternatives are nested 
such that Ral c Oa2, then the test based on R2,2 requires 
a larger sample size. Thus, the sample size for Design 3 is 
larger than that for Design 1 because O,1 C Oa3. Moreover, 
the increase is very large because Ra3 is much closer to (0,O). 
This is because the power 4 ( [ )  at each target E is the volume 
of a bivariate normal distribution with mean 6 that is over 
the two-dimensional rejection region Ra - (ca,ccy), and we 
determine the sample size to ensure 4(E) 2 .80 at all specified 
targets. 

To examine the sensitivity of the method to association 
between Yl and Y2, we computed the sample size for Design 
1 for a range of hypothetical $C values different from the 
actual null value ?i,c = 3.05. Given the marginals O C , ~  and 
ec,z, fixing $c is equivalent to fixing n c , 1 1  = Pr(Yc , l  = 
1 and Y c , ~  = I). Values of T C . ~ ~ ,  the corresponding $c, and 
the sample size are given in Table 3. We obtained the range 
.32 5 n c . 1 1  5 .62 in Table 3 by first fixing the marginal 
probabilities at their null values O C , ~  = .70 and O C , ~  = .62. 
A practical implication of Table 3 is that the design with 2n 
= 334 has less than the nominal power to detect alternatives 
with + > 3.05, or with rc,11 > 0.49, and greater than the 
nominal power to detect alternatives with + < 3.05. Given a 
desirable alternative (OT,1, Or,z) E R,, larger values of n ~ , 1 1  
are of course more desirable. Thus, if the clinician wishes to 
specify not only the two-dimensional target points but also 
the magnitude of the third parameter, n ~ , 1 1 ,  then the sample 
size may be determined to achieve a given power for this 
three-dimensional alternative. We have used the null value 
+c in computations given in Tables 1 and 2 as a reasonable 
compromise. 

4.3 Comparison to One-Dzmensional Tests 
An important practical issue is how the sample size required 
to conduct a test under this two-dimensional formulation 
compares with what might be required by a more conventional 
one-sided test formulated if one of the two outcomes is 
ignored. In the ifosfamide trial, if safety is ignored and a usual 
one-sided .05-level test of 8 ~ 7 , ~  = Oc,1 versus O T , ~  > B c . 1  
is conducted based on Y 1 ,  sample sizes of 2n = 60, 128, 
216, or 460 are required to achieve power .80 at alternatives 
&.,1 = .50, .40, .35 ,  or .30, respectively. Some care must 
be taken while making such comparisons, however, as they 
may not always be appropriate. Although each target ( is 
meaningful as a two-dimensional alternative compared with 
(0,0), projecting a given E onto one of the two one-dimensional 
subspaces may not be meaningful. For example, in Design 1 
of the gemcy trial, if the lower-right target ( 1  = (.258,-,051) 
is projected onto its second component and this is used as 
the alternative point for constructing a test of A2 = 0 versus 
A2 < 0 based on Y2 alone, then the required sample size for 
a .05-level test with power .80 at  [ l , ~  = -.051 is 2n = 2382. 

This is a consequence of the fact that, although (.258,-,051) 
is a reasonable two-dimensional alternative to (0,0), its second 
component is so close to 0 that, if considered alone, it is not 
a practically meaningful alternative to 0 in the A2 subspace. 
The point is that this two-dimensional target is determined 
by allowing a small drop in safety as a trade-off for a large 
improvement in efficacy, and thus considering one entry of 
without the other destroys this essential feature. Similarly, if 
one ignores safety and constructs a one-dimensional test of 
A1 = 0 versus A1 > 0 to achieve power .80 at 41.1 = .258 
based on Y 1  alone, this requires only 2n = 94 patients. Thus, 
although it may be the case that one entry of a given target is 
a meaningful alternative to 0 in its one-dimensional subspace, 
this will not always be the case. The simplest illustration of 
this phenomenon is a target having one of its two entries equal 
to 0. 

5. Discussion 
The primary goal of our proposed method is to construct 
comparative tests aimed at alternatives that explicitly 
quantify both efficacy and safety. We find this preferable 
to  the common practice of basing a formal test on efficacy 
alone while informally monitoring adverse events. The method 
relies on eliciting the two-dimensional target alternatives from 
the physician. We have found that oncologists are quite 
comfortable designing trials this way because it conforms 
quite naturally to their clinical perspective. 

In rapidly fatal diseases, a central issue in specifying the 
targets is the extent to which failure to achieve the efficacy 
outcome is associated with early mortality. In acute leukemia, 
a patient who fails to achieve CR with the first treatment 
regimen is much less likely to achieve CR with a second 
treatment, and hence is more likely to die sooner. In other 
cancers, failure to achieve a response may not have such 
severe consequences in that a second round of treatment 
may be nearly as likely as the first to produce a remission. 
Thus, a higher risk of a severe adverse outcome is more 
likely to be considered an acceptable trade-off for a given 
improvement in efficacy in trials of rapidly fatal diseases. This 
general consideration will be reflected in the way the physician 
specifies the targets. 

To apply the method in settings with nonnegative-valued 
outcomes Yi = ( Y , , , , y Z , 2 )  for i = T , C ,  if the effects 
are defined as Aj = Pr(Yc,j 5 Y T , ~ )  - Pr(YT.j 5 Y c . j ) ,  
as suggested in Section 2 and discussed in the Appendix, 
given the distribution theory for A, the main practical issue 
is eliciting the targets. Depending upon the domain with 
which the physician is most comfortable, this may be done 
directly in terms of probabilities that determine the Aj’s or, 
alternatively, assuming a Weibull distribution Pr(Y,,J > z) = 
exp[ - (~ /Ai , j )~J ]  for each j with common shape parameter ~j 

- - T T , ~  = rc.j, the effects are given by A j  = - A&)/ 

Table 3 
Effect of association on sample size in Design 1 for the AML trial 

TrC:ll 0.62 0.57 0.53 0.49 0.45 0.410 0.370 0.32 
$C 00 21.90 7.27 3.05 1.38 0.606 0.224 0 
2n 412 386 360 334 306 276 244 200 
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+ A&)  If the targets are elicited in terms of me- 
dians f i ~ , ~  and f i ~ , ~ ,  then A3 may be obtained from the equal- 

In certain applications, the test may be derived by moving 
the alternative toward (0,O) in a manner slightly different from 
moving it along the 45’ line. If Cl, is defined in such a way that 
there exists a line L(C1, &)l through (0,O) that is orthogonal 
to a line L((1, &) on the boundary of Cla connecting the two 
target points (1 and ( 2 ,  then a test may be defined by moving 
0, toward 0 along L(&, &)l. Formally, the rejection region 
for this test is R = Rn - (ca,l,ca.z), where (ca,l,ca,z) lies 
on L ( ~ I , & ) ~  and ( ~ 2 , ~  + C Z , ~ ) ~ / ’  is the largest value such 
that P r { i  E R I A = 0) 5 a. Although this construction is 
not possible for the ifosfamide trial, it may be applied to the 
alternatives in Designs 1, 2, or 4 of the gemcy trial, for which 
the respective sample sizes are 370, 444, and 252. Each of 
these values is larger than the corresponding value in Table 2, 
although the difference is nontrivial only for Design 1, where 
an additional 36 patients would be required. 

A class of trade-off alternatives that cannot be accommo- 
dated by our procedure is illustrated by the following hypo- 
thetical case, suggested by a referee as a reasonable possibility 
that might arise in practice. Suppose that the clinician spec- 
ifies the two target points ( 1  = (1,-2), an improvement of 1 
unit in efficacy with a drop of 2 units in safety to achieve it, 
and (2 = (-1,2), an improvement of 2 units in safety with a 
drop of 1 unit in efficacy. Because the null hypothesis (0,O) is 
on the line connecting these two targets, i.e., on the bound- 
ary of the convex hull Clu of A((1) U A(&), it is impossible to 
construct the test. Similarly, the slight modification obtained 
by specifying (1 = (1,-2.1) produces an alternative hypoth- 
esis with (0,O) in its interior. A similar situation may arise if 
the clinician either has limited knowledge of the mechanism 
whereby T may provide an improvement over C or is sim- 
ply being optimistic. In general, such settings may be accom- 
modated by defining the alternative to be 0: = UF=(=l A(&) 
rather than the convex hull Ra of 0:. We have not examined 
the behavior of tests based on Rg here because we have not yet 
encountered an application of the type hypothesized above. 
However, if this second approach is used to construct an al- 
ternative 0: based on the three targets given in the case of 
Design 1 for the ifosfamide trial (Table 1), then the resulting 
sample size would be 246, as compared with 226 when Cla is 
the alternative. Although the alternative certainly should in- 
clude A(<) for each specified target (, whether the additional 
points contained in R,, but not in f ig ,  should be included in 
the alternative is both a philosophical and a practical issue. 
The use of 0, is based on the belief that all convex combina- 
tions of desirable alternatives should also be included in the 
set of alternatives, whereas the use of 0: accommodates a 
broader class of problems. 

Given that safety is an essential consideration, it follows 
that the trial design must accommodate situations where T 
either has unacceptably low efficacy or is unsafe compared 
with C. A group-sequential design with early termination and 
acceptance of the null hypothesis in either of these cases pro- 
vides an additional level of safety. It may also be desirable to 
stop the trial early with the rejection of the null hypothesis 
when there is strong evidence that A E Ra. This motivates 
a group-sequential trial in which the three possible interim 

ity AT3 = - 7 3  
%Ll k,J log(2). 

decisions are to stop and reject R,, stop and accept R,, or 
continue to the next stage, with either acceptance or rejec- 
tion of R, at the end. It seems reasonable that such a group- 
sequential version of the test may be constructed using the 
general theory of Jennison and Turnbull (1997). We are cur- 
rently developing a group-sequential version of the procedure. 

As noted in the analysis of the gemcy trial design’s sensi- 
tivity to $c, a more general approach to the bivariate binary 
case would be to specify the three-dimensional alternatives in 
terms of ( @ l , @ z ,  ~ 1 1 ) .  A simple way to do this would be to first 
construct the 2 x 2 table of null probabilities, then elicit the 
marginals of the target, and then ask the physician to specify 
how the four null probabilities should be adjusted to obtain 
the targeted marginals. This approach may prove useful in 
settings where a physician has a causal explanation for how 
an  experimental treatment should affect the four elementary 
outcome probabilities. 
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RE SUM^ 
En plus de leur effet sur la maladie, la plupart des traitements 
du cancer provoquent des effets indksirables, comme des toxi- 
ciths, des dommages irrkparables sur certains organes ou des 
d k c h  Un des problemes majeurs dans la comparaison d’un 
nouveau traitement avec un traitement standard est de savoir 
dans quelle mesure l’augmentation d’effets indhsirables est ac- 
ceptable en regard d’une certaine amklioration de I’efficacitk. 
Nous considkrons comme critkre de jugement la variable bi- 
dimensionnelle (efficacitk, tolbrance) et nous quantifions l’effet 
du traitement par un parametre en deux dimensions. Un en- 
semble de valeurs cibles pour ce parametre est dkfini par les 
cliniciens, ces valeurs correspondant a un gain clinique signifi- 
catif du nouveau traitement sur le traitement standard. Cha- 
cune de ces valeurs est une gknhralisation bi-dimensionnelle 
de la diffkrence attendue dans une analyse classique. Nous 
dkfinissons I’alternative comme I’enveloppe convexe des va- 
leurs cibles dans le plan. La zone de rejet est alors obtenue 
en comparant l’kloignement de l’aternative au point (0, 0), en 
tenant compte de l’erreur de type I, avec un nombre de su- 
jets calculk qui tienne compte de la puissance. Nous illustrons 
cette mkthode avec deux essais de chimiothkrapie. 
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APPENDIX 

For tivariate binary outcomes, denote Pr(Y,,1 = z and y2,2 = 

rz , io  and 02,2 = Pr(Y,,2 = 1) = 7rZ,ll  + 7rz,01, z = T,C.  
For simplicity, temporarily suppress z and consider a single 
sample of n patients. Let W = (Woo, W ~ O ,  WOI, W ~ I )  be the 
multinomial vector corresponding to (7ro0, a l ~ ,  7ro1, ~ 1 1 ) .  The 

y) = 7rz~zy ,  z, y = 0,1,  so that 0,,1 = Pr(Y,,1 = 1) = X , , l l  + 

marginal efficacy and safety counts XI = W11 + Wio and 
X2 = W11 + Wol are binomial with parameters (n ,&) and 
(T I ,&) ,  respectively, and cov(X1, Xz) = n(7r117roo - ~ 0 1 7 r i o ) .  

The distribution of Y may be parameterized by the marginal 
probabilities 81,& and a third parameter accounting for as- 
sociation, which may be ~ 1 1 ,  a conditional probability such as 
7r11 /Ol r  thecorrelation cor(Y1,Yz) = p = (7r11-016%)/{01(1- 
01)82(1 - 02)}1/2 or the odds ratio $ = 7r117roo/7r1oxo1. 

Denote 8 = (&,&) and 8 = (&,&) = ( X l , X 2 ) / n .  Be- 
cause (n)1/2(@- e) - A N ( 0 ,  &), where 

A -  

@1(1 - 01) X l l  - 8182 

rll - ~3~ e2(1 - e2)  
for any suitable tran2formation g , i t  follows by the delta me- 
thod that  TI)^'^ ( g ( h )  -g(Qi),g(Qz) -g(ez)) - AN(O, x g ) ,  
where 

{g’(w}2el(l - el) d ( w g ’ ( ~ ~ ) ( ~ ~  - ole2) 

Reintroducing the treatment index i and denoting the (a,b)th 

 KC,,)), it follows that (2n)’/*(z-A) - A N ( 0 ,  EA),  where 
entry of q g  by as = (g(&.1) - g(~c.1),g@r.2) - 

For the variance stabilizing transformation g(0)  = 
sin-’(0)1/2, as g’(0) = {48(1 - 0)}-’12, it follows that 

where p a  = ( p c  + p ~ ) / 2  and pz denotes the correlation be- 
tween safety and efficacy for i = C, T .  

An important special case is when the adverse and efficacy 
events cannot both occur, so that 7r1o = 0. It follows that 

03. Thus, safety and efficacy are positively associated. The 
extreme case occurs when 7ro1 is also 0,  equivalently 81 = 8- 
and p = 1, which is the binary case when safety and efficacy 
are the same event. 

To apply the method in settings with nonnegative-valued 
outcomes, we apply the general theory developed by Wei and 
Lachin (1984). For a J-variate vector of nonnegative-valued 
variables Y = (YI, . . . , YJ) subject to right censoring, Wei and 
Lachin (1984) constructed a J-variate statistic, which ma,y 
be used to construct a variety of two-sample tests. For each 
j = 1,. . . , J ,  define the T-versus-C effect AJ = Pr(Yc,j 5 
Y T , ~ )  - Pr(Y1X.j 5 Yc,,) and let Uj be a nonnegative-valued 
censoring variable with % = min(Y,, Uj) ,  and with dj = 1 if 
Yj = Fj and 0 otherwise. The Wei-Lachin statistic based on 
data from 2n patients is L XI,^, . . . , XJ.”), where 

81 = . r r l l , 8 ~ = 8 1 + 7 r o l , p = ~ l ( l - 8 2 ) / { 8 2 ( 1 - ~ l ) }  and$==  

n n. 
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and I ( . )  denotes the indicator function. Wei and Lachin 
showed that  XI,^, . . . , X J , ~ )  N A N ( 0 ,  C) under the null hy- 
pothesis and provided a consistent estimator of C. Now, as in 

Thall and Lachin (1988), note that 6, = {(2n)'3'2/n2}X3,7,  
is a consistent estimator of AJ. Applying this with J = 2, we 
have (n)'/'(& - A) N A N ( 0 ,  23C) .  




