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Summary. We propose an adaptive two-stage Bayesian design for finding one or more acceptable dose
combinations of two cytotoxic agents used together in a Phase I clinical trial. The method requires that
each of the two agents has been studied previously as a single agent, which is almost invariably the case
in practice. A parametric model is assumed for the probability of toxicity as a function of the two doses.
Informative priors for parameters characterizing the single-agent toxicity probability curves are either elicited
from the physician(s) planning the trial or obtained from historical data, and vague priors are assumed for
parameters characterizing two-agent interactions. A method for eliciting the single-agent parameter priors
is described. The design is applied to a trial of gemcitabine and cyclophosphamide, and a simulation study
is presented.
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1. Introduction
The goal of a Phase I clinical trial of a new agent is to find a
dose having acceptable toxicity, where dose-limiting toxicity
is typically defined as side effects sufficiently morbid that they
constitute a practical limitation to the delivery of treatment.
The particular effects, and the severity at which the limita-
tion to treatment is imposed, are specific to each clinical set-
ting. For ethical reasons, most Phase I trials are conducted
adaptively (Storer, 1989), with the dose for each successive
patient cohort chosen using the dose-toxicity data from pa-
tients treated previously in the trial. The challenges in Phase
I trial design and conduct are that little is known a priori
about the dose-toxicity probability curve, and decisions must
be based on very small sample sizes.

In a Phase I trial of two agents used in combination for the
first time in a particular patient disease group, the goal is to
determine an acceptable dose pair, x = (x1,x2). The problem
of constructing an algorithm for choosing doses sequentially
in this case is more difficult than the analogous single-agent
problem. Although prior knowledge of each agent’s individ-
ual dose-toxicity curve typically is available from previous
Phase I trials, such information is of limited use for predict-
ing the probability of toxicity as a function of x when the
two agents are used together. This is because the biochem-
ical and biological effects of the combination may be quite
complex, and the dose-toxicity probability surface may de-
pend largely on unknown interactions between the two agents.
Simon and Korn (1990) give a detailed discussion of this prob-
lem. In oncology, this phenomenon is commonly seen, for ex-
ample, with combination chemotherapies, selective immuno-

toxins combined with T-cell infusion, and graft-versus-host
disease prophylaxis following ablative chemotherapy in allo-
geneic bone marrow transplantation. An additional difficulty
is that even a carefully defined bounded planar region of po-
tential x values is a much larger set than the line segment
within which dose-finding is usually done in a single-agent
Phase I trial. An exhaustive search on even a coarse grid of
(x1,x2) pairs is simply not feasible in Phase I, due to both the
limited sample size and ethical constraints.

Despite these difficulties, practical methods may be con-
structed for dose-finding with two agents in Phase I. Simon
and Korn (1990, 1991) propose a method based on the idea
of the “total equivalent dose” of the combination. Another
approach is to limit the search to a sequence of combina-
tions such that each level is obtained from the previous one
by increasing one or both of the single-agent doses. Since this
ensures that the probability of toxicity is monotone in the lev-
els, a single-agent dose-finding algorithm requiring only mono-
tonicity, such as the continual reassessment method (CRM)
(O’Quigley, Pepe and Fisher, 1990) may be applied. This type
of approach severely restricts the domain of possible dose pairs
that are considered, however.

In this article, we propose a two-stage Bayesian design for
finding one or more acceptable dose pairs in the two-agent
setting. We assume a parametric model for the toxicity prob-
ability, π(x,θ), as a function of x and a parameter vector, θ=
(θ1,θ2,θ3). The subvectors θ1 and θ2 parameterize the two
single-agent toxicity probabilities, π1(x1,θ1) and π2(x2,θ2),
while θ3 accounts for interaction between the two agents.
Mantel (1974) defined therapeutic synergism as a clinical
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effect of two agents used together that is not achievable with
either agent used alone, regardless of dose. Our approach ex-
ploits the facts that π(x, θ) is increasing in each of x1 and x2,
and that the curves {π(x, θ) : x2 = 0, x1 ≥ 0} and {π(x, θ) :
x1 = 0, x2 ≥ 0} on the edges of the toxicity surface {π(x, θ) :
x1 ≥ 0, x2 ≥ 0} must coincide with the respective single-agent
dose-toxicity curves, {π1(x1, θ1) : x1 ≥ 0} and {π2(x2, θ2) :
x2 ≥ 0}. Thus, while prior knowledge about the two single-
agent curves cannot predict interactions, it provides useful
information about the edges of the toxicity surface.

Implementation of our proposed method requires close col-
laboration with the physician(s) planning the trial, who must
provide a definition of dose-limiting toxicity, hereafter “toxi-
city,” a fixed target toxicity probability, π∗, and information
characterizing the dose-toxicity curve of each component as a
single agent. This information is used to construct informa-
tive priors on θ1 and θ2, and a vague prior is assumed for θ3.
We define an acceptable dose (AD) to be any combination x
having posterior mean toxicity probability

E{π(x,θ) | data} = π∗. (1)

In contrast with the single-agent setting, when x is two-
dimensional, equation (1) does not have a unique solution.
Rather, the set of dose pairs satisfying (1) is the random
contour

L2(π
∗,data) = {x : E{π(x,θ) | data} = π∗} (2)

in the two-dimensional domain of x (Figure 1(a)). We propose
a two-stage, outcome-adaptive Bayesian design, with doses for

Figure 1. (a) The fixed line L1 and random contour L2 of the dose-finding algorithm. (b) Illustration of the successive dose
pairs chosen in a typical case. Each cohort of two patients is represented by a circle numbered by the cohort’s order in the
trial, with 0, 1, or 2 patients experiencing toxicity in the two-patient cohort represented, respectively, by an empty circle, a
circle enclosing a star, and a shaded circle.

successive patient cohorts chosen from the plane of two-dose
combinations based on the most recently updated posteriors.
In stage 1, dose-finding is restricted to a fixed line segment,
L1. The search in stage 2 chooses doses from L2 (π∗, data)
subject to additional optimality criteria. At the end of the
trial, several ADs may be selected for study in a subsequent
trial.

Section 2 describes the motivating trial that we use to il-
lustrate the method. Probability models and a method for
eliciting priors on the single-agent dose-toxicity parameters
are presented in Section 3. The dose-finding algorithm is pre-
sented in Section 4. Computational methods are described in
Section 5. Section 6 describes an application of the method,
including a simulation study to evaluate the design’s operat-
ing characteristics. Robustness is discussed in Section 7, and
we close with a discussion in Section 8.

2. A Trial of Gemcitabine + Cyclophosphamide
Our illustrative application, which originally motivated this
research, is a trial of gemcitabine (Gem) and cyclophos-
phamide (CTX), which may have several clinical applica-
tions. Gem is a chemotherapeutic agent with broad spectrum
anticancer activity. This drug has a complex pharmacology
and its biologic effects show remarkable schedule dependence.
For example, when given as a single dose administered over
30 minutes, repeated every three weeks, doses in excess of
4000 mg/m2 are tolerated. When given over 96 hours, how-
ever, only about 90 mg/m2 can be tolerated. It is well estab-
lished that Gem shows substantial synergy in combination
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with other agents, and this is especially true of combina-
tions with DNA-damaging agents, such as a classical group
of drugs known as alkylators. Because the archetype of this
class is CTX, there is considerable interest in exploring the
Gem/CTX combination. The goal of this trial is to deter-
mine three acceptable dose combinations for study in a sub-
sequent Phase II trial: one that is mostly Gem, one that is
mostly CTX, and one that is a relatively even mix of the
two agents. The clinical protocol for the Gem/CTX trial, us-
ing the methodology described here, is under review at the
University of Texas M. D. Anderson Cancer Center, and we
anticipate that the trial soon will be activated.

3. Dose-Toxicity Model
3.1 Toxicity Probabilities
Given a dose di and single-agent AD d∗i for agent i, we for-
mulate the dose-toxicity probability model in terms of the
standardized doses xi = di/d

∗
i , for i = 1, 2. The standardized

doses of the two agents will have similar domains, with most
values between 0 and 1, so that model parameters pertaining
to the two doses will have similar numerical scales which, in
turn, stabilizes numerical computations. The ADs d∗1 and d∗2
may be elicited from the physician(s) along with the priors
on θ1 and θ2 while planning the trial. We provide a method
for eliciting the single-agent priors and ADs in Section 3.2,
below.

For any θ, the toxicity probabilities π, π1, and π2 must
satisfy the following admissibility conditions:

(a) π(x1, 0, θ) = π1(x1, θ1) for all x1, and
π(0, x2, θ) = π2(x2, θ2) for all x2;

(b) π(x1, x2, θ) is increasing in both x1 and x2;
(c) πi(0, θi) = 0 for i = 1, 2.

Properties (a) and (b) together imply that each πi(xi , θi)
is increasing in xi , and consequently that π(x1, x2, θ) >
max{π1(x1, θ1), π2(x2, θ2)} for all x1 > 0 and x2 > 0. This
says that adding any amount of agent 2 to a given amount of
agent 1 must increase the probability of toxicity. Properties
(a) and (c) together imply that π(0, 0, θ) = 0.

There are many models that satisfy these conditions. Be-
cause the sample size typically is very small in Phase I, espe-
cially early in the trial, the model must be parsimonious. At
the same time, the model must be sufficiently flexible to allow
a wide variety of possible shapes that the dose-toxicity prob-
ability surface may assume. We will use the following model,
which provides a reasonable balance between these conflicting
practical requirements. Define

π(x,θ) =
α1x

β1
1 + α2x

β2
2 + α3

(
xβ1

1 xβ2
2

)β3

1 + α1x
β1
1 + α2x

β2
2 + α3

(
xβ1

1 xβ2
2

)β3
, (3)

with θi = (αi, βi) for i = 1, 2, 3 and each entry of the six-
dimensional parameter vector θ = (θ1, θ2, θ3) = (α1, β1,
α2, β2, α3, β3) required to be positive real-valued. Denoting
ηi(xi , θi) = log(αi) + βi log(xi ), for i = 1, 2, it follows that
each πi(xi , θi) = logit−1{ηi(xi , θi)}, and it is easy to verify
that this model satisfies the admissibility conditions (a)–(c).

Denoting the dose combinations and toxicity indicators of
the first n patients in the trial by Zn = {(xk,Yk ), k=1, . . . ,n},

the likelihood is

f(Zn | θ) =

n∏
k=1

π(xk,θ)Yk{1 − π(xk,θ)}1−Yk . (4)

Denoting the prior on θ at the start of the trial by f(θ), by
Bayes’ theorem the posterior given Zn is f(θ |Zn) ∝ f(Zn |θ)
×f(θ). In the present setting, posterior integrals are analyt-
ically intractable and numerical integration is required. This
is described in Section 5, below.

Our dose-finding algorithm begins with independent infor-
mative priors on θ1 and θ2 and a vague prior f 0

3(θ3) on θ3. The
informative priors may be obtained either based on historical
data from previous single-agent studies or by elicitation from
the physician(s). In either case, we will assume that each pa-
rameter follows a gamma prior, and we denote the gamma
distribution with mean ab and variance ab2 by G(a, b).

3.2 Priors Based on Historical Data
If dose-toxicity data are available from previous single-agent
studies, they may be used to obtain priors on θ1 and θ2 for use
in the planned trial. For i = 1, 2, denote the toxicity indicator
and dose of the kth patient in the historical trial of agent i by
(Yi,k, xi,k) and Zi = {(Yi,k, xi,k), k = 1, . . . , ni)}, where ni is
the number of patients. The likelihood of Zi is

fi(Zi | θi) =

ni∏
k=1

{πi(xi,k,θi)}Yi,k{1 − πi(xi,k,θi)}1−Yi,k .

(5)

Denoting a vague prior on θi that may be assumed before
the historical data are observed by f 0

i for i = 1, 2, the pos-
terior of θi given the historical data is then fi(θi | Zi) ∝
fi(Zi | θi)f

0
i (θi), and the prior used at the start of the two-

agent trial is

f(θ | Z1,Z2) = f1(θ1 | Z1)f2(θ2 | Z2)f
0
3 (θ3). (6)

3.3 Elicited Priors
When individual patient data from trials of the single agents
are not available, informative priors f 1(θ1) and f 2(θ2) must
be elicited from the physician(s). This may be done in vari-
ous ways, with the particular elicitation method tailored to
the clinical setting and physicians’ level of technical exper-
tise. We employed the following method in the Gem/CTX
trial. Temporarily restrict attention to one agent and sup-
press subscripts, so that the two parameters of interest are α
and β, and αxβ = π(x , θ)/{1 − π(x , θ)}. We assume that
α ∼ G(a1, a2) and β ∼ G(b1, b2), so that each single-agent
prior has four hyperparameters. The following four questions
pertain to the toxicity probability curve of a single agent. Be-
fore asking these questions, the definition of “toxicity” and
the target probability π∗ must be established. The technical
objective is to obtain four equations in the parameters {a1, a2,
b1, b2} having a solution that provides a corresponding prior
on α, β and hence on π(x, θ).

1. What is the highest dose having negligible toxicity? That
is, what is the highest dose that is almost certain to be
toxic in less than 5% of patients?

2. What is the targeted dose that will have on average 100π∗

toxicities?
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3. What dose above the AD has a prohibitively high toxicity
rate, say 60%?

4. What is the smallest dose above the AD that you are al-
most certain has toxicity rate above the targeted 100π∗?

In practice, the physician(s) may wish to use specific nu-
merical values different from those given above. For example,
they may replace the 5% in question 1 with some other small
percentage or, similarly, replace the 60% in question 3 with a
different large percentage. This is not only acceptable, but de-
sirable, and it should lead to more-accurate priors. The doses
d(1), d(2), d(3) = d∗, and d(4) given as answers to these questions
may be used to obtain the following four probability state-
ments. Denote zj = d(j)/d∗ and g(η) = η/(1 + η).

Pr
{
g
(
αzβ1

)
< 0.05

}
= 0.99 (7)

E(α) = a1a2 = π∗/(1 − π∗) (8)

E
(
αzβ3

)
= a1a2E

(
zβ3

)
= 0.60/0.40 (9)

Pr
{
g
(
αzβ4

)
> π∗} = 0.99 (10)

Assuming that, a priori, α ∼ G(a1, a2) and β ∼ G(b1, b2),
equations (7)–(10) may be solved numerically for a1, a2, b1,
and b2. This process is carried out twice, once for each single
agent. Table 1 summarizes the elicited values for Gem and
CTX as single agents.

Vague priors on α3 and β3 are appropriate because nothing
is known a priori about interactions between the two agents.
A preliminary sensitivity analysis of the priors on α3 and β3

showed that either large values of E(β3) or values of E(α3) dif-
fering substantially from 1 give unrealistically skewed priors
on π(x, θ) that, in turn, cause the dose-finding algorithm to
behave pathologically. For example, E(β3) ≥ 2 puts so much
prior probability mass on large doses that the final selected
doses are higher than desired. The effects of the variances
are less pronounced for moderately large values (≥3), and the
range 3 to 10 gives very reasonable behavior. We thus used
E(β3) = 0.05, E(α3) = 1, and var(α3) = var(β3) = 3, and we
recommend these or similar values for general application of
the method.

Table 1
Elicited doses and priors for gemcitabine and

cyclophosphamide as single agents

Gemcitabine Cyclophosphamide

Elicited Elicited
dose Median (π) dose Median (π)

d1 600 .0018 350 .0055
d2 = d∗ 1200 .2578 600 .2687
d3 1400 .5420 700 .5463
d4 2000 .9361 800 .7677

Mean Variance Mean Variance

α .4286 .1054 .4286 .0791
β 7.6494 5.7145 7.8019 3.9933

4. Dose-Finding Algorithm
4.1 Structure of L1 and L2

Dose-finding in stage 1 is done on the fixed line segment, L1,
illustrated in Figure 1(a). To determine L1, the physician(s)
first must choose a combination, x(1) that will be the low-
est, hence least toxic, dose pair considered in stage 1. The
main criteria for choosing x(1) are that its prior mean toxic-
ity, E{π(x(1), θ)}, must be low relative to π∗, but x(1) must
not be so low that it is very unlikely to be therapeutically
effective. If di,1 is the dose of agent i elicited by question 1,
hence thought to have negligible toxicity, then a reasonable
choice is x(1) = (d1,1/d

∗
1, d2,1/d

∗
2). At the other extreme, given

that x∗
0,1 and x∗

0,2 are the prior single-agent ADs, the combina-
tion x∗

0 = (x∗
0,1, x

∗
0,2) is likely to be unacceptably toxic. Thus,

a safety requirement is that x
(1)
1 < x∗

0,1 and x
(1)
2 < x∗

0,2, and

in practice x
(1)
i should be well below x∗

0,i for each i = 1, 2. We

define L1 to be the straight line segment from x(1) to x∗
0. The

physician(s) then must specify a set D1 = {x(1), . . . , x(k)} of
dose combinations along L1 where dose-finding in stage 1 is
done initially.

Let Zn denote the dose and toxicity data from the first
n patients in the trial, for n ≤ N . Due to the monotonicity
of π(x, θ) in x, the posterior expected toxicity probability
π̄n(x) = E{π(x,θ) | Zn} is monotone increasing in x1 and x2,
hence is monotone along L1. While x(1) is the lowest dose in
stage 1, in practice the physician(s) may decide to treat the
first cohort at x(2) or x(3), with x(1) included as a fallback op-
tion if x(2) turns out to be unexpectedly toxic. In practice, the
elements of D1 may be equally spaced with x(k) = (x∗

0,1, x
∗
0,2),

or possibly with x(k) a pair of smaller values. Denoting L2,n =
L2(π

∗, Zn), let x∗
n = L1∩ L2,n be the unique point on L1

having mean posterior toxicity probability π∗. Unlike the
fixed line segment L1, L2,n changes randomly as the data
from each new cohort are added to Zn. Since π(x, θ) and
hence π̄n(x) is increasing in both x1 and x2, it follows that
L2,n lies entirely within the upper left and lower right quad-
rants of the Cartesian plane having origin x∗

n. Denote, respec-
tively, the portions of L2,n in these quadrants by L↑left

2,n and

the L↓right
2,n .

4.2 A Two-Stage Algorithm
Let c = cohort size. Once informative priors on θ1 and θ2,
the design parameters {n1, n2, c, π

∗}, and L1 and D1 all have
been specified, the trial may be conducted. The following two-
stage algorithm aims to choose one or more acceptable dose
combinations for later study.

Stage 1: Treat the first cohort at the lowest dose, x(1). There-
after, treat each cohort at the dose x(j) ∈ D1 that minimizes
|π̄n(x(j)) − π∗|, subject to the constraint that no untried dose
level in D1 may be skipped when escalating. Once the first
toxicity is observed, say at x(r), expand the set of allow-
able doses by adding doses midway between the consecutive
pairs above x(r), and also all doses below x(r). Denoting D∗

1 =
D1 ∪ { 1

2 (x
(r) + x(r+1)), . . . , 1

2 (x
(k−1) + x(k))}, and the line seg-

ment from x(1) to x(r) by L∗
1, expand the set of allowable doses

from D1 to D∗
1 ∪ L∗

1. As before, no untried dose combination
in D∗

1 may be skipped when escalating. When n1 patients have
been treated, proceed to stage 2.
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Stage 2: Treat successive cohorts at dose combinations se-
lected alternately from L↑left

2,n and L↓right
2,n . Stop when a total of

N = n1 + n2 patients have been treated.

Since L1 is one-dimensional, stage 1 is similar to a con-
ventional single-agent Phase I trial. In stage 1, untried dose
combinations may not be skipped in D1, or in the expanded
set D∗

1 once a toxicity has been observed, due to the ethical
desire to avoid overdosing early in the trial, when uncertainty
is greatest. The stage 1 sample size should be large enough
to establish with a reasonable degree of certainty how high
the contour L2,n is likely to be on the π(x, θ) surface. This
motivated our choice of n1 = 20 in the Gem/CTX trial, since
this is a typical Phase I sample size. The risk of overdosing is
less of a concern in stage 2, where all patients are treated at
doses on L2,n. In contrast with conventional Phase I designs,
where dose-finding is restricted to a finite number of dose
levels, in the latter part of stage 1 and throughout stage 2,
we choose dose pairs from a continuum. While conventional
Phase I practice is convenient, and is safer than choosing doses
from a continuum, there is no reason to assume that the fi-
nal optimal dose must be one of the arbitrarily chosen dose
levels. Consequently, we preserve safety by escalating in dis-
crete steps initially, until the first toxicity is encountered, but
then allowing dose pairs to be chosen from the line segment
L∗

1 in the latter part of stage 1 and from the contour L2,n in
stage 2.

4.3 Criteria for Stage 2
In stage 2, successive dose combinations may be chosen from
L↑left

2,n and L↓right
2,n in several ways. This is because, based on

the toxicity criterion (1) alone, all dose pairs x ∈ L2,n are
equally acceptable. The following algorithm for stage 2 is
based on (1) and two additional criteria. First, it is clini-
cally desirable to choose each successive dose combination to
maximize the potential to kill cancer cells, while maintaining
the posterior mean toxicity rate at π∗. At the same time, it is
also desirable to maximize the amount of information about
π(x, θ) obtained from each new cohort. To formalize the first
goal, we temporarily assume for simplicity that, in terms of
cancer-killing effect, one unit change in x1 is equivalent to
one unit change in x2. This says that the amount of poten-
tial increase in cancer-killing effect obtained by moving from
x∗
n to x on L2,n is proportional to the total increase in dose,

K(x,x∗
n) = (x1 − x∗

n,1) + (x2 − x∗
n,2). Any dose combination

x ∈ L↑left
2,n −{x∗

n} must satisfy the inequalities x1 − x∗
n,1 < 0 <

x2 − x∗
n,2 and, similarly, any x ∈ L↓right

2,n −{x∗
n} must satisfy

x1 − x∗
n,1 > 0 > x2 − x∗

n,2. That is, the two summands of
K(x,x∗

n) must have opposite signs. It follows that choosing
a dose combination x from either L↑left

2,n or L↓right
2,n to maximize

cancer-killing potential compared to x∗
n amounts to choosing

x so that the negative summand of K(x,x∗
n) is small relative

to its positive summand. The assumption that the two agents
have the same cancer-killing effect per standard dose unit may
be relaxed if prior data quantifying the relative effects of the
two agents are available, say, from an animal experiment or
a study of in vitro effects on cancer cell cultures. If λ is the
cancer-killing effect of one standard dose unit of agent 1 rela-
tive to one standard dose unit of agent 2, then the total gain in
cancer-killing effect obtained by moving from x∗

n to x may be

defined as

Kλ

(
x,x∗

n

)
= λ

(
x1 − x∗

n,1

)
+

(
x2 − x∗

n,2

)
. (11)

This is similar to the idea of total equivalent dose used by
Simon and Korn (1990).

A different criterion for selecting a dose combination x ∈
L2,n is the amount of information provided by the data ob-
tained from treating the next cohort at x. Since the likelihood
for a patient treated at x is π(x, θ)Y {1 − π(x, θ)}1−Y , de-
noting π(x, θ)(j) = ∂π(x, θ)/∂θj where θj is the jth entry of
θ, the Fisher information matrix associated with treating the
patient at dose x is

I(x,θ)(6×6) =
{
I (j,k)(x,θ)

}

=

[
π(x,θ)(j)π(x,θ)(k)

π(x,θ){1 − π(x,θ)}

]
. (12)

The dose on L2,n may be chosen for the next cohort to max-
imize the posterior expectation of the log determinant of the
Fisher information matrix given the current data,

In(x) = E [log{det I(x,θ)} | Zn] . (13)

To compute In(x), denote the numerator of π(x,θ) by γ(x,θ).
Since each partial derivative π(j)(x,θ) is of the form f (j)/
{1 + γ(x, θ)}2, it follows that I (j,k)(x, θ) = f (j)f (k)/
[γ(x, θ){1 + γ(x, θ)}2] for j, k = 1, . . . , 6. Writing f (αj ) for the
numerator of ∂π/∂αj , and so on, the six partial derivatives

are f (αj ) = x
βj

j and f (βj ) = log(xj)(αjx
βj

j + α3β3x
β1β3
1 xβ2β3

2 )

for j = 1, 2, f (α3) = xβ1β3
1 xβ2β3

2 , and f (β3) = α3log(x
β1
1 xβ2

2 )
×(xβ1

1 xβ2
2 )β3 . The criterion (13) is similar to that used in

Bayesian D-Optimal design (Chaloner and Larntz, 1989;
Zocchi and Atkinson, 1999), although our application is not
formally an example of this method.

Because Kλ(x,x∗
n) and In(x) take on values on different

scales, combining them is not straightforward. We address
this problem by first choosing the optimal dose pair under
each criterion and then averaging these two doses. If the next
cohort in stage 2 is to be treated at a dose chosen from L↑left

2,n ,

then, restricting attention to L↑left
2,n , let x(Kλ, L

↑left
2,n ) be the

dose pair that maximizes the cancer-killing criterion func-
tion Kλ(x,x∗

n), and let x(In, L
↑left
2,n ) be the pair maximizing

the information In(x). The next cohort is treated at the
dose, x(Kλ, In, L

↑left
2,n ), that is midway between x(Kλ, L

↑left
2,n )

and x(In, L
↑left
2,n ) on L↑left

2,n . If the midway dose is not on L2,n,

then we define x(Kλ, In, L
↑left
2,n ) as the projection of the mid-

way dose onto L2,n. The dose x(Kλ, In, L
↓right
2,n ) chosen from

L↓right
2,n is defined similarly.
Based on the final data, ZN , we select three dose combina-

tions: x↓right
N = x(Kλ, IN , L↓right

2,N ), x↑left
N = x(Kλ, IN , L↑left

2,N ), and

the unique combination xmiddle
N = L1∩ L2,N . Roughly speaking,

xmiddle
N contains substantial quantities of both agents, x↓right

N

contains more of agent 1 and less agent 2, and x↑left
N contains

more of agent 2 and less agent 1. These three combinations
may be studied in a subsequent randomized trial in which tu-
mor response or possibly survival time or disease-free survival
time are the primary outcomes.
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4.4 Steps for Application of the Method
Given the complexity of the model and method, it is worth-
while to list the necessary steps for application. Initially, the
trial entry criteria, the patient accrual rate, the two agents
and their dose ranges, and a target π∗ must be established.
Then priors should be determined, as described in Section 3.
The design parameters {n1, n2, c} may be chosen by using
simulation to evaluate the design over a range of possible val-
ues. We illustrate how this may be done below. Once this
structure is in place, the trial may be conducted. To facilitate
broad application, we have made computer programs for sim-
ulation and trial conduct freely available at biostatistics.

mdanderson.org.

5. Computational Methods
Implementation of the proposed method is computationally
intensive in that it involves repeated calculation of the pos-
terior mean toxicity surface, {π̄n(x) : 0 < x1 < 1, 0 < x2 < 1},
after each new cohort has been evaluated. Consequently, the
use of computationally efficient algorithms is critical for a suc-
cessful implementation. We use Markov chain Monte Carlo
(MCMC) simulation (Gelfand and Smith, 1990; Gilks et al.,
1993), accelerated by the use of the maximum a posteriori
(MAP) estimate as an initial starting point, and an asymp-
totic posterior approximation to define transition probabili-
ties in the Markov chain. We first find the MAP by maximiza-
tion of the unstandardized posterior f(θ |Zn), given in (4).
For later use, in the construction of a proposal distribution,
we compute the negative inverse Hessian Σ̂ of the unstan-
dardized log posterior distribution, evaluated at θ̂. Starting
with initial state θ = θ̂, we then initiate an MCMC simula-
tion. We use transition probabilities defined by alternate use
of a random walk proposal and an independence chain. The
independence chain uses a proposal based on an N(θ̂, Σ̂) ap-
proximation to the joint posterior distribution. After an initial
transient of 50 iterations, we evaluate the toxicity surface af-
ter each 20th iteration, with a total of 2000 iterations. The
ergodic average of these surfaces provides an estimate of the
desired posterior expected toxicity probability π̄n(x). To ob-
tain these values over the entire domain of x, we evaluate
π̄n(x) on a grid of doses. During stage 1, we need only evalu-
ate toxicities for the doses on the grid D1 in L1. An additional
complication arises when the first toxicity is observed and we
switch to the expanded set D∗

1 ∪ L∗
1, since L∗

1 is a continuous
interval. To deal with this, we still constrain MCMC evalua-
tion of π̄n(x) to the doses on the finite grid D∗

1, and we use
interpolation for any combination falling between doses in D∗

1.
A problem in the calculation of L2(π

∗, Zn) is that this con-
tour changes randomly each time the posterior is updated. To
deal with this, we first run the MCMC and save the simulated
(approximate) posterior Monte Carlo sample of θ values, and
then search for L2(π

∗, Zn) on a two-dimensional grid over (x1,
x2). In the course of this search, each time we consider a grid
point x = (x1, x2) we compute π̄n(x) as the appropriate er-
godic average over the saved Monte Carlo sample, evaluating
π(θ, x) for that dose pair x only. To further reduce the com-
putational burden, we update π̄n(x) only after every other
cohort, i.e., after assigning one dose from WL↑left

2,n and one dose

from WL↓right
2,n .

6. Application to the Gem/CTX Trial
In the Gem/CTX trial, patients are treated in cohorts of size
c = 2 with n1 = 20 patients in stage 1 and n2 = 40 in stage
2. The line L1 was defined to be the segment connecting the
standardized doses x(1) = (0.12, 0.12) and (x∗

0,1, x
∗
0,2) = (1, 1),

which correspond to the (Gem, CTX) dose pairs (144, 72) and
(1200, 600) mg/m2. Ten dose pairs were used for stage 1, with
the eight intermediate doses on L1 chosen conservatively by
the physician, R. Millikan, so that anticipated toxicity proba-
bilities were dominated by the corresponding prior mean val-
ues. Specifically, D1 = {(x, x) : x = 0.12, 0.25, 0.40, 0.52,
0.61, 0.70, 0.78, 0.86, 0.93, 1}. The first cohort was treated
at (0.25, 0.25), with no untried dose skipped while escalat-
ing. Although we did not do so in the Gem/CTX trial, one
also may impose an additional safety rule to stop the trial if
the lowest dose is too toxic, for example, if Pr{π(x(1), θ) >
π∗ | data} exceeds an upper probability bound such as 0.90 or
0.95.

Figure 1(b) gives the 30 successive dose pairs chosen by this
design in a hypothetical trial, including the final L2,N based
on the data from all 60 patients. Each two-patient cohort
is numbered by the order in which its patients were treated
in the trial. The sequence of locations of the dose pairs 11
through 30, chosen in stage 2 of the trial, as well as their
variability, illustrate the manner in which L2 changes as the
data from successive cohorts are obtained and the posterior
is updated. In this context, it is important to bear in mind
that each selected x in stage 2 is the average of the doses that
optimize the cancer-killing criterion and Fisher information,
and that the posterior is updated after each pair of “upper
left and lower right” cohorts as a computational convenience.

To assess average behavior, we simulated the trial under
each of five dose-toxicity scenarios, illustrated in terms of their
contours of constant toxicity probability in Figure 2. Table 2
summarizes the selected dose pairs xmiddle

N , x↓right
N , and x↑left

N

and corresponding values of the true π(x) and the posterior
mean, π̄n(x), at each selected x. The values xmiddle

n1
and xmiddle

N

together show how much the selected dose on L1 changes by
carrying out the second stage. The desired contour under sce-
nario 1 is the diagonal line in the middle of the x domain,
running roughly from (1, 0) to (0, 1), and the toxicity proba-
bility surface is not very steep. Under scenario 2, the desired
dose pairs lie on a contour with one or both doses very close
to their maximum values; scenario 3 is the opposite case, with
all acceptable dose pairs having one or both doses very close
to their minimum values. Scenario 4 is the most complex, with
S-shaped contours for π at or near the target 0.30.

Under scenarios 1, 3, and 4, the algorithm has very ac-
curate average behavior, choosing dose pairs with both π(x)
and posterior mean π̄n(x) on average within 0.04 of the target
0.30. The largest deviation is the mean value 0.22 of π(x↑left)
under scenario 2, which is quite reasonable given that the
toxicity surface rises very rapidly with x1 and x2, and thus
the contours where 0.20 ≤ π(x) ≤ 0.40 are very close to-
gether. The fact that the average toxicity probability is below,
rather than above, the target in this dangerous case is reas-
suring, in terms of the procedure’s safety. The large drop in
Var{π(x) |Zn}, seen in all scenarios, as n increases from n1 =
20 to N = 60 shows the gain in reliability from conducting
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Figure 2. Scenarios for the probability of toxicity as a function of the cyclophosphamide and gemcitabine doses in the
prostate cancer trial. For each agent, the doses are given in standard units on the domain from 0 to 1.
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Table 2
Dose combinations selected for Gem/CTX. Standard deviations are given as subscripts.

xmiddle
n1

xmiddle
N x↓right

N x↑left
N

Scenario 1
Selected dose x (0.470.16,0.470.16) (0.500.10,0.500.10) (0.660.11,0.240.19) (0.340.13,0.670.10)
π̄n(x), true π(x) 0.300.05, 0.300.06 0.300.01, 0.310.04 0.300.01, 0.280.07 0.300.01, 0.320.04
Var {π(x) | Zn} × 102 0.820.32 0.330.12 0.430.19 0.370.18

Scenario 2
Selected dose x (0.810.04,0.810.04) (0.800.03,0.800.03) (0.920.05,0.720.05) (0.580.12,0.860.05)
π̄n(x), true π(x) 0.300.01, 0.300.08 0.300.01, 0.280.05 0.290.01, 0.350.05 0.300.01, 0.220.05
Var {π(x) | Zn} × 102 0.780.14 0.290.03 0.410.10 0.380.11

Scenario 3
Selected dose x (0.280.14,0.280.14) (0.230.17,0.230.17) (0.460.21,0.070.17) (0.100.14,0.400.22)
π̄n(x), true π(x) 0.370.07, 0.360.05 0.300.02, 0.330.08 0.290.02, 0.290.08 0.300.02, 0.310.08
Var {π(x) | Zn} × 102 0.940.28 0.400.22 0.480.23 0.440.26

Scenario 4
Selected dose x (0.570.12,0.570.12) (0.560.07,0.560.07) (0.700.10,0.380.15) (0.390.10,0.680.08)
π̄n(x), true π(x) 0.290.05, 0.320.07 0.300.01, 0.320.04 0.300.005, 0.260.08 0.300.01, 0.340.04
Var {π(x) | Zn} × 102 0.750.29 0.350.09 0.430.16 0.390.15

Scenario 5
Selected dose x (0.470.11,0.470.11) (0.450.09,0.450.09) (0.670.13,0.170.16) (0.290.13,0.630.11)
π̄n(x), true π(x) 0.310.03, 0.330.10 0.300.01, 0.320.10 0.300.01, 0.270.13 0.300.01, 0.320.10
Var {π(x) | Zn} × 102 0.920.31 0.380.14 0.500.22 0.430.21

stage 2. The largest differences between {π(x), π̄n1(x)} for
x = xmiddle

n1
= xmiddle

20 , at the end of stage 1, and the final val-
ues for x = xmiddle

N = xmiddle
60 , are seen under scenario 3. This

seems reasonable, given that the desired contour is located at
very-low-dose values in this case.

Table 3 summarizes the numbers of patients treated and
toxicities under each scenario, broken down by the true tox-
icity probability π(x). Under the scenarios 1–4, on average,
between 36 (60%) and 52 (87%) of the 60 patients are treated
at a dose with |π(x) − 0.30| < 0.10, at most 19 (15%) are
treated at a dose with 0.41 ≤ π(x) ≤ 0.50, only 1.4 patients
are treated at a dose with 0.51 ≤ π(x) ≤ 0.70, and none are
treated at a more toxic dose. The dispersion of patients over
the range of true toxicity probabilities is slightly higher un-
der scenario 5, with on average 9.54 patients (16%) treated at
doses with toxicities above 0.40, although most of these were
in the 0.41–0.50 range. The algorithm thus appears to be very
safe.

7. Robustness
Parametric models other than that used here may be con-
sidered, subject to the admissibility conditions given in Sec-
tion 3. For example, the interaction term α3(x

β1
1 xβ2

2 )β3 may be
simplified to α3(x

β1
1 xβ2

2 ), α3(x1x2)
β3 , or α3x1x2. An alternative

model is to first define explicit forms for π1 = π1(x1,θ1) and
π2 = π2(x2, θ2), such as πi(xi , θi) = g−1{log(αi) + βilog(xi )}
for a link function g, and let π(x1, x2, θ) be a function of π1

and π2, such as λ{π1 +(1−π1)π2}+(1 − λ){π2 +(1−π2)π1},
for 0 < λ < 1. Given several possible models, model selection
may be based on Bayes factors (Kass and Raftery, 1995), or
Bayesian model averaging methods (Madigan and Raftery,
1994), added to each step of the adaptive algorithm. While
a thorough comparison of the method’s behavior under alter-

native models would be quite useful, it is beyond the scope of
the present article.

Some insight into the method’s robustness is provided by
the simulation results under scenario 5, which does not corre-
spond to any parameter configuration of the underlying prob-
ability model. This is a more dangerous case in which the tar-
get contour where π(x) = 0.30 is similar to that in scenario 1,
but the toxicity probability surface is much steeper. Table 2
indicates that the algorithm’s average ability to select doses
with π(x) close to the target is still quite good in this case, al-
though the variability is greater. The average posterior mean
and true toxicity probabilities at the selected doses are all be-
tween 0.27 and 0.33, and these results are nearly identical to
those under scenario 1. Table 3 indicates that the algorithm’s
interim dose selections are somewhat more variable, although
it is still quite safe.

To examine the method’s sensitivity to the placement of L1,
we modified the design by using two additional versions of L1,
illustrated as solid lines in the lowest right corner graph of Fig-
ure 2, labeled SCENARIO 1∗, with the original version of L1

given as a dotted line. The first new stage 1 line, La
1 , is steeper,

running from (0.155, 0.12) to (0.80, 1.0), with D1 consisting
of these points plus eight intermediate points on La

1 having
the same x2 entries as those used previously. Use of La

1 might
be motivated by the desire to decrease the upper limit on the
dose of the first agent during stage 1, based on considerations
of its toxicity as a single agent. In this case, the highest dose
of Gem on L1 is decreased from 1200 to 960 mg/m2. We also
considered the less steep line, Lb

1 , runnning from (0.12, 0.296)
to (1.0, 1.0), with D1 having the same x1 entries as those
used previously. Use of Lb

1 might be motivated by the desire
to increase the lower limit on the dose of the second agent
during stage 1, in this case increasing the lowest CTX dose
on L1 from from 72 to 178 mg/m2. Simulations of these two
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Table 3
Number of patients treated and number of toxicities, out of 60 patients, as functions of the true probability of toxicity. Standard

deviations are given as subscripts.

True probability of toxicity

0–0.10 0.11–0.20 0.21–0.30 0.31–0.40 0.41–0.50 0.51–0.60 0.61–0.70 0.71–0.80 0.81–0.90 0.91–1.0

Scenario 1
Treated 0.41.3 7.08.2 24.912.0 26.816.0 0.72.2 0.31.1 0 0 0 0
Toxicity 0.010.08 0.91.6 5.94.1 10.66.0 0.41.1 0.20.8 0 0 0 0

Scenario 2
Treated 8.61.4 11.56.8 18.15.3 18.15.0 3.54.4 0.10.5 0 0 0 0
Toxicity 0.20.4 1.82.1 4.51.7 6.92.1 1.72.1 0.10.4 0 0 0 0

Scenario 3
Treated 0 6.95.5 24.810.8 18.29.5 9.110.4 0.82.0 0.21.0 0 0 0
Toxicity 0 0.71.0 6.33.8 6.93.6 4.65.3 0.41.1 0.10.7 0 0 0

Scenario 4
Treated 2.92.9 6.84.0 17.47.3 30.29.3 2.23.4 0.10.6 0.31.5 0 0 0
Toxicity 0.10.3 0.71.0 4.42.8 11.63.6 1.21.9 0.040.3 0.20.8 0 0 0

Scenario 5
Treated 1.72.1 15.26.2 15.25.3 18.35.9 7.55.1 1.52.3 0.20.6 0.10.5 0.040.3 0.21.0
Toxicity 0.10.3 1.91.6 3.82.3 7.32.5 4.22.8 1.11.8 0.10.5 0.10.4 0.030.3 0.21.0

Table 4
Sensitivity of the posterior toxicity probability at each final selected dose to sample size and cohort size. Each case was simulated

under scenario 4 with n1/N = 1/3.

Posterior 90% credible interval for π(xN ) |π̄N (x)− true π(x)|

N c x↑left
N xmiddle

N x↓right
N x↑left

N xmiddle
N x↓right

N

36 1 0.189–0.425 0.182–0.423 0.170–0.429 0.059 0.051 0.081
2 0.189–0.423 0.185–0.421 0.174–0.429 0.064 0.052 0.078
3 0.191–0.437 0.181–0.432 0.160–0.446 0.093 0.102 0.106

48 1 0.195–0.419 0.196–0.414 0.181–0.421 0.053 0.039 0.066
2 0.196–0.419 0.198–0.413 0.181–0.416 0.052 0.041 0.069
3 0.194–0.424 0.191–0.418 0.177–0.424 0.088 0.093 0.097

60 1 0.202–0.413 0.205–0.404 0.188–0.410 0.047 0.032 0.059
2 0.205–0.410 0.206–0.401 0.191–0.409 0.051 0.037 0.057
3 0.196–0.409 0.200–0.407 0.186–0.411 0.097 0.103 0.104

72 1 0.210–0.407 0.210–0.399 0.191–0.412 0.042 0.034 0.068
2 0.215–0.407 0.213–0.395 0.198–0.403 0.048 0.030 0.056
3 0.209–0.407 0.209–0.398 0.191–0.407 0.092 0.095 0.091

modified versions of the algorithm under scenario 1 showed
that with either La

1 or Lb
1 , all mean values of π̄n(x) and π(x)

at the selected dose pairs were between 0.29 and 0.31, and
each entry of each selected dose differed from the correspond-
ing value under the original L1 by 0.01 to 0.06. The method
thus seems relatively insensitive to the placement of L1.

Table 4 summarizes a simulation study of the method’s
sensitivity to N and c. This shows how the posterior variability
of each π(xN ) drops with N . Average values of |π̄(xN ) − 0.30|
are insensitive to both N and c, hence not tabled; these equal
0.01 for xmiddle

N and 0.02 to 0.04 for x↑left
N or x↓right

N . In contrast,
for each type of dose pair, |π̄(xN ) − true π(x)| on average
decreases slightly with N but increases sharply as c increases
from 2 to 3. This is due to the fact that as c increases for
given N , the total number of cohorts, N/c, decreases; hence
information is available on fewer dose pairs. It thus appears

that, in this setting, c = 1 or 2 provides a much more reliable
dose pair selection than c = 3.

8. Discussion
We have proposed a model-based, two-stage Bayesian adap-
tive method for determining several acceptable dose pairs of
two agents used together in a Phase I cancer chemotherapy
trial. Our simulation study indicates that the method has
desirable properties and is very safe. Because this type of
dose-finding problem arises frequently in clinical oncology, the
method is broadly applicable. An advantage of the method is
that it is rooted in actual clinical practice. The requirement
of having informative priors on θ1 and θ2, the prior elicitation
algorithm, and the goal of choosing several dose pairs are all
motivated by our practical experience, as the Gem/CTX trial
illustrates. While the method is computationally intensive,
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in our experience, this has not presented any substantive
problems in implementation.

Several practical extensions or modifications of the method
are of interest. If either agent is biologic rather than cytotoxic,
then the admissibility conditions and model must be changed
to accommodate the possibility that π may not increase in
each xi . Although we have used cancer-killing potential and
information as criteria for selecting doses in stage 2, other
criteria, such as drug cost or feasibility, could be used. Gen-
eral problems are to optimize c, (n1, n2) or, given N, the
proportion n1/(n1 + n2). A fully Bayesian approach (Berry,
1995) would employ decision theory, with successive doses se-
lected by maximizing the posterior mean of an appropriate
gain function. A very useful generalization would be to base
dose-finding on both response and toxicity, possibly by com-
bining the methodology described here with the dose-finding
method proposed by Thall and Russell (1998).

Résumé

Nous proposons un dispositif bayésien adaptatif à deux étapes
pour la recherche d’une ou plusieurs combinaisons acceptables
de doses de deux produits cytotoxiques utilisés conjointement
dans un essai clinique de phase I. Cette méthode nécessite
que chacun des deux produits ait été étudié séparément au
préalable, ce qui est presque toujours le cas en pratique.
De surcrôıt on fait l’hypothèse d’un modèle paramétrique
pour l’évaluation de la probabilité de toxicité en fonction des
deux doses. Des a priori informatifs pour les paramètres car-
actérisant les courbes de probabilité de la toxicité de chaque
produit pris isolément sont soit obtenus du (des) clinicien(s)
préparant l’essai, soit issus de données historiques, tandis
qu’on ne définit que des a priori vagues pour les paramètres
caractérisant les interactions entre produits. Une méthode
d’obtention des a priori non informatifs est décrite. Le schéma
est appliqué à un essai sur la gemcitabine et le cyclophos-
phamide, et on présente également une étude de simulation.

References

Berry, D. A. (1995). Decision analysis and Bayesian meth-
ods in clinical trials. In Recent Advances in Clinical Trial
Design and Analysis, P. F. Thall (ed), 125–154. Norwell,
Massachusetts: Kluwer.

Chaloner, K. and Larntz, K. (1989). Optimal Bayesian de-
sign applied to logistic regression experiments. Journal
of Statistical Planning and Inference 21, 191–208.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling based
approaches to calculating marginal densities. Journal of
the American Statistical Association 85, 398–409.

Gilks, W. R., Clayton, D. G., Spiegelhalter, D. J., Best, N. G.,
McNeil, A. J., Sharples, L. D., and Kirby, A. J. (1993).
Modelling complexity: Applications of Gibbs sampling in
medicine. Journal of the Royal Statistical Society Series B
55, 39–52.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal
of the American Statistical Association 90, 773–795.

Madigan, D. and Raftery, A. E. (1994). Model selection and
accounting for model uncertainty in graphical models us-
ing Occam’s window. Journal of the American Statistical
Association 89, 1535–1546.

Mantel, N. (1974). Therapeutic synergism. Cancer Chemo-
therapy Reports 4, 147–149.

O’Quigley, J., Pepe, M., and Fisher, L. (1990). Continual re-
assessment method: A practical design for Phase I clini-
cal trials in cancer. Biometrics 46, 33–48.

Simon, R. and Korn, E. L. (1990). Selecting drug combi-
nations based on total equivalent dose (dose intensity).
Journal of the National Cancer Institute 82, 1469–1476.

Simon, R. and Korn, E. L. (1991). Selecting combinations
of chemotherapeutic drugs to maximize dose intensity.
Journal of Biopharmaceutical Statistics 1, 247–258.

Storer, B. E. (1989). Design and analysis of Phase I clinical
trials. Biometrics 45, 925–937.

Thall, P. F. and Russell, K. T. (1998). A strategy for dose-
finding and safety monitoring based on efficacy and ad-
verse outcomes in Phase I/II clinical trials. Biometrics
54, 251–264.

Zocchi, S. S. and Atkinson, A. C. (1999). Optimum experi-
mental designs for multinomial logistics models. Biomet-
rics 55, 437–444.

Received July 2002. Revised March 2003.
Accepted March 2003.


