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SUMMARY. A Bayesian decision-theoretic method is proposed for conducting small, randomized pre-phase 
I1 selection trials. The aim is to improve on the design of Thall and Estey (1993, Statistics in Medicine 12, 
1197-1211). Designs are derived that optimize a gain function accounting for current and future patient 
gains, per-patient cost, and future treatment development cost. To reduce the computational burden asso- 
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1. Introduction 
Phase I1 cancer clinical trials typically are small to moder- 
ate sized exploratory studies to assess whether a new ther- 
apy is sufficiently promising to warrant evaluation in a large- 
scale randomized comparative phase I11 trial. In many areas 
of oncology, it is common for several new treatments to be 
available for phase I1 evaluation at the same time. Because 
resources are limited, it is thus necessary to select among po- 
tential therapies for phase I1 evaluation. This is usually done 
informally based on data from preclinical studies and phase 
I trials. A Bayesian design for trials aimed at selecting treat- 
ments for phase I1 was proposed by Thall and Estey (1993; 
hereafter TE). They suggested a small, randomized trial of 
several candidate treatments in patients with poorer progno- 
sis than those to be treated in phase 11, as is ethically appro- 
priate for newer treatments. The design drops inferior treat- 
ments early, with the best remaining treatment selected for 
phase I1 if it shows a likely improvement over a fixed standard. 

Sequential designs are important in early phase trials due 
to the ethical need to stop a trial if an experimental therapy 
appears likely to be either unsafe or ineffective. This is very 
important in oncology, where substantive treatment advances 
are rare and adverse side effects may be quite severe. Many 
authors have proposed sequential designs for phase I1 cancer 
trials, including Fleming (1982), Simon (1989), Thall and Si- 
mon (1994), Bryant and Day (1995), Thall, Simon, and Estey 

(1995), Stallard (1998), and Stallard, Thall, and Whitehead 
(1999). In this article, we propose decision-theoretic sequen- 
tial designs for randomized pre-phase I1 screening trials. Our 
aim is to improve on the non-decision-theoretic TE design. 
We develop decision-theoretic designs in Section 3 and, in Sec- 
tion 4, apply them to a trial in acute myelogenous leukemia, 
comparing them with the TE design. We close with a discus- 
sion in Section 5. 

2. Preliminaries and Notation 
Suppose that m experimental therapies, Tt, t = 1 , .  . . , m, are 
to be comparatively evaluated in terms of a success/failure 
patient outcome observed soon enough after the start of the 
patient's treatment to enable sequential monitoring. Denote 
by Ot the treatment success probability for patients receiv- 
ing treatment Tt. We assume that Ot follows a beta prior 
with parameters at and bt, denoted Ot N beta(at, b t ) ,  with 
81,. . . ,Om independent. In practice, we will usually take all 
(a t ,  b t )  = (a ,  b) ,  with a + b 5 2 to reflect the relative lack of 
knowledge about Ti, . . . , Tm. 

We consider designs in which patients are randomized 
among the treatments in blocks, with one patient per treat- 
ment in each block. After observing the outcomes for each 
block, a decision is made whether to drop any or all of the 
treatments from the study. Dropped treatments may not be 
reinstated. The trial continues until either no treatments re- 
main or the total number of patients in the trial reaches a 
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prescribed maximum, N. At the end of the study, a deci- 
sion is made about which of the remaining treatments is best 
and whether this treatment should be evaluated in a phase I1 
trial. In practice, N is determined based on patient accrual 
rate, feasible trial duration, monetary costs, and drug avail- 
ability in addition to statistical properties of the design and 
reliability of parameter estimates. 

Let po be a fixed, minimum clinically acceptable success 
rate specified by the physician(s) conducting the trial. The 
TE approach bases decisions on the posterior probabilities 
Pr(0t < po 1 data) for t = 1,. . . ,m. If this probability exceeds 
TI, say, for 7r1 = 0.90 or 0.85, then Tt is dropped. At the end 
of the trial, the treatment Tt* having largest posterior mean 
among those remaining is selected, provided that Pr(Bt* > 
po I data) > ~ 2 ,  say, for 7r2 = 0.90 or 0.95. 

Similar to TE, our proposed decision-theoretic designs are 
based on gain functions that depend on the values of 0t - po 
for t = 1, . . . m. Criticisms of decision-theoretic methods are 
that the gain function underlying the decisions is subjective 
and that the computational task of constructing optimal de- 
signs is substantial. To address these issues, we illustrate how 
gain function parameters may be chosen to obtain a design 
with desirable frequentist properties and we consider myopic 
strategies that reduce computational requirements. 

3. Decision-Theoretic Designs 
3.1 Computing the Expected Gain 
At any interim point during the trial, possible actions are to 
continue with some subset of the set of treatments remaining 
or terminate the trial. If all N patients are treated, a final 
decision must be made about which treatment, if any, should 
be developed further in a subsequent phase I1 trial. 

Let A C (1,. . . , m} denote the action of continuing with 
treatments {Tt, t E A}. We will abuse usual set notation 
by writing A = t for the action of selecting treatment 
Tt for future evaluation after the trial and A = 0 if no 
treatment is selected. Let Xi = (xi l , .  . . ,xim) denote the 
data observed through the i th stage of the trial, where xit = 
(zit1,zitZ)’ with xiti and zit2 the numbers of successes and 
failures, respectively, among nit patients receiving Tt . Let 
D(Xi) denote the set of possible actions following observation 
of Xi. If the number of patients treated, ni = C z l n i t ,  
equals N, then D(Xi) contains zero and all t such that 
nit = maxt/=l,,,,,m nit! since the latter are the treatments 
that have not been dropped. If ni < N, then D(Xi) 
contains all subsets of the set ( t  E (1, 
maxt~,l,...,m ni t ! } .  Let g(A, 8,  Xi) denote the gain from 
taking action A after observing Xi when the true state of 
nature is 8 = (01, . . . ,Om)‘. The posterior expectation of g is 
G(A, Xi) = E(g(A, 8, Xi) I Xi). Specific forms for g will be 
discussed in Section 3.3. 

At each point in the trial, the action in D(Xi) maximizing 
the expected gain G(A,Xi) will be chosen. Values of 
G(A, Xi) corresponding to termination of the trial, i.e., 
for A E (0,. . . ,m} or 4 ,  can be evaluated directly. 
Values corresponding to continuation of the trial can be 
obtained by backward induction (cf., Berger, 1985) as 
follows. Given observed data Xi, the overall expected gain, 
G(A,Xi), from taking action A C (1, 
is the posterior mean with respect to 8 of CPr(Xi+l I 
8) maxAtED(X,+l){G(A’, Xi+l)}, where the sum is taken over 

all data sets Xi+l possible at the i + l t h  stage following action 
A given Xi and each Pr(Xi+l I 0) is a product of relevant 0tj 
and (1 - 0tj) values giving the probability of Xi+l given Xi. 
Since this gives G(A, Xi) in terms of G(A, Xi+l),  expected 
gains from each action can be obtained. Consider first the 
end of the trial, when there are N patients. The gains from 
all possible actions can be Calculated directly. The optimal 
final action is that with the largest expected gain. Consider 
next data sets Xi with ni = N - 1. The set D(Xi) contains 
4 and single element sets corresponding to treatments with 
nit = maxt/,l,...,mnitt. The expected gain from 4 can 
be calculated directly. That from each other action can be 
obtained by averaging expected gains for data sets Xi +1 with 
ni+l = N, which have already been obtained. The optimal 
action can therefore be selected. Working backward through 
the entire trial in this way yields the expected gain for the 
optimal action in D(X) for all possible data sets X.  

3.2 Myopic Designs 
We derived the optimal designs described below by complete 
enumeration of all possible data sets, as required in 
the backward induction algorithm. This requires many 
expected gains to be calculated and stored. Computational 
requirements are a major limitation for trials much larger than 
that considered below or for trials involving more than three 
treatments. Currently] the problem remains hardly feasible. 

An approximation to  determining the optimal decision 
by backward induction is the use of a so-called myopic 
strategy in which, rather than considering possible outcomes 
at all subsequent stages in the trial, decisions are based on 
examination of at most, say, r future stages. 

Taking T = 1 leads to a decision at each stage in the trial 
assuming that the next stage will be the last. This means 
that optimal actions depend only on the data observed so 
far and expected gains need not be stored. Suppose that 
data Xi have been observed and at most N - ni patients 
remain to be treated. The myopic strategy with T = 1 first 
assumes that, for some s 2 0, the best s of the remaining 
treatments will be selected to continue in the study, with 
the remaining N - ni patients divided equally among them. 
For simplicity, denote the remaining treatments by T i , .  . . , Ts. 
From the myopic viewpoint with r = 1, after one more stage, 
the trial will end and one of the actions A‘ (0  ,... , s }  
will be taken. Denoting the data at the end of the trial 
by Xi+l ,  the expected gain from the optimal action at the 
end of the trial would be the posterior mean with respect 
t o  Xi of ~ r ( ~ i + i  I 0) maxAlto(x,+,){G(A’,Xi+i)}. 
The optimal value for s and action A having s elements are 
chosen to maximize this gain. If A # 4, then one patient is 
allocated to each of these treatments, the data are observed, 
and the process repeated, again assuming that the next stage 
of the trial will be the last. Taking r = 2 or 3 corresponds to 
the expected gain for each action being calculated assuming 
that there will be one or two further opportunities to drop 
treatments, with remaining patients assumed to be equally 
divided between these decision points. 

3.3 Possible Gain Functions 
The proposed method requires a gain function, g(A, 8, Xi), 
for each A 6 (0,. . . , m}. This should be obtained through 
discussion with clinical collaborators. 
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Forms for gain functions in similar settings with a single 
experimental treatment were proposed by Stallard (1998) 
and Stallard et al. (1999). Here we proceed in a fashion 
similar to the latter paper t o  give possible forms for the gain 
functions, which are used in the comparison of the different 
approaches in Section 4. While the gain functions proposed 
may be suitable for many trials, other qualitative forms will 
sometimes be more appropriate. It is important that careful 
consideration be given to the choice of the gain functions used. 

Following Stallard et al. (1999), we consider the gains to 
patients who will receive the experimental treatments either 
in this trial or in the future. In terms of the probability of 
success, the gain to a patient receiving treatment Tt rather 
than a standard treatment with success rate po is ( &  - P O ) .  
If Tt is selected at the end of the study, then this also is 
the gain to a future patient treated with Tt. If all treatments 
are dropped from the study, future gains will equal zero. We 
suppose that there is a per patient cost, c, during the study 
and a total cost K for future investigation of a recommended 
treatment, with these costs also expressed on the scale of 
probability of success. After observing data X,, the gain from 
taking action 0 if the true state of nature is 0 is g ( O , 6 ,  X,) = 
C& {nzt(f3t - P O ) )  - nac. The gain from selecting Tt*, which 
can only occur if na = N, is 

m 

g ( t * ,  0, x,) = C{nZt(ot - pol j - NC - K + met* - p 0 ) ,  
t=1 

(1) 

where Il represents the patient horizon, i.e., the number of 
potential future patients. The value of K may be restricted 
to be at most II since the cost of future investigations can be 
compared with the expected gain in the number of patient 
successes from II future patients, which cannot exceed n. If 
K > Jl, the future gain from further development cannot be 
positive, so no phase I1 trial will ever be conducted and the 
pre-phase I1 screen is futile. Similarly, we may restrict c to be 
at most one. 

Aside from computational issues, a major criticism of the 
decision-theoretic approach is the subjective nature of the 
gain function. While the above form of g is qualitatively 
reasonable for many trials, in practice, it is very difficult to 
determine numerical values for the parameters c,  K ,  and II. 
Subjectivity is also present in other methods, e.g., in the 
choice of 7r1 and 7 ~ 2  in the T E  approach. T E  address this 
problem by considering several ( T I ,  ~ 2 )  pairs and choosing 
values that provide a design with desirable frequentist 
properties. A similar approach was taken by Thall and Simon 
(1994) in designing a single-treatment phase I1 trial. They 
considered scenarios where the experimental treatment had 
either a high or a low success probability. A design was sought 
that would lead to further development with high probability 
in the former case and low probability in the latter while 
having a small expected sample size in the latter case, where 
early stopping would be particularly desirable for ethical 
reasons. We extend this approach to the multiple treatment 
case, with consideration of the correct selection probability. 

4. Comparison of the Procedures 
In this section, we evaluate and compare the design 
maximizing the gain function (I) described in Section 3.3 
(OPT); the myopic designs with T = 1 (MYOl), T = 2 
(MY02), and T = 3 (MY03); and the T E  design. We base 
this on an example, given by TE, of a trial with at most N = 
30 patients to compare three treatments as salvage therapy 
for poor-prognosis patients with acute myelogenous leukemia 
who either were resistant to initial therapy or have relapsed 
after achieving complete remission (CR). The primary patient 
outcome is CR, with Bt  the probability of CR for patients 
receiving treatment Tt for t = 1,2,3. Since po = 0.20, we 
took {Ol,82,&) to be independent with beta(0.4, 1.6) prior, 
which has mean 0.20. 

For the OPT and MY0 designs, we considered a wide 
range of gain function parameterizations, with 0 5 c 5 1, 
100 5 II 5 100,000, and 0 5 K 5 II. For each combination of 
c, K ,  and II, the OPT design was obtained. For each of these 
designs and the T E  design, we computed the probability that 
no treatment was selected, PNS, and the expected sample 
size, ENO, under the null, (pi,pz,p3) = (0.2,0.2,0.2), and, for 
(pl,p2,p3) = (0.4,0.2,0.2), the probability that treatment TI 
was correctly selected, PCS. 

Figure 1 shows how PNS, PCS, and EN0 vary with (II, c), 
(TI, K/II) ,  and (c ,  K / H )  for the OPT design. The contour lines 
for PNS and PCS are close together and are nearly parallel 
to the axis in the plots varying with (II, K/II)  and (c ,  K/II). 
In contrast, the contour lines for PNS and PCS varying with 
(II,c) are far apart (note that, in these plots, contours are 
spaced at intervals of 0.1 rather than 0.2 as used elsewhere). 
It is clear that K has a much larger effect on PNS and PCS 
than either c or II, although both PNS and PCS are reduced 
by taking II to be small. Both II and K/II have substantial 
effects on ENO, with a much smaller effect due to c. Not 
surprisingly, smaller values of EN0 are generally associated 
with smaller values of PNS and PCS. 

Figure 2 shows how PNS, PCS, and EN0 vary with K/II 
for fixed c and II ( c  = 0.4 and II = 1000). This figure 
illustrates the problem that the choice of K ,  II, and c to 
obtain a design with desirable overall properties inevitably 
must involve a compromise between the desire to make both 
PNS and PCS as large as possible. This is similar to the choice 
of TI and 7r2 in the T E  design. To facilitate the comparisons, 
we obtained an OPT design similar to the T E  design with 
T I  = ~2 = 0.9. The TE design has PNS and PCS of 0.821 and 
0.504, respectively, and so seems a reasonable choice. Figure 
2 suggests that the OPT design with K/II = 0.15 has both 
PNS and PCS slightly higher than these values and so might 
be comparable with the T E  design. The results reported for 
the OPT design given below are for the design with c = 0.4, 
II = 1000, and K/II = 0.15. 

Table 1 summarizes frequentist properties of the OPT, 
MYO1, MY02, and MY03 designs under this gain function 
parameterization and of the T E  design with "1 = 7r2 = 0.9 for 
p2 = p3 = 0.2 and 0.1 5 p l  5 0.5 (the rows labeled TE* are 
explained below). All the designs have the desirable properties 
that the probability of selecting no treatments decreases and 
the probability of selecting TI increases with pi and the prob- 
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Figure 1. Contour plots showing how PNS, PCS, and EN0 vary with c,  II, and K for the OPT design. 

ability of incorrectly selecting TI when p i  5 0.2 is small. The 
OPT design is slightly more likely than the T E  design both 
to select no treatments for 0.1 5 pi 5 0.4 and to select 2'1 for 
p i  2 0.4. In all cases, the number of patients treated is smaller 
for the OPT design than for the T E  design. In the MY01 
design, the gain function from continuing is clearly underes- 

timated. This leads to a design that stops with a sample size 
much smaller than that for OPT and has a larger probability 
of selecting no treatment for all values of p i  considered. The 
MY03 design provides a much better approximation to the 
OPT design, though it still has a slightly larger probability of 
selecting no treatment for all values of p l .  The MY03  design 
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ues of K with c and IT fixed. 

Properties of the OPT design for a range of val- 

also has a smaller expected sample size than the TE design for 
all values of p l .  The probability of selecting Ti when p i  2 0.4 
is similar for the OPT and MY03 designs. 

Compared with the TE design, a strength of the decision- 
theoretic approach lies in the fact that decisions of whether 
or not to drop any treatment are made in the light of data 
available from the other treatments. This advantage is illus- 
trated by Table 2, which gives properties of the designs under 
the scenario ( p l 1 p 2 , p 3 )  = (0.4,0.3,0.3), where all three treat- 
ments provide an improvement over po and Ti is best but by 
the small increment of 0.1. The OPT design has a slightly 
higher probability of selecting TI and a slightly smaller sam- 
ple size compared with both the MY03 and TE designs. It 
can be seen that, with the OPT design, when Ti is superior to 
T2 and T3, the latter will be dropped early in the study even 
if they represent an improvement relative to po (the unequal 
expected numbers on T2 and T3 arise because of inequality in 
the breaking of ties in the design evaluated). In the TE de- 
sign, by contrast, almost as many patients are recruited to T2 
and T3 as to Ti. In particular, fewer patients receive inferior 
treatments under the OPT design. 

The TE approach may be modified to allow direct compar- 
isons of the different arms by dropping treatment Tt if either 

data) > TI*  for some TI*. Results for such a procedure with 
T I  = 7 ~ 2  = T I *  = 0.9 are given in the rows of Tables 1 and 
2 labeled TE*. It can be seen that the effect of the modifi- 
cation is to increase both the number of patients receiving 
the best treatment and the probability that this treatment is 
selected. Indeed, the latter is larger than that for the OPT 
design. This is achieved, however, at the cost of a large in- 
crease in the probability of erroneously making a selection 
when p l  = p2 = p3 = PO. 

In practice, patients are often treated in cohorts rather than 
one at  a time, with decisions made only after the results from 
each cohort have been observed. When there is an appreciable 

Pr(6t < PO I data) > TI or Pr(6t < mazt,=i, ...,,{ 6%)) 1 

Table 1 
h q u e n t i s t  properties f o r  OPT and M Y 0  designs 
with 'u. = 1, c = 0.4, II = 1000, K = 150, and the 

TE and TE* designs with "1 = T I *  = TZ = 0.90 for 
pa = p3 = po = 0.2 and p1 ranging from 0.1 to 0.5 

~~ 

Probability of Expected number 
selecting of patients 

p l  Design None TI Receiving TI Total 

0.1 

0.2 

0.3 

0.4 

0.5 

OPT 
MY01 
MY02 
MY03 
TE 
TE* 
OPT 
MY01 
MY02 
MY03 
TE 
TE* 
OPT 
MYOl 
MY02 
MY03 
TE 
TE* 
OPT 
MYOl 
MY02 
MY03 
TE 
TE* 
OPT 
MYOl 
MY02 
MY03 
TE 
TE* 

0.930 
0.976 
0.960 
0.942 
0.867 
0.742 
0.894 
0.965 
0.940 
0.915 
0.821 
0.651 
0.727 
0.865 
0.806 
0.759 
0.654 
0.464 
0.439 
0.626 
0.538 
0.475 
0.412 
0.257 
0.194 
0.386 
0.292 
0.227 
0.204 
0.107 

0.001 
0.000 
0.000 
0.001 
0.003 
0.011 
0.036 
0.011 
0.020 
0.028 
0.057 
0.110 
0.208 
0.113 
0.154 
0.186 
0.238 
0.330 
0.510 
0.354 
0.428 
0.480 
0.504 
0.594 
0.772 
0.599 
0.684 
0.742 
0.740 
0.807 

5.24 
3.02 
3.68 
4.62 
7.06 
8.66 
7.84 
5.07 
6.20 
7.33 
9.49 
9.80 

10.44 
8.72 

10.05 
11.09 
11.16 
11.13 
11.48 
13.17 
13.21 
14.87 
12.23 
12.86 
10.73 
17.12 
17.65 
17.88 
12.87 
15.04 

21.24 
14.02 
16.95 
20.40 
27.53 
29.47 
22.76 
15.23 
18.62 
22.04 
28.48 
29.40 
24.03 
17.96 
21.46 
24.46 
29.14 
29.41 
23.66 
21.44 
24.51 
26.80 
29.54 
29.50 
21.56 
24.41 
26.82 
28.41 
29.78 
29.64 

delay between treatment and the observation of a response, 
this is a practical necessity in order to avoid suspending ac- 
crual while waiting to observe the outcomes of patients who 
have been treated. This logistical problem has been addressed 
in the phase I dose-finding setting by Thall et al. (1999) and 
Cheung and Chappell (2000) and in the single-arm phase I1 

Table 2 
Frequentist properties of designs as in Table 
1 when (p0,  p l ,  p 2 ,  p 3 )  = (0.2,0.4,0.3,0.3) 

Probability of Expected number of 
selecting patients receiving 

Design None Ti Ti T2 T3 

OPT 0.318 0.416 9.83 7.60 7.43 
MY03 0.356 0.387 12.21 8.06 8.08 
TE 0.319 0.372 10.78 9.54 9.54 
TE* 0.140 0.449 11.32 9.04 9.04 
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Table 3 
Fkequentist properties of designs as in 
Table 1 with patients treated in cohorts 

Design Cohort size PNS PCS EN0 

OPT 1 0.894 0.510 22.76 
2 0.867 0.530 23.75 
3 0.863 0.542 24.15 

MY01 1 0.965 0.354 15.23 
2 0.933 0.431 18.93 
3 0.914 0.454 19.63 

MY02 1 0.940 0.428 18.62 
2 0.926 0.454 20.94 
3 0.889 0.491 28.56 

MY03 1 0.915 0.480 22.04 
2 0.895 0.497 24.02 
3 0.884 0.507 25.39 

TE 1 0.821 0.504 28.48 
2 0.850 0.474 27.70 
3 0.786 0.495 28.55 

setting by Follman and Albert (1999). Suppose that patients 
are treated in cohorts of size k ,  so that, if at some point in 
the trial there are m’ remaining treatments, a total of km’ pa- 
tients are randomized, with k receiving each remaining treat- 
ment. Table 3 gives PNS, PCS, and EN0 for the OPT, MYO1, 
MY02, MY03, and TE designs for cohorts of size one, two, 
or three. 

In general, treating patients in cohorts reduces the oppor- 
tunity to  stop the trial early. Because in the designs consid- 
ered early stopping necessarily leads to no treatment being 
selected, both the expected sample size and the probability of 
a treatment being selected are increased as k increases for all 
designs. This can be seen in Table 3; as k increases, PNS de- 
creases and PCS and EN0 increase for both decision-theoretic 
designs. If there are m‘ remaining treatments, the study is ter- 
minated as soon as more than 30 - km‘ patients have been 
treated. This means that, in some cases, the sample size is 
reduced by increasing the cohort size k .  For the TE design, 
in which the expected sample size is close to 30, this results 
in PNS, PCS, and EN0 being nonmonotone in k .  

5.  Discussion 
Although there is a considerable literature on selection and 
screening designs (cf., Bechhofer, Santner, and Goldsman, 
1995), this mostly focuses on preserving error rates and re- 
quires large sample sizes. There has been relatively little work 
of relevance for phase I1 or pre-phase I1 screening trials. In this 
article, we have used Bayesian decision theory to improve the 
designs proposed by Thall and Estey (1993). Our approach 
optimizes a decision process that allows inferior treatments 
to be dropped early, with the possible final selection of a sin- 
gle treatment for phase I1 testing. A strength of the method 
is that decisions about each treatment are made in light of 
the data available from the other treatment arms rather than 
comparing each treatment only with some critical threshold. 
Thus, if one or two treatments are considerably superior to 
the others, the latter will be dropped early in the study even 
if they represent an improvement relative to a target success 
rate. 

Wang and Leung (1998) propose Bayesian decision-theore- 
tic designs for pre-phase I1 screening studies in oncology in 
which a sequence of single-arm trials are conducted. Their ap- 
proach is similar to that developed here, although they assume 
that an infinite number of potential treatments are available 
for testing. This means that, as in the TE  design, decisions 
about when to stop testing a treatment Tt or to  start a phase 
I1 trial are based on the data on Tt alone. 

The major disadvantage of the decision-theoretic approach 
developed in this article is the computational requirement for 
the full backward induction approach, which is considerable. 
Calculations for the examples given in Section 4 were con- 
ducted using a Sun Ultra 5 workstation with 384 MB of mem- 
ory. Although the calculation of the optimal design took only 
about 2 minutes, a very large amount of memory is required 
to store the expected gains for use later in the algorithm. For 
n = 35, the time was increased to 20 minutes because of the 
need to write large arrays to  disk, and for n = 40, insufficient 
memory space was available to complete the calculations. Re- 
ducing the storage space needed by calculating the expected 
gains each time they are required increases the time required 
very dramatically, from a few minutes to several days. Even 
if a very large amount of memory was available, the large 
number of outcomes considered in the backward induction al- 
gorithm means that the calculations would rapidly become 
computationally infeasible as n was increased further. 

The MY03 design requires much less memory space and 
takes about 1 minute, so this approach remains feasible for 
larger studies. The fact that optimal actions are not found 
for all possible data sets in the algorithm does mean, how- 
ever, that the time taken to calculate frequentist properties 
for the MY03 approach exceeds considerably that needed for 
the OPT design. 

While the gain functions proposed might be used in many 
studies, there are some circumstances in which alternative 
forms may be more appropriate. A simple modification to 
those proposed is to include specific consideration of the un- 
certainty regarding the outcome of further development in 
phase I1 and phase 111 trials. The gain from potential future 
patients could then be replaced by <(&)II(Ot* - PO), where 
E ( 1 9 p )  is an increasing function representing the probability, if 
the true success rate is 6 t* ,  of successful further development. 
An alternative is to consider the financial gains and losses 
associated with further testing and successful development. 
Such an approach was used by Stallard (1998). 

Inevitably, the construction of a gain function requires com- 
parison of the cost of treatment with the gain to patients from 
success. Although we have chosen to attempt to present the 
costs c and K on the same scale as the probability of success, 
there is really no simple solution to this problem. A major 
theme of the approach suggested in this article is the choice 
of parameters in whatever gain functions are used in light of 
the frequentist properties of the design obtained. Sensitivity 
of the design to the gain function parameters used is illus- 
trated by the contour plots in Figure 1. The values of II and c 
do not have a very large effect on the properties of the design 
obtained, so the choice of K/II is the most important decision. 
In particular, e.g., the design with II = 1000 and K = 150 
has properties almost identical to that with El = 100,000 and 
K = 15.000. 
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The designs we have considered do not stop early if one 
treatment appears, based on interim data, to be superior to all 
the others. This is because the trial is very small and even the 
data from the completed trial can at best only suggest that a 
particular treatment may provide a real therapeutic advance. 
An important purpose of such small-scale early-phase trials is 
to estimate parameters about which, a pr ion ,  little is known. 
In the example considered in Section 4, CR is a necessary 
but not sufficient condition for long-term survival in acute 
leukemia. While it is reasonable to drop arms with low CR 
rates, it is desirable to continue recruitment to superior arms 
in order to gain as much information as possible from the trial 
prior to commitment to  phase I1 testing. 

We have focused on trials aimed at screening treatments for 
later study in a single-arm phase I1 trial. An alternative is to 
also conduct a randomized selection trial in phase 11, possibly 
also including a control treatment. There are two important 
differences between such a trial and the pre-phase I1 screening 
trial considered here. First, the phase I1 trial might be much 
larger than the 30-patient trial considered in Section 4; sec- 
ond, in phase 11, safety is often as important as efficacy, and 
both must be considered. A larger sample size means that, 
ethically, it is important that an arm be dropped not only for 
lack of efficacy but also if it shows a high rate of treatment- 
related adverse events. 

In principle, extension of the method described here to a 
larger (phase 11) trial should be straightforward. In practice, 
however, the backward induction required to construct the op- 
timal design becomes computationally infeasible as the maxi- 
mum sample size approaches even that of a moderately sized 
phase I1 study. In such circumstances, the myopic approach 
considered above would seem particularly suitable. 

Phase I1 screening designs that consider both efficacy and 
safety endpoints have been considered by Thall and Sung 
(1998), using an approach that extends the TE  method to in- 
corporate multinomial endpoints and randomization. Stallard 
et al. (1999) obtained decision-theoretic designs for single- 
treatment phase I1 studies incorporating both safety and effi- 
cacy data. Their gain function could be used in the approach 
described here to give designs for phase I1 selection trials al- 
though, again, the increased complexity would increase the 
computational burden. 
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RE SUM^ 
Dans le contexte de petits essais randomises prbphase 11, 
conqus pour ktablir une premikre selection de traitements, 
et dans le but d’amkliorer le plan experimental de Thall et 
Estey (1993, Statistics in Medicine 12, 1197-1211), nous pro- 
posons une approche bayksienne, issue de la thkorie de la 
dkcision, qui permet d’optimiser une fonction de gain prenant 
simultankment en compte les bknkfices immkdiats et futurs 
attendus pour les patients, les coiits unitaires par patient et 

le montant total du dkveloppement du traitement considkrk. 
Afin de rkduire la charge de calcul entrainke par ce processus 
inductif, nous prksentons kgalement des versions “myopes” 
de cette mkthode, “myopes” en ce qu’elles ne considkrent B 
la fois qu’une, deux ou trois des decisions futures. Plusieurs 
de ces plans expkrimentaux sont comparks entre eux, dans le 
contexte d’un essai de screening chez des patients atteints de 
leuckmie mykloghe aigue. 
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