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SUMMARY

In many longitudinal studies it is desired to estimate and test the rate over time of a particular
recurrent event. Often only the event counts corresponding to the elapsed time intervals between
each subject’s successive observation times, and baseline covariate data, are available. The intervals
may vary substantially in length and number between subjects, so that the corresponding vectors of
counts are not directly comparable. A family of Poisson likelihood regression models incorporating a
mixed random multiplicative component in the rate function of each subject is proposed for this
longitudinal data structure. A related empirical Bayes estimate of random-effect parameters is
also described. These methods are illustrated by an analysis of dyspepsia data from the National
Cooperative Gallstone Study.

1. Introduction

In many longitudinal studies the exact occurrence times of a particular recurrent event of
interest are not available. Rather, only the counts corresponding to the intervals between
each subject’s successive observation times are known, along with possibly some baseline
covariate data. It is often the case that both the total number of counts and their specific
observation times for each subject vary substantially across the sample. A basic difficulty
in analyzing such data is that the counts are not directly comparable between subjects,
since they do not correspond to the same time intervals.

This type of data frequently arises in clinical trials, where the recurrence rate of an
important nonfatal event may serve as an index of disease morbidity. Examples are episodes
of dyspepsia in patients with gallstones, hypoglycemia in diabetics, angina pectoris in
coronary patients, and seizures in epileptics. Patients are usually required to report the
number of episodes occurring between clinic visits. In practice, patients are early, late, or
miss scheduled visits, and each patient’s data are subject to right censoring. A central issue
is whether the time-dependent event rate differs between treatment groups. In any case, an
estimator of the covariate-adjusted rate function is desired.

The data structure for a single subject may be described formally as follows. Let
0 =179< 7 < ... < 7;denote the successive observation times and N, the event count
reported at 7;, corresponding to the preceding interval 4, = (-, 7], j =1, ..., J.
Thus, A; has length d; = 7, — 7;-; and midpoint m; = (+;-; + 7;)/2. Denote N =
(N, ..., N)T and A = (4,, ..., A,)" for convenience, with X a p-vector of baseline
covariates. Subjects will be represented by the subscript i, so that N; is the jth count
of the ith subject, etc.

Key words: Clinical trials; Generalized linear models; Longitudinal count data; Maximum likeli-
hood; Nonlinear regression.
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Thall and Lachin (1988) discuss nonparametric methods for analysis of this data structure
in the absence of covariates. Korn and Whittemore (1979) analyze longitudinal binary
response data with covariates by estimating logistic regression coefficients for each subject
and then averaging these across the sample. This two-stage method is generalized by
Stiratelli, Laird, and Ware (1984), who develop an empirical Bayes approach. Gilmour,
Anderson, and Rae (1985) derive a quasi-likelihood for binomial data with covariates by
averaging over multivariate normally distributed random effects. Hinde (1982) and Breslow
(1984) each take a similar approach to univariate Poisson count data with covariates X,
including an unobserved normally distributed random effect in X to account for so called
“extra-Poisson” variation not explained by the observed covariates. Mixed Poisson likeli-
hoods and Poisson regression models have been employed by a number of other authors
in various contexts. Weber (1971) uses iteratively reweighted least squares (IRLS) to fit a
mixed homogeneous Poisson process to traffic accident count data. More general formu-
lations of Poisson regression models showing the equivalence of IRLS and the Fisher
scoring method of maximum likelihood have been given by Frome, Kutner and Beauchamp
(1973) and Frome (1983).

The likelihood employed here may be regarded as a mixed generalized linear model
(GLM) having multivariate response. Since their introduction by Nelder and Wedderburn
(1972), the class of GLMs has been successively enlarged by a number of authors. These
include Wedderburn (1974), who introduced quasi-likelihoods, Thompson and Baker
(1981), Jorgensen (1983), and Green (1984), who provides a very general proof of the
equivalence of Fisher scoring and IRLS in maximum likelihood regression models. More
recently, Liang and Zeger (1986) and Zeger and Liang (1986) have adapted the quasi-
likelihood approach to longitudinal data. In addition to dealing with the statistical problems
at hand, it is my intention here to further illustrate via this application the breadth and
utility of the ideas developed by the authors cited above. In particular, maximum likelihood
regression methods can be applied to longitudinal data having inherent dependencies within
each response vector.

For the present problem, the criteria shall be that the model (i) account for variability
between patients, (ii) provide an explicit representation of the dependence among the
counts of each patient, (iii) allow the event rate to vary as a function of time, (iv) be
sufficiently tractable and flexible to allow broad application, especially in the clinical trial
setting described, and (v) incorporate covariate data. The likelihood given in Section 2
adapts the Poisson likelihood regression approach by incorporating a multiplicative variance
component vy into each patient’s event rate process and mixing according to the distribution
of v. Parameter estimation is discussed in Section 3, including solution of the likelihood
equations, estimation of the covariate-adjusted rate function, analysis of deviance, and a
related empirical Bayes approach to estimation of random (subject)-effect parameters. An
illustration applying these methods to data from the National Cooperative Gallstone Study
is presented in Section 4. Computational aspects are discussed briefly in Section 5.

2. The Likelihood

Regard each subject’s sequence of events as a doubly stochastic Poisson process (cf. Cox,
1955). Specifically, the rate process of the ith subject shall be assumed to be of the form

YAt 8, X0, i=1,...,m, @.1)

where v, . .., vn are iid unobserved nonnegative random subject effects with A an explicit
function of time ¢, the baseline covariate vector X;, and a parameter vector 8. In the
standard GLLM formulation for univariate Poisson response data (cf. McCullagh and Nelder,
1983, Chaps 2 and 6) X; and 8 are of the same dimension and \; depends on them only
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through their inner product X}8, usually via the log-linear link A; = exp(X78). In general,
however, 8 may contain elements that characterize the functional shape of A aside from
X;, and A may take on any nonnegative differentiable form appropriate to the given
situation, provided the model is identifiable.

To adapt this to interval count data, define the cumulative hazard

Ai(A)=£K(t; B8, X;) dt 22)

for any time interval A. Denote A;; = A;(4;;), corresponding to the interval preceding the
Jjth visit. Although A may vary with time, X; should contain only baseline covariates, since
updated covariate information is a time-dependent response. The inclusion of such data in
regression models of the sort considered here risks adjusting one response variable by
another and so obfuscating the effect of interest (cf. Kalbfleisch and Prentice, 1980,
Chap. 5.3). We thus define the p-vector Z[; = (f};, XT), where f;; is a (p, X 1)-vector of
functions of time, X; is (p, X 1) with p = p; + p,, and the J; X p covariate matrix is

7}
Z; = , i=1,...,n
77,
In all that follows we use the approximation A;; = d;;A(my;; X;, 8) = dexp(f5 8" +
XTB8®). For simplicity, index 8" = (81, ..., B,)" and 8 = (Bp+1, ..., B,)". The

first term of log()\) is its underlying time-varying component. For example, the form
t%2exp(Bit) is represented by 1,8 = B,m;; + B.log(m;), using my; in place of ¢. For a
polynomial function, this term would be 8,m;; + - -- + B, m}}, with possibly log(m,;) in
place of m;;. A plot of the mean empirical rate function should provide a basis for initially
determining a reasonable form for the underlying rate as a function of time, and subse-
quently for assessing the fitted model. The ith subject’s empirical rate function at time ¢ is
defined by

Ae(t; i) = il‘. (Niy/dip)I(t € Ay,

and undefined for ¢ & U, 4;;. The sample mean empirical rate, likewise defined only for ¢
in the time period of the study, is given by

Y XE(t; i)
Xt It € Ay)°

For each ¢, the ith summand in the numerator is taken to be 0 if Ag(¢; i) is undefined.
The denominator is simply the number of subjects in the study at time ¢, hereafter
denoted by n,.

Let g(x; ¢) be the common density function of the v;’s, with ¢ its g-dimensional
parameter vector. The model is thus parameterized by 87 = (¢, 87), where ¢ may be
regarded as a vector of mixing, variance component, or nuisance parameters and 8 a vector
of covariate and rate parameters. Denoting P(k; x) = e*x*/k!, k =0, 1, 2, ..., our
likelihood for n subjects is the product over i of the mixed Poissons

Ae(?) = (2.3)

o Ji
Zi=J Hl P(Nij5 xAij)g(x; ¢) dx. (24
=
This expression is similar to (3.1) of Stiratelli et al. (1984), with the essential differences
that their objective is to estimate random effects and components of variance, and they
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integrate out fixed effects under a normality assumption, subsequently carrying out a two-
stage procedure employing the EM algorithm. Our likelihood is also analogous to (3.5) of
Harville and Mee (1984), who treat a mixed model for categorical data, also assuming
normality.

Denote N; = Z;N;, A;, = Z;A;, J. = 2;J;. Under a gamma mixing distribution
g(x; a, v) = x* 'exp(—x/v)/[v*T'(a)], x > 0, the likelihood takes the form

] Ji
Zo(0) = TOEN) oy, 4y [T (4N, 2.5)
I‘(a) j=1

with ¢ T = (o, ») and g = 2. The gamma distribution is employed primarily for its flexibility.
The intention here is not to construct a model that is “correct,” but rather to obtain a
likelihood function that is both realistic and tractable, and that will provide reasonable
estimators of the covariate-adjusted rate.

It is important to note that this is a conditional likelihood in N; given the covariates X;
and clinic visit process {A;, J;}. If we assume the latter terms to follow some distribution 4
parameterized by 6*, the total likelihood of the ith patient is the product

Zi(Ni| A, Ji, Xh(As, T, Xi).

The log-likelihoods in # and 0* are thus maximized separately, subject to the key
assumption that .%; does not involve * and /4 does not involve 8. While treating covariates
as fixed is a standard approach in regression, the assumption that the distribution of the
covariates and reporting time process is parameterized separately from the distribution of
the responses for longitudinal data is often made implicitly without mention. In this article
our concern shall be fitting the product of the conditional likelihoods (2.5).

To verify that the likelihood is identifiable in 6 for our data structure, suppress i and take
J = 1 initially, with A(8) = A treated as a single parameter. In this case the distribution is

I'(a +n) A"
I'(e) n!

and it is easily verified that fis identifiable only in « and v A, i.e., » and A are not separately
identifiable. Generalizing to J intervals, it is likewise the case that f'is identifiable in « and
vA,, ..., vA,;. However, since each A; = exp(B"Z;), viexp(B] Z;) = v.exp(B1 Z;), for each
Z,; implies that », = v, and 8, = 8, provided that the rows of the matrix

1 ... 1
Z -2,

are linearly independent. Note that an additive constant 3, in the exponent would violate
this condition. One may regard such a term as being absorbed into », a conceptualiza-
tion that is in accordance with the initial formulation (2.1) of the rate and the fact
that E(y) = av.

The mixture formulation accounts for both extra-Poisson variation (overdispersion) and
dependence among the elements of N;. Specifically, NV;; has mean u;; = E(y) A;; and variance
o7 E(y)A;; + var(y)A7, and cov(N;;, N;;') = var(y)A; Ay for j#j’,i=1, ..., n, with
N, ..., N, mutually independent. The multiplicative term +; becomes additive in the
exponent as log(vy;) = ¢;.. This formulation is comparable to those of Hinde (1982), who
assumes {¢;} to be iid N(0, o) and estimates ¢ via the EM algorithm, and Breslow (1984),
who proceeds with an assumption of approximate normality and iterates alternately between
o and B to obtain estimates. However, both authors deal with the simpler case in which the
counts are univariate, conditional upon the covariates.

The commonly used approach to iid Poisson data in which each count’s entire mean is
mixed independently cannot be applied here. Due to the dependence, inequality of

f(n; A, o, v) = A+ YY" p=0,1,2,..., (2.6)
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observation intervals, and variation of A over time, it is clearly inappropriate to mix all
E(N;;) with the same distribution. The simple device of mixing the multiplicative effect v,
for each E(IN;) avoids these difficulties and provides a model that meets the criteria (i)-(v)
given earlier.

3. Estimation

3.1 Fitting the Likelihood

Denote L; = log(.%), L = Z;L;, NT = (NT, ..., NT), AT = (AT, ..., Al) and W =
OL/OA = (WT, ..., WI)T, where each W, = dL/dA;. We shall also require the J. X p
matrix

D,
D=—=| - |, (3.1)

where D; = dA;/08 = diag(A;;)Z;. The log-likelihood is given by
N -1
Li=1I[N,>0] Y logla+7r)— alogv
r=0 3.2)
Ji
- (Ni. + a)log(A,; + l/_l) + 2 Nijlog(Aij), = l, AP (A
j=1

aside from terms not involving 8. The score vector U(0) = 3L/30 = ((dL/d¢)",
(8L/38)")" = (U(¢)", U(B)")", say, with

UB)=D"W= Y DIW.. 3.3)
i=1
Since Wj; = N;j/A;; — (N, + a)/(A;, + v™"), the ith summand of (3.3) is

N + «
TN, — —f = A
74 (N, e A,). (3.4)

Computation of U(¢) is straightforward.

Solution of the likelihood equations U(8) = 0 may be achieved either by a Gauss-
Newton approach, with some step size modification, or a partial Fisher scoring version of
this method. The second derivative (gradient) matrix may be partitioned in the form

__ 0L Ay Ag
A=- 300" [Aw Bgs )’ (3:)

where Ayy = —3°L/3¢d", Ays = —0°L/ddB™ = A}y, and Agg = —3*>L/3BB". The iterative
step 07 — UV is given in general by

0D = 5, A7 U(OY) + 6, (3.6)

with A, computed at 8 and the step size s, chosen to avoid overstepping the solution
(maximizing) point, especially at early stages of the process. A preliminary evaluation of
L for a selected array of values of 0 is also advisable, since we found the algorithm
quite sensitive to choice of a starting value for our data set. In this regard, a modified
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Gauss-Newton approach using only first-order derivatives of L might be useful at the initial
stages, although we did not adopt this method for our analysis.

As an alternative to the matrix A of exact derivatives, Ags may be replaced by its expected
value. Denote E(—3%L;/dA;AT) = E(W;WT) = B; and E(Ag) = D'BD = Z,DfB;D;,
where B is the J X J block-diagonal matrix diag(B,, . . ., B,). It follows easily that

B; = av{diag(A}') — — 117},
1 — IIA,'.
hence
BD = ZT i e — Y A ATZ.
D,;B;D; = Z,; [av diag(A;;) T+ oA, AADZ;. 3.7)

For the example given in Section 4 to follow, ¢ is reparameterized as ¢* = (a, b) =
(log «, log v) to allow unconstrained optimization. The empirical rate plots suggest that
t?2exp(B;t) should be sufficiently flexible to serve as the time-varying component of the
fitted rate function. The estimated rate at time ¢ for a subject with covariate vector X is
thus given by

Az X) = expla + b + Bit + Balog(t) + XTBP). (3.8)

3.2 Analysis of Deviance

Denote u; = (i1, - - ., pis)". Since each p; = E(v)Ay, it is a function of the nuisance
parameters ¢ as well as 8. In the usual generalized linear model formulation the deviance
would be given by

-2 é {Li(mi(8); No) — Li(ji; N,

with g;; = N;; and the full model likelihood a function of the data alone. Due to the presence
of ¢ in the model, there is no satisfactory baseline L(u; N) relative to which a residual
deviance may be defined. We thus consider differences in —2L(8) for comparison of nested
models.

It seems reasonable here to deal with a maximal model that includes ¢, rate function
parameters 8V, and the parameter vector 8@ corresponding to the largest set of baseline
covariates initially considered. Our minimal model thus includes only ¢ and 8; specifi-
cally, it is the four-parameter likelihood in which A;; = d;;exp(8,my; + B.log my;), with
8™ = (B4, B2)". Each model may be considered to have three components: (1) the random
effects {v.} corresponding to the parameters ¢; (2) the underlying time-dependent rate
function A\(z) = t%2exp(B8:t) = exp(B:t + B,log t); and (3) a subset of prognostic covariates
X; chosen from those of the maximal model and parameterized by 8.

3.3 Empirical Bayes Estimation

Although ¢ and B are estimated together, one may regard our methodology as part of an
empirical Bayes approach in which v, ..., v, are random parameters, g their prior, and
¢ the hyperparameters of g. From this point of view, our likelihood %5 is the marginal of
N, and a posterior for v is given by [1;; P(Ny; v:Aij)/-Z6(N). Denoting the maximum
likelihood estimators by &, #, 8, an estimator of each v; is given by the mean of its posterior,
which is gamma with parameters & + N, and [A; (8) + »7']"". Thus, the estimator of v; is

. _ _a+ N,
YT T Y ALB)
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When the distribution of subject effects is of interest, v, . . ., 7, may serve as an estimated
sample for computation of descriptive statistics, an empirical cdf, etc.

4. Example

In the National Cooperative Gallstone Study (NCGS) (cf. Schoenfield et al., 1981), a major
concern was the effect of the drug chenodiol on biliary symptoms commonly associated
with gallstones. For illustration, we present an analysis of the incidence of dyspepsia over
the first 2 years of the study for the 111 patients who had floating stones and were assigned
to either the high-dose (n, = 63) or placebo (n, = 48) groups. All patients were scheduled
for routine clinic center visits at 1, 2, 3, 6, 9, 12, 16, 20, and 24 months of follow-up, and
at 28 months if gallstone dissolution was observed. Thus, N,; is the number of episodes
of dyspepsia reported by patient i at his or her jth visit. Baseline covariates included
in the analysis are AGE in years, SEX (1 = female, 0 = male), alcohol drinking status
ALCAT (1 = current drinker, 0 = not current drinker), and a treatment group indicator
TRT (1 = high dose, 0 = placebo). The observed number of visits per patient varied from
1 to 12, with a median, mean, and standard deviation of 9, 7.9, and 2.18, respectively.
The data were initially fit using the likelihood specified by

Ay = djjexp[Bimy + B.log(my;) + XTB8®).

The maximal model (I) included all four baseline covariates, with successive submodels
obtained by deleting the least significant covariate at each stage of a simple stepdown
procedure. Parameter estimates and their standard errors for each model are given in
Table 1. To assess goodness of fit, the generalized Pearson statistic (cf. Liang and Zeger,
1986, §3.3) :
vy Xi=l S (Ny — b)) /6%
= 7= 4.1)

for longitudinal data was employed. Since y has mean av and variance av?, y;; = avA;; and
o7, = avA; (1 + vA;;) for the mixed Poisson model (2.4).

Table 1
Parameter estimates and standard errors for models obtained via stepdown procedure
Model
Parameter I I I v \' II*
(Covariate) (maximal) (Minimal) (Poisson)
a ' —1.7269 —-1.7352 —-1.7606  —1.8029 —1.8725
(.1613) (.1612) (.1604) (.1592) (.1576) 8 1.1470
b 4.4403 3.8831 4.4756 1.4904 1.0674 o (.1730)
(1.9021) (1.7111)  (1.7709) (.4043) (.3080)
8, () .0265 .0265 .0264 .0265 .0266 .0213
! (.0021) (.0021) (.0021) (.0020) (.0020) (.0019)
8, (log(t)) —.6575 —.6572 —.6565 —.6591 —.6632 —.6596
2 {108 (.0562) (.0562) (.0562) (.0562) (.0560) (.0537)
8, (TRT) -.9148 —.8636 —1.0949 —1.1696 . —.8009
3 (.5249) (.5036) (.4764) (.4782) (.0598)
—.0658 —.0594 —.0599 —.0302
B+ (AGE) (.0336) (.0320) (.0337) - - (.0028)
7497 .7030
Bs (ALCAT) (5128)  (4902) - - - -
—.4105
Bs (SEX) (4934) - — — - —

7 3.36 3.21 3.30 3.26 2.61 28.36
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As a baseline for comparison, a “naive” Poisson regression model (III*) ignoring within-
subject dependencies was also fit to the data. The same covariate set as that of model III
was used, with additive parameter 3, in the linear component. This is the usual GLM for
Poisson counts, with Mij = 0',21' = d,-jexp[Bo + Blm,y + Bglog(mij) + X;'rﬁ(z)].

The four parameters a, b, 3;, and 8, were highly significant in each of models I-V,
based on the approximately normal statistics §/s(d;). Likelihood-ratio comparisons
for these models are summarized in the analysis of deviance given in Table 2. Both the
likelihood-ratio tests and stepdown procedure indicate that TRT and AGE are significant,
while the covariates SEX and ALCAT may be dropped from the model. It is notable that
b sharply decreased when each of the significant variables AGE and TRT was removed.
This might have been anticipated given the large negative correlations between b and the
coefficients of these variables, i.e., pu(d, Bs) = —.9743 and pu(b, B3) = —.6593. In contrast,
a remained relatively constant. Equivalently, the mean of v dropped while its coefficient
of variation decreased only slightly.

Table 2
Analysis of deviance
) Difference
Model —2L(6) (P-value) Components
V (minimal) 3,642.35 No, ¥
v 3,636.57 5.78 (.016) TRT| o, v
I 3,633.20 3.37 (.066) AGE|)o, v, TRT
Il 3,631.20 2.00 (.173) ALCAT|)o, v, TRT, AGE
I (maximal) 3,630.50 .70 (.403) SEX|Mo, v, TRT, AGE, ALCAT

A comparison of the Poisson GLM III* to the mixed Poisson model III shows a striking
reduction in —ZL(é), from 6,920.12 to 3,633.20. Moreover, the Poisson model is clearly
overdispersed (62 = 28.36), with a reduction of one order of magnitude in &2 under the
mixed Poisson model. There is a marked increase in the standard error of the estimated
coefficients of AGE and TRT due to fitting the mixed Poisson model, compared to the
naive Poisson GLM. This is apparently due to the fact that, in accounting for between-
subject variability, inclusion of random effects in the model reduces the explanatory power
of the observed covariates, as is the case in the general linear mixed model. In contrast, -
the standard errors of the estimated coefficients of ¢ and log(z) are virtually the same
under the Poisson and mixed Poisson models. This may be due to the fact that clinic visit
time, which enters the model as the covariates m;; and log(;;), varies primarily within
subjects.

Although the form of Ao (¢) is quite flexible, the above formulation allows that the rates
in the two treatment groups differ only by the multiplicative term exp(8;), aside from the
other covariates. The more general case in which \o(¢) has the different shapes %2 e11* and
tPoef! in the high-dose and placebo groups, respectively, is considered next, especially
since the mean empirical rate plots appear to have different shapes in the two treatment
groups (Figures 1 and 2). The mixed Poisson model VI thus generalizes model III
by replacing 3,m;; + B.log(m;;) with the sum of treatment X time interaction terms
811 TRT m;; + B2 TRT log(m,«j) + ﬁlo(l - TRT)m,, + ,320(1 - TRT)log(m,, ) Although this
interaction model does not fit into the hierarchy of models summarized in Tables 1 and 2,
it does contain III as a submodel via the hypothesis H: 8, = B10, 821 = B20. For the fitted
interaction model, —2Lv;(f) = 3,524.30 so that the likelihood-ratio statistic for comparing
models III and VI is 108.9 on 2 df, indicating a substantial improvement in fit due to
including this generalization of ().



Mixed Poisson Regression Models 205

Q
o -
REPORTED ’_
NUMBER g
OF S
EPISODES
PER WEEK
n
S

MODEL VI
[Ts]
c
o -
EMPIRICAL
o
=
o
0.00 20.00 40.00 60.00 80.00 100.00

WEEKS OF FOLLOWUP
Figure 1. Mean empirical and fitted rates of dyspepsia for high-dose chenodiol treatment group.

Inspection of the fitted parameter values of model VI, summarized in the first
column of Table 3, indicates that the coefficient B;; of ¢ in the high-dose group is
nonsignificant, based on the statistic ‘4,,/s(8;1) = —.0131 (P = .9895). However,
elimination of this parameter yields the reduced model VII, with 1-df likelihood-ratio
statistic —2[Lyu(#) — Lvi(6)] = 2.58 (P = .1082). In addition to the problem that these
tests give rather conflicting results, dropping 81, from the model produces a nontrivial
change in the parameter estimates 3,; and 8;. Comparisons of the mean covariate-adjusted
rate to the mean empirical rate in the high-dose group showed a clearly better fit under
model VI than under VII, especially for ¢ in the range 1 to 26 weeks.

The coefficient 8; of the high-dose group indicator TRT in models VI and VII is not a
treatment “effect” in the usual sense, since the underlying rate functions have different
shapes in the two treatment groups. Although the term 8;TRT in the linear component of
these models multiplies the rate function of the high-dose group by exp(8;), it does so in
the presence of the time X treatment interaction terms. The two groups are properly
compared under model VI in terms of their underlying rates, regarded as functions of time.
These are

tPrexp(But + B3) (High dose)
and
tP2exp(Bi0t) (Placebo)

aside from the common term a + b + 8,AGE.
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Figure 2. Mean empirical and fitted rates of dyspepsia for placebo treatment group.

An alternate approach to dealing with treatment interaction is simply to fit the model
separately in the two groups. This yields the ten-parameter model VIII, also summarized
in Table 3. In this model all parameters a, b, 8;, 8., and B, are treatment group-specific,
with no 8;TRT term in the linear component. This produces a reduction in —2L(8)
from model VI of .34 on 2 df, with only the parameter estimates @, and b, changing
appre01ably, apparently to adjust for the deleted 3; in the high-dose group. Specifically, the
sum d + b + B = 1.4535 in log(}) for the high-dose group under model VI is rather close
to the comparable term 4, + b, = 1.3671 under model VIII. Recall that the identifiability
condition given in Section 2 precludes an additive constant 8, in the linear component,
with b = log(») fulfilling this role. Thus, the terms (a + b + 83, a + b) under model VI and
(a; + by, ao + by) under model VIII each are analogous to the intercepts in a two-group
analysis of covariance model with heterogeneous intercepts and slopes. Models VI and VIII
yield roughly the same fit to these data, with model VI requiring fewer parameters.

Based on these results, model VI was chosen as the final model, the instability of
inferences regarding 6“ notwithstanding. The lower trlangle of the estimated correlation
matrix of § = (&, b, 11, Ba1, Bro, Bao, B3, Ba)T, with variances along the diagonal, is

.0257
—.0933 3.0827
—-.0049 -.0106 1.3 x 107°
.0037 .0036 —.8836 .0097
—.0084 .0343 .0002 —-.0001 6.9 x 107°
—-.0036 -.0378 —.0003 .0001  —.8762 .0051
—.0037 .0145 2685  —.3704  —.1431 2157 2867
0027 -.9730 0114  —.0041 0099  —-.0270 -.1663 .0011 |
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Table 3
Parameter estimates and standard errors for treatment interaction models
Parameter Model
(Covariate) VI VII VIII VI* (Poisson)
High-dose
a —1.7636 —1.7626 —1.6696
! (.1603) (.1603) (.2267) 1.4387
b 5.0223 5.0327 3.0367 Bo (.1816)
! (1.7558) (1.7525) (1.9571)
B () —4.7 X 1073 — —5.6 X 107 -9.9 X 10~°
(.0036) (.0036) (.0035)
B21 (log(2)) —.1618 —.0052 -.1616 —.1304
(.0987) (.0017) (.0987) (.0998)
B33 (TRT) —1.8052 —2.1363 —_ -1.9137
(.5355) (.4974) (.2540)
B4 (AGE) —.0666 —.0668 —.0650 —.0293
(.0333) (.0333) (.0355) (.0028)
o1 3.19 3.27 3.38 17.13
Placebo
—1.7636 —1.7626 —1.8537
o (.1603) (.1603) (.2282) 1.4387
5 5.0223 5.0327 5.4516 o (1816)
0 (1.7558) (1.7525) (4.0458)
Bio (1) .0414 0414 0414 .0323
(.0026) (.0026) (.0026) (.0024)
B20 (log(2)) -.9252 -.9251 -.9247 —.9249
(.0712) (.0712) (.0713) (.0657)
B40 (AGE) —.0666 —.0668 —-.0732 —.0293
(.0333) (.0333) (.0782) (.0028)
73 3.30 3.30 3.13 39.92
D 8 7 10 7
—2L(6) 3,524.30 3,526.88 3,523.96 6,854.86

It is notable that the coefficients of ¢ and log(¢) were highly negatively correlated in both
treatment groups (—.8836 in the high-dose and —.8762 in the placebo group). The
highest correlation (—.9730) was between b and B., as was the case in the noninteraction
model IIL.

The mean covariate-adjusted rate

Avi(t) = ﬁ: A Xo)/n,

was computed for each treatment group to assess goodness of fit via graphical comparison
to the mean empirical rates. Analogously to the computation of Ag(¢; i), each A(z; X;) was
computed only for ¢ within the time period where patient i actually had data. These plots
appear in Figures 1 and 2. The fits in each group appear to be quite good, especially given
the variability in reporting times and use of the interval midpoint m;; in place of ¢ for
computation of A;;. A more detailed version of this graphical comparison would be to
overlay plots of Ae(z; i) and A(z; X;) separately for each subject. Given the impracticality
of presenting » = 111 such graphs here, the plots of their means within each treatment
group give reasonable pictures of the average fit across the sample.

Use of the estimated posterior mean v; in place of exp(a + 5) for estimation of the ith
patient’s rate gave rather poor fits for many patients and on average. This is perhaps due



208 Biometrics, March 1988

to the fact that the distribution of v;, i =1, ..., 111, is heavily skewed to the right, varying
from .079 to 367.27 with the following quantiles:

Percent 5 10 25 50 75 90 95
Quantile .170 .227 .624 2.10 16.28 97.62 145.03

We note the distinction between the distribution of these estimated posterior means and
the distribution of the random effects themselves.

In addition to the large negative correlation between b and B., it is interesting that the
term exp(BsAGE) = (.9356)*F shows a substantial decrease over the range of ages (26 to
75 years) of patients considered. Comparing the extremes, the ratio of reported incidence
of dyspepsia of a 26-year-old patient to that of a 75-year-old patient is 26.10 for the fitted
model VI.

The present modelling approach exhibits several advantages over simpler methods, at
least for the data set considered here. A large increase in the fitted log-likelihood was
achieved by passing from the Poisson GLM, which ignores within-subject response depen-
dence, to the mixed Poisson model. A considerable reduction in overdispersion was also
achieved, in addition to elimination of an apparent heteroscedasticity exhibited by the
estimated dispersion parameters 63 = 17.13 and ¢ = 39.92 for the interaction Poisson
GLM VI*. We note that the overdispersion was not entirely eliminated, however, since the
final model had estimated dispersion parameters 67 = 3.19 and ¢3 = 3.30 (with pooled
value 3.21), rather than values near 1. Although the empirical rate plots provide a reasonable
informal comparison of the treatment groups, they ignore all other covariate information.
In this regard our model enjoys the advantages of any parametric regression model, i.e.,
formal tests of treatment or other covariate effects and prediction of the rate function for
given X are available. Based on our numerical results, the necessary model assumptions
and computational effort appear to be justified.

5. Computation

Each fitted likelihood was required to satisfy three convergence criteria: (i) that each
component of §7*D — 9 be smaller than +107'?; (ii) that each component of U(0"*") be
smaller than +107'?; and (iii) that | L(§*P) — L(8")| < 1078, Using the golden section
line search method to obtain a step size, criteria (i) and (iii) were easily met, subsequent to
a preliminary search for a starting point as described earlier. The Gauss-Newton approach
without use of optimum step size selection worked poorly or not at all in early stages of
the iterative scheme. The step size subroutine was dropped to save time near convergence,
where the criterion (ii) became the one most difficult to satisfy. This was apparently due to
the existence of a plateau in a one- or two-dimensional submanifold of the space of U(8)
for some of the models. When this occurred, convergence was obtained quite easily by
fixing all parameters but those corresponding to the entries of U(0) not satisfying (ii) and
maximizing in the remaining parameters. When selective use of both the line search for
optimum step size and maximization in a subspace were employed, convergence was
obtained in fewer than 10 iterations. Use of the modified Fisher scoring method did not
appear to affect either the speed or accuracy of the algorithm.

All computations were carried out in SAS on an IBM 4361.
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RESUME

Dans beaucoup d’études temporelles on désire estimer le taux d’arrivée d’un événement récurrent
particulier. On ne dispose souvent que des comptages correspondant au temps écoulé entre deux
observations de chaque sujet, ainsi que de covariable accompagnatrices. Les intervalles peuvent varier
beaucoup en durée et en nombre suivant les sujets, si bien que les vecteurs de comptage correspondants
ne sont pas directement comparables. On propose, pour cette structure de données temporelles, une
famille de modéle de régression, a I’aide d’une vraisemblance poissonnienne, qui comprend un terme
multiplicatif dans la fonction de taux pour chaque sujet. On décrit aussi I’estimateur bayesien
empirique associé des paramétres aléatoires. Ces méthodes sont illustrées par I'analyse de données
concernant la dyspepsie, provenant de la National Cooperative Gallstone Study.
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