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SUMMARY. In many phase I1 clinical trials, interim monitoring is based on the probability of a binary 
event, response, defined in terms of one or more time-teevent variables within a time period of fixed length. 
Such outcome-adaptive methods may require repeated interim suspension of accrual in order to follow each 
patient for the time period required to evaluate response. This may increase trial duration, and eligible 
patients arriving during such delays either must wait for accrual to reopen or be treated outside the trial. 
Alternatively, monitoring may be done continuously by ignoring censored data each time the stopping 
rule is applied, which wastes information. We propose an adaptive Bayesian method that eliminates these 
problems. At each patient’s accrual time, an approximate posterior for the response probability based on 
all of the event-time data is used to compute an early stopping criterion. Application to a leukemia trial 
with a composite event shows that the method can reduce trial duration substantially while maintaining 
the reliability of interim decisions. 
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1. Introduction 
For both ethical and practical reasons, most phase I1 clini- 
cal trials have provisions for stopping early if results are dis- 
appointing. Aside from maximum sample size, the method 
for outcome-adaptive interim decision making is the essen- 
tial component of a phase I1 trial design. Various approaches 
to interim monitoring in phase I1 have been proposed. For 
binary outcomes, these include frequentist groupsequential 
test-based designs (Fleming, 1982; Simon, 1989) and Bayesian 
designs (Thall and Simon, 1994; Heitjan, 1997). Similarly, 
both frequentist methods (Bryant and Day, 1995; Conaway 
and Petroni, 1995) and Bayesian methods (Thall, Simon, and 
Estey, 1995; Thall and Sung, 1998) have been proposed for 
monitoring multiple events. 

In this article, we focus on phase I1 trials where patient out- 
come is characterized as the binary indicator of a composite 
event defined in terms of one or more time-to-event variables. 
For example, suppose that the goal is to monitor the probabil- 
ity of surviving at least 6 months in a trial involving a rapidly 
fatal disease and that the trial will be conducted by accruing 
and treating successive cohorts of patients. To properly apply 
an outcome-adaptive interim decision rule that decides after 

each cohort whether to stop the trial or treat another cohort, 
apparently accrual must be suspended until all patients in the 
current cohort have been followed long enough to score their 
binary outcomes. A cohort size of one is safest but imposes 
an unrealistic trial duration, while larger cohort sizes yield a 
trial that is more feasible but less safe. A seemingly reason- 
able alternative is to conduct interim analyses based on data 
only from patients who have been followed completely. This 
is inefficient because it ignores essential information such as, 
e.g., the fact that a patient currently has survived 5 months. 
It also may reduce the trial’s safety, especially if the accrual 
rate is high relative to the length of the evaluation period. For 
example, given an accrual rate of three patients per month, 
if accrual is not suspended, then 18 patients may be treated 
before even the first patient’s 6-month outcome can be eval- 
uated. 

We propose a Bayesian sequential adaptive procedure for 
continuous monitoring that utilizes all current information at 
each interim decision time, including both censored and un- 
censored observations. An approximate posterior for the r e  
sponse probability is computed by replacing nuisance param- 
eters in the likelihood with consistent estimates. Continuous 
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monitoring based on the approximate posterior (CMAP) is 
carried out by applying the stopping criterion of Thall and 
Simon (1994) at each new patient’s accrual time. The main 
practical advantage of the method is that it maintains the re- 
liability of the sequential decision procedure while eliminating 
the need to either suspend accrual or ignore censored obser- 
vations. 

We formulate the probability model and describe three ba- 
sic cases in Section 2. The approximate posterior is derived 
in Section 3, and we define CMAP in Section 4. We apply the 
method to design an acute leukemia trial in Section 5 ,  with 
extension to a randomized phase I1 trial in Section 6. Section 
7 concludes with a discussion. 

2. A Working Likelihood 
Let B denote the event of interest, with 0 = pr(B), and de- 
note the event indicator by l(.). Let N ( t )  denote the current 
number of patients who have been accrued and treated at a 
given calendar time t during the trial, with t = 0 the trial 
starting time. If all the l(B,)’s were observed, then the cur- 
rent likelihood would be 

N ( t )  n ~ 1 ( B ” ( 1  - ,g)l-l(Bt) (2.1) 
r = l  

However, among the N ( t )  patients treated up to the current 
calendar time, if patient i has not been followed for his/her 
full observation period, then l(Bi) may not be known. Our 
strategy for developing a method to monitor 0 is to first write 
down the likelihood of the data that are actually observed and 
construct a working likelihood by replacing nuisance param- 
eters in the likelihood by estimates. We then apply an early 
stopping rule using the approximate posterior of 0 based on 
the working likelihood. 

We first introduce notation to reconcile calendar time, t ,  
and an individual patient’s time, s, where s = 0 is the start 
of the patient’s treatment. Let U be the calendar time when 
the patient enters the trial. We will suppress i for simplicity 
when considering one patient. For any calendar time t ,  the 
patient’s follow-up time is 

i f t < U  
C ( t ) =  t - U  i f U s t < U + T  i0 T i f t r U + T ,  

where T is the fixed length of time required to observe B. Let 
A ( s )  be an event defined for 0 5 s 5 T that is observed only if 
s 5 C(t ) ,  with A(T) = B. We define the patient’s observable 
process in calendar time as 

A’@) = A {C( t ) }  , t 2 0 
and denote Y ( t )  = l{A’(t)}. Thus, if the patient is followed 
for a period of length at least T, then it is known whether the 
outcome B has occurred; otherwise, only the partial informa- 
tion Y( t )  is available. 

Case 1: Szmple event. First consider the simplest case in- 
volving only one event-time variable. Let Z denote the pa- 
tient’s survival time and suppose that it is desired to monitor 
the probability of I3 = {Z 5 T } ,  the event that the patient 
dies before T .  In this case, A(s) = { Z  5 s} is the event 
that the patient does not survive a period of at least s for 

0 5 s 5 T, and the patient’s observable process is 

A(0) = { Z  < 0) 
A(t - U )  = { Z  < t - U }  { A(T) = {Z < T} 

i f t < U  
if U 5 t < U + T 
i f t L U + T .  

In this case, Y ( t )  = 1(Z < T )  = 1(B) for t 2 U + T .  

tually observed at t is 

A”(t) = 

In general, the likelihood function of the data that are ac- 

i=l 

Our approach is based on the probability decomposition 

pr{AP(t)} =pr{Az(t) I Bi}O+pr{Ay(t) 1 &}(1-0) ,  
(2.2) . .  

where B denotes the complement of B. Note that w,l(t) = 
pr{A,O(t) I Bi) is the probability of observing the observable 
event at t given that Bi would have occurred had follow-up 
of patient i been complete. Similarly, wiz ( t )  = pr{Af(t) 1 &} 
is the analogous probability given that Bi would not have oc- 
curred. Since the scientific focus is 0 while w i l ( t )  and wiz(t) 
are nuisance parameters arising because some l(Bi)’s are 
not available at t ,  we replace w i l ( t )  and wiz(t)  with patient- 
specific estimates, ij,il(t) and i j 2 ( t ) .  This gives the working 
likelihood at  time t ,  

i=l 

x (1 - ijil(t)Q - ijiZ(t)(l - e ) }  l - y ‘ ( t ) .  (2.3) 

While the estimators ijil and may be constructed in sev- 
eral ways, in any case, we require that they respect the con- 
straints 

i j i l (0)  = 0, GZl( t )  = 1; i j i2(0) = 0, Gzz(t)  = 0 
(2.4) 

for all i and t 2 U, + T .  These constraints ensure that L(B, t )  
reduces to the binomial likelihood (2.1) when all patients are 
followed completely. 

Returning to case 1, we set i j i a ( t )  G 0 because death by 
time Ci(t) is impossible for Ci(t)  5 T given survival beyond 
T ,  i.e., wiz ( t )  = 0. Consequently, in this case, 

i=l 

where 1 - 0 is the probability of response, which is survival 
beyond T .  This is the weighted likelihood used by Cheung 
and Chappell (2000) in the context of dose finding using the 
continual reassessment method (O’Quigley, Pepe, and Fisher, 
1990), with toxicity in place of death. The following two cases 
include more complicated situations where B is a composite 
event involving two or more time-to-event time variables. 

Case 2: Composite event. Suppose there is a desirable re- 
sponse whose occurrence is subject to censoring by a terminal 
failure but not the other way around. An important example 
is a cancer chemotherapy trial where response is disease re- 
mission and terminal failure is death. Denote the times to 
response and terminal failure by X and Z ,  respectively. We 
are interested in the probability of response without failure by 
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time T ,  which is the composite event B = {X I T < Z}. In 
this case, the observable process is Ao(t) = {X 5 C( t )  < Z} 
and the conditional probabilities in (2.2) are 

and 

where 

When Xi and Zi are independent, pi reduces to pr(Xi 5 
T)pr(Z, 5 T 1 &). We will use these decompositions to de- 
velop estimators of w i l ( t )  and wiz( t ) .  

Case 2 accommodates settings with multiple terminal fail- 
ure types by defining Z to be the minimum of the failure 
times. This arises, e.g., in cancer chemotherapy trials where 
disease remission, toxicity, and death are all monitored and B 
is the event that the patient is alive with disease in remission 
and without severe toxicity at time T.  In this case, 2 is the 
minimum of the times to toxicity and death. 

Case 3: Composite event with competing risks. An addi- 
tional complication arises when the desirable response and a 
nonfatal failure are competing risks in that the occurrence of 
one censors the other. This case includes our illustrative appli- 
cation, a leukemia chemotherapy trial where a patient either 
achieves complete remission (CR) or his/her leukemia is de- 
clared resistant to the treatment. The desired event is that 
the patient achieves CR before T and before being declared 
resistant and that the patient is still alive at T.  In general, 
denoting the nonterminal failure time by 2, the composite 
event of interest is B = {X 5 T A X, 2 > T } .  The observ- 
able process is Ao(t) = {X I C(t )  A X , Z  > C ( t ) } ,  and the 
decompositions of the two conditional probabilities are 

and 

where 

Similar to case 2, pi reduces to pr(Xi 5 T A Xi)pr(Zi 5 T 1 
&) if Zi and (Xi, Xi) are independent. 

THEOREM 1: Suppose the true event probability 00 is 
bounded away from zero and one. I f  cj , j ( t )  converges almost 
surely to wi j ( t )  f o r  j = 1, 2 and all i as N ( t )  + 00, then 
6 = arg max L(O,  t )  is  strongly consistent for 00. 

A proof is given in the Appendix. Theorem 1, coupled with 
log concavity of L(0, t )  in 0 for given t ,  suggests that the likeli- 
hood, and thus the posterior density, will tend to concentrate 
near the true value 00. 

To compute the working likelihood, we will use the follow- 
ing family of estimators for w i l ( t )  and wiz( t ) .  Let rnc l ( t )  and 
mc2(t) denote the respective numbers of patients for whom 
Bi and & have been observed by calendar time t .  We define 
each estimator to be a weighted average of an empirical and 
a prior component as follows: 

and 

with the convention that 0/0 = 1. For assumed prior parame- 
ters y > 0 and 0 < p 1, the prior components of cj i l ( t )  and 
; i2( t )  in (2.5) and (2.6) are 

and 

with mo playing the role of an assumed prior sample size. We 
will give fil ( t )  and f 2 2 ( t )  small weights by setting ma = 1. For 
y = 1, these correspond to uniform priors on the event times 
in the observation period [O,T], whereas y < 1 and y > 1 
correspond to the prior beliefs that the events are more likely 
earlier or later, respectively, in the interval. 

The prior components f , l  and f , ~  play a crucial role early in 
the trial by stabilizing the estimates since the empirical com- 
ponents are highly variable when there are few observations. 
As the sample grows, the empirical components take over in 
that, under independent censoring, ~ & ( t )  and c j z 2 ( t )  are con- 
sistent for w,l( t )  and w82(t). Numerically, p ,  can be greater 
than one without violating the constraints (2.4). On the other 
hand, f , ~  5 f,l uniformly when p 5 1. This inequality is a 
reasonable constraint because of how A, and B, are defined. 
Other forms for the functions f , l  and fi2 may be used, pro- 
vided they respect the constraints (2.4). If prior knowledge 
is available about the event-time distributions, then informa- 
tive choices for f , l  and f , ~  may be more appropriate than 
(2.7). Similarly, values of mo > 1 may be used. However, as 
shown by the simulations reported below, the above family 
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Table 1 
Likelihood contributions of a n  

individual patient, given (y i ,  L j i l ,  Lji2) 

Weight functions Ya = 0 Yi = 1 

Impossible 

0 

1 - 0  

e 

with mo = 1 and fij’s given by (2.7) appears to be appropri- 
ate for most cases. 

3. The Approximate Posterior of 0 
In this section, we derive the approximate posterior of B based 
on the working likelihood. Because this utilizes all of the data 
available at any calendar time, an adaptive safety monitoring 
rule based on 0 may be applied at the time each new patient 
is accrued, thus obviating the need to ever suspend accrual. 

The following computations show that, if 0 follows a beta 
prior, i.e., the p.d.f. with parameters a and b is 

where B ( a ,  b) = r ( a ) r ( b ) / r ( a  + b) and r(.) is the gamma 
function, then its approximate posterior is a weighted aver- 
age of beta distributions, with the weights explicit functions 
of Lji l(t) and L j i z ( t ) .  Table 1 gives the possible forms of the 
contribution of the ith patient to the working likelihood (2.3). 
Each entry of Table 1 may be expressed as one of the two gen- 
eral forms (i) 0 + ai for some ai 2 0 or (ii) 1 - pi0 for some 
0 < /3i 5 1, where cq and pi are determined by G i l ( t )  and 

Let n1,n2, n g ,  n4 be the numbers of patients whose contri- 
butions to the working likelihood take the respective forms 
B + cq for ai > 0, 1 - pi0 for 0 < pi < 1, 0, and 1 - 0. Thus, 
C$,, nl = N ( t ) .  For brevity, we suppress the dependence of 
the cq’s, pi’s, and nl’s on t .  After appropriately reindexing 
patients, the working likelihood can be written as 

Gi2 (t) .  

nl nl+nz 

~ ( 0 ,  t )  = n(e + ai) n (1 - pie)en3(1 - 0 1 ~ 4 .  (3.1) 
i=l i=nl+l 

The first product in (3.1) may be written as the sum 

i=l j = O  

where 

and Aj is the set of nlCj choices of j distinct integers from 
{ I ,  . . . , nl}. Similarly, 

k=O 

where 

u k  

and Bk is the set of n2Ck choices of k distinct integers from 
{nl + 1,. . . , nl + 722). Thus, the working likelihood may be 
written 

nt n2 

L(6, t )  = 7, f i j*k@n1+n3+k-j (1 - ~ ) n a + n r - k  

j = O  k=O 

Straightforward computations now yield the following approx- 
imate posterior of 0. 

THEOREM 2: If 0 follows a beta(a, b)  prior, then the ap- 
proximate posterior probability density of 0 given the data ob- 
served at t ime t is 

where ajk  = a + n1 + ng + k - J’, bk = b + n2 + n4 - k ,  and 
@jk  = Rj*kB(ajkr bk ) .  

4. Continuous Monitoring Based on the Approximate 

In this section, we apply the above formulation to develop 
a practical methodology for interim monitoring based on a 
composite binary event. Consider a single-arm phase I1 clin- 
ical trial of an experimental treatment in which the primary 
question is whether it improves upon a standard therapy in 
terms of the probability B of the event B. We assume without 
loss of generality that B is desirable since an adverse event, 
such as toxicity or death, is accommodated by dealing with 
its complement. 

We define our proposed method in the context of the phase 
I1 monitoring method given by Thall and Simon (1994, here- 
after TS). To reflect the typical phase I1 setting, the TS 
method uses an informative beta(as, bs) prior on the event 
rate of the standard therapy 0s based on historical data or 
clinical experience and a relatively noninformative beta( a E ,  
bE) prior on the experimental treatment’s rate BE. In a typi- 
cal application, the amount of information a s  + bs in the prior 
on 0s reflects the number of historical patients treated with 
the standard therapy, whereas aE + bE is usually set equal to 
one or two. The TS method terminates the trial at an interim 
analysis if, for some targeted improvement 6 > 0 and fixed 
lower probability cutoff p ~ ,  

Posterior 

pr(0E > 0s + 6 data) I PI,. (4.1) 

This rule is applied after each successive cohort of a predeter- 
mined size c, up to a maximum of N patients. In practice, the 
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parameters p ~ ,  N ,  and c may be calibrated to obtain a de- 
sign with good operating characteristics (OCs), whereas the 
minimal improvement 6 is elicited from the physicians. The 
TS method formalizes the notions that there is uncertainty 
about both BE and 0s and that safety monitoring in single- 
arm phase I1 trials is inherently comparative. 

In trials where it is appropriate to stop early if there is 
evidence that the experimental treatment is superior, TS use 
the additional stopping criterion 

where pu is a fixed upper probability cutoff. This criterion 
may not be used when it is clinically desirable to continue 
using a promising treatment, although time, cost, drug avail- 
ability, and the need to publish new medical results expedi- 
tiously are also relevant. For simplicity, we focus on trials that 
use only the safety stopping criterion (4.1). Extension to trials 
using (4.2) is straightforward. 

Application of the TS design is limited by the logistical 
problems described in the Introduction. This is the case with 
any clinical trial design having interim decisions based on the 
probability of a binary event defined in terms of one or more 
time-to-event variables in a time period of nontrivial length 
T .  The TS method requires all current patients to be followed 
completely so that the posterior distribution of BE can be cal- 
culated and the stopping criterion (4.1) evaluated before new 
patients are accrued. For values of T that are large relative 
to the patient accrual rate, this may be unrealistic. Practical 
compromises are to apply (4.1) after successive patient co- 
horts of size c > 1, which we denote by TS(c), or to monitor 
continuously using only the complete data from patients who 
have been followed the entire time period T while ignoring 
censored observations, which we denote by TSCD. 

We define continuous monitoring based on the approximate 
posterior (CMAP) of 0 to be the TS method with the stop- 
ping criterion (4.1) applied each time a new patient is accrued, 
using (3.2) computed from the working likelihood (2.3). As- 
suming a beta(ag,bg) prior on &, by Theorem 2, the ap- 
proximate posterior of t?E is determined by U E ,  bE and the es- 
timates { & ~ ( t ) ,  G2j22(t), i = 1,. . . , N(t )} .  In turn, the Ga3(t)’s 
are determined by { f 2 1 ( t ) ,  f a z ( t ) ,  z = 1,. . . , N ( t ) } ,  which are 
defined in terms of p and y. Thus, the CMAP design param- 
eters are A = (as ,  bs ,  UE, b E ,  6 , p ~ ,  N ,  p ,  y). Given N and 6, 
a value of y reflecting prior knowledge about the event-time 
distributions on [O,T] and given the beta prior parameters 
(as ,  bs ,  U E ,  b ~ ) ,  the values of p and p~ may be chosen to ob- 
tain a design with desirable OCs. This may be done by first 
assuming c = 1 and obtaining (as, bs,  U E ,  bE, 6, p ~ ,  N )  accord- 
ing to the guidelines in TS (1994). For randomized phase I1 
trials, the number of experimental treatments also plays a role 
at this stage and can be studied along with p~ and N ,  as in 
Thall and Sung (1998). Given these parameters, exploring p 
= 0.50, 1.00, or 2.00 should be adequate. If prior knowledge 
about y is not available, then studying y = 1.0 or 1.5 should 
suffice. To ensure that this process is reliable, the simulation 
scenarios should be formulated to provide a reasonable repre- 
sentation of what may be observed in the trial. 

5. Application to an Acute Leukemia Trial 
5.1 Historical Data 
We now illustrate CMAP and study its properties in the 
context of a phase I1 trial of an experimental treatment for 
patients with newly diagnosed acute myelogenous leukemia 
(AML) or myelodysplastic syndromes (MDS). The entry 
criteria include the prognostically unfavorable -51 - 7 
cytogenetic abnormality characterized by loss of portions of 
the 5th or 7th chromosomes. Patient outcome corresponds 
to case 3 as described in Section 2. Denoting the respective 
times to complete remission (CR), being declared resistant, 
and death by X ,  2, and Z as before, response is the composite 
event that the patient is alive and in CR at day 90, B = {X < 

Among 335 AML/MDS patients with -51 - 7 treated 
at the M. D. Anderson Cancer Center between 1990 and 
1999, 154 (46%) achieved CR. Among these 154, 10 died 
before day 90, so the 90-day response rate was 144/335 
(43%). As the first step in developing a design, we analyze 
the historical data by fitting the parametric competing risks 
model proposed by Shen and Thall (1998). Let ZO denote 
the time to death without either antecedent nonfatal event, 
R the residual survival time subsequent to CR, and R the 
residual survival time subsequent to the patient’s disease 
being declared resistant. Thus, X ,  X ,  R, R,  and 20 are latent 
variables and the overall survival time Z takes one of the 
following three possible forms: 

90AX,90  < Z}. 

ZO i f z o  < X A X  
z =  X S R  i f X < Z o r \ X  { X f R  i f x < z o A X .  

Because only one of the three variables ( X ,  R) ,  ( X ,  R ) ,  and 
Zo is observed on each patient, we assume that they are 
independent since any probability model including para- 
meters characterizing their association is not identifiable 
(Tsiatis, 1975; Prentice et al., 1978). Marginally, each of 
the five variables X ,  2, R, R, and 20 is assumed to follow 
a three-parameter generalized odds rate model (Dabrowska 
and Doksum, 1988), characterized by the survival function 

F ( t ;  A, q5, C )  = (1 + C(t/x)”-l’c, x > 0, 4 > 0, C > 0, 

and F = 1 -P is the cumulative distribution function (c.d.f.). 
Denote the marginal c.d.f.’s of X and R by FX and FR. The 
association between X and R is modeled by the bivariate 
c.d.f., 

FX,R(Z,r) = FX(z)FR(r){l f QFX(z)FR(T)} 

for z , r  > 0 and -1 < Q: < 1, with the same functional 
form for the bivariate c.d.f. of the pair (XIR) .  Because 
this 17-parameter model accounts for the manner in which 
B depends on the event times, 0 is a complex function of 
the model parameters. The maximum likelihood estimates 
(MLEs) of the model parameters based on the historical data 
are summarized in Table 2. The model-based MLE of 8s is 
0.44, which is very close to the simple binomial estimate 0.43. 

5.2 Szmulatzon Study 
To compare CMAP to the TS method, we simulated the 
leukemia trial 2000 times using each design under a range 
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Table 2 
Maximum likelihood estimates (with standard error) 
of the competing risks model for the historical data 

Complete remission Resistance Death without CR 
or resistance, 20 X R x R 

C i  -0.200 (0.412) 0.185 (0.291) 
4 1.222 (0.139) 19.08 (4.008) 2.183 (0.386) 3.681 (1.005) 1.768 (0.309) 
i 100.9 (16.55) 27.18 (0.855) 226.5 (34.44) 78.82 (13.60) 83.85 (11.78) 
i 0.416 (0.687) 20.75 (4.901) 1.557 (0.505) 1.216 (1.362) 1.475 (0.524) 

of clinical scenarios. To conserve space, we summarize the 
results under the four scenarios described in Table 3. In all 
cases, we assumed a priori that 0s - beta(145, 192) and BE - 
beta(0.86, 1.14) and applied the early stopping rule (4.1) with 
6 = 0.15, p~ = 0.05, minimum sample size 10, and maximum 
sample size 60. Patient accrual was simulated as a Poisson 
process with rate five per month. Patients’ event times were 
generated under the competing risks model described above. 
For the first two scenarios, we constrained the model param- 
eters to give fixed response probability 0.44, the MLE of Q 
based on the historical data. The event-time parameters were 
calibrated so that events occurred within the 90-day observa- 
tion interval on average either the same as seen historically 
(scenario 1) or later in the interval (scenario 2). Scenarios 3 
and 4 have fixed response probability 0.59, reflecting the tar- 
geted 0.15 increase in 0, and parameters were calibrated so 
that the experimental treatment improves all three aspects 
of response, with shorter median time to CR and longer me- 
dian times to death and resistance (scenario 3) or a modest 
improvement in CR but a large improvement in survival (sce- 
nario 4). 

Figure 1 displays the probability of rejecting the experi- 
mental treatment using TS(l), TS(5), TSCD, or CMAP with 
six values of p and y = 1.0. Each plotted value is the mean 
from the 2000 simulated trials. Overall, the rejection probabi- 
lities of all methods studied do not differ substantively, al- 
though TS(5) and TSCD have slightly lower rejection proba- 
bilities in all cases. 

Figure 2 summarizes the trial duration distributions of the 
TS and CMAP designs. The reduction in trial duration pro- 
vided by CMAP compared with TS(1) and TS(5) is quite 
striking under all four scenarios. By avoiding suspension of ac- 
crual, CMAP reduces median trial duration by 30-40% com- 

pared with TS(5). The differences are so large that a trial con- 
sidered not feasible using TS(1) or TS(5) might be quite feasi- 
ble using CMAP. The graphs also reveal that the variation in 
trial duration is much smaller using CMAP, which would al- 
low investigators to budget time more precisely when planning 
the trial. The durations under TSCD are only slightly larger 
than with CMAP, as expected since both methods monitor 
continuously. 

Figure 3 illustrates the achieved sample-size distributions of 
the designs under the two null scenarios. On average, CMAP 
requires slightly more patients than TS(1) or TS(5) in the null 
case, while TSCD requires substantially more patients than 
CMAP. This seems to  be the price that is paid by the fact 
that TSCD ignores censored data. We also ran simulations for 
CMAP woth y = 1.5, which gives similar OCs to CMAP with 
y = 1.0, and hence the results are not displayed here. CMAP 
with y = 1.5 requires slightly more patients than with y = 1.0, 
which may be due to the fact that larger y produces smaller 
prior values of G i l ( t ) ,  and thus more patients are required 
to stop early. For this reason, it may be preferable to apply 
CMAP with y = 1.0. With fixed QE = 0.59 under scenarios 
3 or 4, TS(1) and TS(5) turn away on average 37 and 51 
patients, respectively, whereas CMAP, by definition, does not 
turn away any patients. Since the sample size is very likely to 
be 60 under all designs when eE = 0.59, in practice, the TS(1) 
and TS(5) designs would require on average 97-111 eligible 
patients in order to obtain 60 for the trial. 

In summary, compared with TS(1) and TS(5), CMAP has 
the advantages of a much shorter trial duration and the fact 
that no eligible patients are turned away from the trial; hence, 
the actual number of patients required is much smaller. These 
advantages should greatly outweigh the slight increase in sam- 
ple size with CMAP in the null cases. Compared with TSCD, 

Table 3 
Fixed values of the parameters and the medians ( i n  days) of the 

competing risks model used in the simulations. Only parameters that 
differ from the MLEs obtained from the historical data are given. 

2 0  X x 
Scenario QE x med x med x ined 

1. Historical 0.44 100.9 84 27.18 49 78.82 81 
2. Later events 0.44 121.0 101 32.00 58 97.00 99 
3. Overall improvement 0.59 121.0 101 19.13 35 97.00 99 
4. Improved survival 0.59 161.0 135 21.83 40 97.00 99 
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Figure 1. Probabilities of rejecting the experimental treat- 
ment using CMAP with p = 0.25,0.5,0.75,1.0,1.5,2.0 and 
y = 1.0 versus the TS designs. 

CMAP has a slightly shorter duration in any case but a sub- 
stantively smaller null sample size. The following section 
shows that these differences may be more substantial in a 
randomized selection trial. 

6. Randomized Phase I1 Trials 
We next consider randomized phase I1 trials where the goal is 
to select one or more of m experimental treatments, E l , .  . ., 
Em, for future evaluation. In such settings, it is still appro- 
priate to monitor the safety of each Ek by comparison to 
historical data, precisely as if it were the only arm of a con- 
ventional phase I1 trial. To apply CMAP in this more gen- 
eral context, there are now m pairs of estimators, { L j i l k ( t ) ,  

h j22k ( t ) ,  k = 1,. . . , m}, since the m treatments may have dif- 
ferent time-to-event variable distributions. The working like- 
lihood is now the product of m components, each taking the 
form (2.3). 

As an illustration, we extend the leukemia trial example to 
include m = 3 experimental treatments, with response prob- 
abilities e ~ ~ ,  BE3}. The same priors on es and the 0 ~ ~ ' s  
as before are assumed. In addition to applying the early stop- 
ping criterion (4.1) to each arm, any Ek is dropped if it is 
inferior to the others: 

Pr (BEk < maxkJ#keE,, 1 data) > 0.90. 

If one or more arms are dropped, then the remaining patients, 
up to a maximum of N = 90, are randomized fairly to the 
remaining arms. The entire trial is terminated if all three arms 
are dropped. We evaluate the designs in the two situations 
where the treatments' event-time distributions correspond to 
the three-treatment scenarios (1,1,2) and (1,2,3) in Table 3. 
Under scenario (1,1,2), it is best to terminate all three arms 
since each has null success rate 0.44. Under scenario (1,2,3), 

T 

I I 

TS(1) TS(5) TSCD CMAP TS(1) TS(5) TSCD CMAP 

Design Design 

Improved Survival 
Prob(Success) = 0.59 

Overall Improvement 
Prob(Success) = 0.59 

7- 

I. 

Design Design 

Figure 2. Trial duration of the TS designs and CMAP with 
p = 0.5 and y = 1.0. Each box spans the interquartile range, 
the darker line inside is the mean, and the lighter is the me- 
dian. The whiskers extend to the 10th and 90th percentiles. 

the success rates are (0.44,0.44,0.59), so it is most desirable 
to select E3 and drop both El and E2. 

Table 4 summarizes OCs of this three-arm randomized trial 
under the TS designs and CMAP with p = 0.5 and y = 1.0; 
all designs use p~ = 0.10. As in the single-arm case, compared 
with CMAP, the TS(1) and TC(5) designs greatly inflate trial 
duration and TSCD inflates both duration and sample size. 
Recall that, in general, TSCD is less likely to reject the treat- 
ment in the single-arm case. This deficiency is magnified un- 
der scenario (1,1,2) of the randomized trial, where TSCD 
greatly inflates the probability of incorrectly selecting one of 
the treatments. Another undesirable effect is seen under sce- 

Historical 
Prob(Success) = 0.44 

Later Events 
Prob(Success) = 0.44 

TS(1) TS(5) TSCD CMAP 

Design 

TS(1) TS(5) TSCD CMAP 
Design 

Figure 3. Achieved sample sizes of the TS designs and 
CMAP with p = 0.5 and y = 1.0 under the two null scenarios. 
Each box spans the interquartile range, the darker line inside 
is the mean, and the lighter is the median. 
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Table 4 
Selection probabilities, median achieved sample size, and median trial duration ( in 
days) f o r  the three-arm randomized trial under the TS  designs and under C M A P  

with D = 0.5 and y = 1.0. Correct selection probabilities are given in boldface. 

Selection mobabilities 

Ei Ez E3 None 

Sample size 

E l  Ez E3 Duration 

0.09 0.09 0.09 0.73 
0.13 0.13 0.13 0.62 
0.15 0.15 0.16 0.54 
0.08 0.10 0.08 0.74 
0.05 0.06 0.65 0.24 
0.06 0.06 0.71 0.17 
0.07 0.08 0.69 0.15 
0.04 0.05 0.63 0.28 

13 13 13 
15 20 15 
23 23 23 
14 15 13 
11 11 51 
15 15 50 
20 21 40 
13 12 47 

879 
749 
606 
481 
950 
821 
632 
597 

nario (1,2,3) ,  where, compared with CMAP, TSCD shifts pa- 
tients away from the more desirable treatment E3 to the two 
inferior arms. It thus appears that the advantage of CMAP 
over TSCD is more pronounced in this type of randomized 
trial. 

7. Discussion 
We have proposed an adaptive Bayesian method for moni- 
toring the probabilities of composite events in phase I1 tri- 
als where a fixed time period of nontrivial length is required 
to evaluate each patient’s response. A key component of the 
procedure is the method for estimating the conditional prob- 
abilities w,l( t )  and w,z(t). Our estimators G, l ( t )  and c j , z ( t )  
are weighted averages of a prior and an empirical component. 
Choices of the empirical component other than those given by 
(2.5) and (2.6) can be contemplated. Under case 1, a consis- 
tent empirical component for cj,l(t) is (1 - KM(C,(t))}/{l- 
K M ( T ) } ,  where K M ( . )  is the product limit estimate of the 
survivor function (Kaplan and Meier, 1958). Another alterna- 
tive is 

- (7.1) 
K I 1 ( c Z ( t )  - ‘ ( K )  ) 

v + l  v + l  Z ( K + l ) - - Z ( K )  ’ 
where Y is the number of events (deaths), 0 G z(0) < z(1) 5 
... 5 qV) < z ( ~ + ~ )  z T are the ordered event times, and 
K = m a x O ~ j ~ , { j  : u 2 ~ ( ~ 1 ) .  This function, ignoring the 
censored nonevents, assigns equal mass on all v + 1 intervals 
(y), ~ ( ~ + ~ ) ] , j  = 0, .  . . , v and assumes a piecewise distribu- 
tion that is uniform within each interval. This was proposed 
by Cheung and Chappell (2000), in the context of a dose- 
finding trial, as an estimate of the conditional distribution of 
the time to toxicity given that toxicity occurred within the 
observation period. If the event-time distributions are contin- 
uous, then the function (7.1) has the advantage that it also 
is continuous. However, generalization to more complicated 
situations with dependent censoring, such as cases 2 and 3, is 
not straightforward. 

A more direct approach would be to model the event-time 
distributions, as we did in fitting the historical data in Sec- 
tion 5.1, and derive the posterior of 8 from this fully Bayesian 
model. Instead, our approach focuses directly on 8 ,  the param- 
eter of interest for monitoring. This provides a simpler and 
more natural way to specify a prior on 8. The price for this is 

the need to estimate the wij’s,  and consequently the posterior 
of 8 is approximate. We feel that the benefits of our method, 
including both its practicality and desirable OCs compared 
with other methods, outweigh these limitations. 

In case 1, the mixture distribution that is the approximate 
posterior of 8 under the working likelihood has the same com- 
ponents as the posterior of a nonparametric Bayes estimator 
with a Dirichlet process prior (Susarla and Van Ryzin 1976, 
Theorem 5), although the mixing probabilities may differ. 
Elicitation of a Dirichlet process prior is not straightforward 
since it requires a finite measure on R+ a priori. In contrast, 
our procedure requires only prior beliefs regarding the event 
rate at time T ,  while the nuisance parameters, which are of 
infinite dimension, are replaced by the estimates 51 and G2, 
which may easily incorporate prior knowledge of the time dis- 
tributions. 

Our proposed method is related to a Bayesian approach 
proposed by Follmann and Albert (1999) that addresses the 
case of a binary outcome defined in terms of one censored 
time-to-event variable, our case 1. They assume a Dirichlet 
prior on discrete event-time probabilities to produce a poste- 
rior distribution that is a mixture of Dirichlets. However, their 
method does not accommodate composite events defined in 
terms of two or more censored time-to-event variables, such 
as our cases 2 and 3. 

An R-function that implements both the CMAP and TS 
methods is available from the first author on request. 
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RESUMB 
Dans beaucoup d’essais cliniques de Phase 11, on mesure de 
faqon skquentielle la probabilitk d’un BvBnement binaire (la 
‘rkponse’), critkre Bventuellement composite, dBfini a partir 
d’une ou plusieurs variables de temps Bvaluant la survenue 
d’kvknements dans une pkriode donnke. Ces mkthodes, qui 
requikrent de s’adapter aux rBsultats observks, peuvent nBces- 
siter de suspendre B plusieurs reprises le recrutement des pa- 
tients afin de pouvoir suivre chaque patient, le temps nBcessaire 
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a l’kvaluation de sa rkponse. La durke de l’essai s’en voit 
augmentke et les patients kligibles qui se prksentent dans ces 
pkriodes d’interruption doivent attendre la reprise des inclu- 
sions ou bien irtre traitks en dehors de l’essai. Une autre ap- 
proche, qui n’utilise pas toute l’information disponible, con- 
siste & ignorer les donnkes censurbes au moment O?I on ap- 
plique les rggles d’arrBt de la prockdure skquentielle. Nous 
proposons ici une mkthode adaptative bayksienne qui klimine 
ces problhes.  A chaque inclusion d’un patient, on calcule un 
crithre d’arrirt en utilisant une approximation de la probabilitk 
a posteriori de la rkponse, approximation qui tient compte 
de la totalit6 des donnkes disponibles (y compris les donnkes 
des patients dont la rkponse finale est encore indkterminke). 
Un exemple d’application B un essai dans la leuckmie avec 
kvknement composite montre que cette mbthode peut rbduire 
la dur6e de l’essai de manihre importante tout en prkservant 
la fiabilitk des dckisions prises en cours d’essai au vu de la 
prockdure skquentielle. 
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APPENDIX 

Proof of Theorem 1 

For clarity, the calendar time t is omitted in the notation 
when no ambiguity arises. The maximum likelihood estimate 
6 = arg max L(O)  solves 

where & ( O )  = Gilt9 + 4 2 ( l  - 0). Now let 

where ni = pr(A:) and &(6) = wi le  + w,2(1 - 0). 

terms, 
Then IJ(0) - Jo(6)I is bounded above by the sum of three 

I N  

A1 (0) and Az(0) converge to zero uniformly in 0 by assump- 
tion. By Kolmogorov’s Strong Law of Large Numbers, A,(@) 
converges to zero almost surely for all 0 E [ E ,  1 - E ]  for some 
E > 0. Consequently, we have 

SUP w e )  - J ~ ( ~ ) I  --to (A.1) 
e E  I ~ ,  1-4 

with probability one as N -+ 0. Next, it is easy to verify that 
Jo(B0) = 0, and since Jo is strictly decreasing by checking its 
first derivative on ( E ,  1 - E ) ,  the root is unique. Similarly, 6 is 
the unique solution of J ( 0 )  = 0 if it exists. Therefore, (A. l )  
implies 16 - 001 + 0 almost surely by continuity of J and Jo. 




