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Summary. An outcome-adaptive Bayesian design is proposed for choosing the optimal dose pair of a chemotherapeutic agent
and a biological agent used in combination in a phase I/II clinical trial. Patient outcome is characterized as a vector of two
ordinal variables accounting for toxicity and treatment efficacy. A generalization of the Aranda-Ordaz model (1981, Biometrika
68, 357–363) is used for the marginal outcome probabilities as functions of a dose pair, and a Gaussian copula is assumed
to obtain joint distributions. Numerical utilities of all elementary patient outcomes, allowing the possibility that efficacy is
inevaluable due to severe toxicity, are obtained using an elicitation method aimed to establish consensus among the physicians
planning the trial. For each successive patient cohort, a dose pair is chosen to maximize the posterior mean utility. The method
is illustrated by a trial in bladder cancer, including simulation studies of the method’s sensitivity to prior parameters, the
numerical utilities, correlation between the outcomes, sample size, cohort size, and starting dose pair.
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1. Introduction
Most of the statistical literature on phase I clinical trial de-
signs deals with the simple case in which it is assumed that
each patient is treated with a dose, x, of a single agent (Storer,
1989; O’Quigley, Pepe, and Fisher, 1990; Babb, Rogatko, and
Zacks, 1998). Typically, patient outcome is characterized by
a binary indicator of dose-limiting toxicity (hereafter, “toxi-
city”) that is observed quickly enough to choose doses adap-
tively for successive patient cohorts. In general, the goal is
to choose x from a predetermined set or interval of values to
achieve an acceptable probability of toxicity. In actual clinical
practice, however, both the treatment regime and patient out-
come are much more complex, often including multiple agents
given in a combination as well as multiple outcomes. To deal
with this complexity, in recent years many authors have ad-
dressed the dose-finding problem more generally, going well
beyond the simple paradigm described above. Some useful ex-
tensions characterize clinical outcome more fully, as time-to-
toxicity (Cheung and Chappell, 2000), as an ordinal variable
accounting for toxicity severity (Yuan, Chappell, and Bailey,
2007), as a multivariate outcome accounting for both efficacy
and toxicity (Thall and Russell, 1998; O’Quigley, Hughes, and
Fenton, 2001; Braun, 2002; Ivanova, 2003; Thall and Cook,
2004; Bekele and Shen, 2004;Thall, Nguyen, and Estey, 2008),
often called “phase I/II” designs (Zohar and Chevret, 2008),
or as a vector of different types of toxicity (Bekele and Thall,
2004). Another useful extension deals with the problem of op-
timizing the dose pair of two agents given in a combination
(Korn and Simon, 1993; Thall, Millikan, Mueller, and Lee,
2003; Ivanova and Wang, 2006).

In this article, we address the phase I/II design problem of
choosing a dose pair corresponding to a biological agent and
a chemotherapeutic agent given in a combination based on a
bivariate outcome including toxicity and treatment efficacy.
Each outcome is ordinal, thereby accounting for the severity
of each toxicity and the level of efficacy achieved. This pro-
vides a more informative summary of patient outcome than
that provided by binary indicators, which are commonly used
in dose-finding designs. The underlying probability model
is Bayesian, constructed from two marginal distributions,
one for each outcome variable, and using a Gaussian copula
to obtain a joint distribution that accounts for association
between the outcomes. For each marginal distribution, to ac-
commodate a broad range of possible dose-response functions,
including functions that are not monotone in dose, we for-
mulate a generalization of the Aranda-Ordaz (AO) model
(1981). The extended AO model accommodates two doses
and ordinal outcomes, rather than the more commonly used
binary outcomes. This model is inherently robust because it
includes as special cases a wide range of commonly used dose-
outcome models. The desirability of each possible patient out-
come is quantified by a numerical utility specified by a team
of physicians using the Delphi method (Dalkey, 1969; Brook
et al., 1986). During the trial, each patient’s dose pair is cho-
sen adaptively from a two-dimensional grid of possible val-
ues to optimize the posterior expected utility of the patient’s
outcome. The two-agent problem that we address is similar
to that considered by Mandrekar, Cui, and Sargent (2007),
with the important differences that we characterize patient
outcome as a vector of two ordinal variables rather than

532 C© 2009, The International Biometric Society



Utility-Based Optimization of Combination Therapy 533

one three-category variable, consequently our dose-outcome
model is much more structured, and we choose dose pairs
based on posterior expected utilities.

The bladder cancer trial that motivated this research is
described in Section 2, followed by a description of the prob-
ability model in Section 3. Application of the method to the
bladder cancer trial is described in Section 4, including the
processes of eliciting priors and utilities. A computer sim-
ulation study in the context of this trial is summarized in
Section 5, including studies of the method’s robustness to
model assumptions and numerical utility values. We close
with a discussion in Section 6.

2. Motivating Application
To provide a concrete frame of reference, we first describe
the bladder cancer trial. The goal of the trial is to evaluate
the safety and efficacy of a combination therapy including
the chemotherapeutic agents gemcitabine and cisplatin, and
a biological agent, in patients with previously untreated ad-
vanced bladder cancer. For the purpose of dose-finding, pa-
tient outcomes will be evaluated over the first two 28-day
cycles of therapy. In each cycle, each patient will receive (1)
a fixed dose of 70 mg/m2 cisplatin on day 2, (2) the biolog-
ical agent given orally on each day at one of four possible
dose levels, d1 = 1, 2, 3, or 4, and (3) gemcitabine on days
1, 8, and 15 at one of three possible levels, 750, 1000, or
1250 mg/m2, coded hereafter as d2 = 1, 2, or 3, with
d = (d1, d2). A total of 48 patients will be treated in cohorts
of three, with the first cohort treated at d = (2, 2). The trial
starts at this pair, rather than at the lowest pair (1, 1), be-
cause dose level 2 of the chemotherapeutic agent as monother-
apy is the recommended dose in the standard of care and it is
undesirable to undertreat the first cohort of patients enrolled
in the trial, while dose level 2 of the biological agent is 50% of
the dose when it is used as monotherapy and it is desired to
avoid exposing the first cohort to an unacceptably high risk of
toxicity with the combination. This sort of reasoning, based
on previous experience with each agent as monotherapy and
considering the unavoidable tension between underdosing and
overdosing the first few patients in the trial before any out-
comes are observed, is used to choose the starting dose pair
whenever a new combination is studied. From this starting
dose pair, the method chooses each successive cohort’s d to
optimize the current posterior expected utility, as described
in Section 3.3, subject to the constraint that untried dose
pairs may not be skipped when escalating, as described in
Section 3.4.

Toxicity is a three-level ordinal variable representing the
worst severity of nonhaematological adverse events such as
fatigue, diarrhea, and mucositis, which may be considered to
be related to the biological agent, and hematological toxici-
ties including renal dysfunction and neurotoxicity, which may
be considered chemotherapy related. Within-patient dose re-
duction of the biological agent is done after the first cycle if
a grade 1 or 2 nonhaematological toxicity is observed. If the
patient does not recover from a grade 3 or 4 nonhaematologi-
cal toxicity within 2 weeks, the biological agent is stopped,
but the patient may continue to receive the chemothera-
peutic agent as a clinical decision of the patient’s attending

physician. That is, as with any dose-finding trial, to protect
patient safety there is an established protocol for modifying
each patient’s doses on the basis of early interim outcomes
before toxicity is formally scored. In any case, the patient’s
assigned dose pair and observed toxicity outcome, as defined
formally below in Section 3, are incorporated into the likeli-
hood and used to choose the next dose pair.

Efficacy is characterized by a three-level ordinal variable
characterizing changes in a set of measurable lesions com-
pared to baseline using RECIST criteria (Therasse et al.,
2000): tumor response, characterized as complete or partial
remission (CR/PR), stable disease (SD), or progressive dis-
ease (PD). Nearly all chemotherapy trials include rules, based
on the patient’s history of treatments and interim outcomes,
for deciding whether to continue or terminate the patient’s
therapy, or for modifying the patient’s assigned dose. Such
rules typically reflect established clinical practice. For exam-
ple, treatment can be stopped because disease is progressing
or because a severe adverse event such as dose-limiting toxi-
city has occurred, or dose can be decreased during a cycle of
therapy if moderate toxicity is observed. In the bladder cancer
trial, if either PD occurs or grade �3 toxicity related to the
chemotherapy agent occurs and is not resolved within 2 weeks
then the patient’s therapy is terminated. Thus, efficacy may
be scored at the end of the second cycle of therapy for pa-
tients who receive two full cycles, or as PD at the last efficacy
evaluation before two cycles, or efficacy may be inevaluable if
treatment is terminated early because severe toxicity cannot
be resolved.

The problem that we address is how to choose each succes-
sive patient cohort’s optimal dose pair of the biological agent
and chemotherapeutic agent adaptively from the 12 possible
pairs based on the above bivariate outcome. Because dose
pairs are chosen to optimize posterior expected utility, our
proposed method accounts explicitly for the not uncommon
outcome in which efficacy is inevaluable due to early exces-
sive toxicity, rather than simply ignoring this as a “missing”
outcome or using only the observed toxicities.

3. Probability Model
3.1 A General Model
Let Y 1 and Y 2 denote toxicity and efficacy, respectively. In
general, we define Y 1 = 0 if toxicity does not occur, with
Y 1 = 1, 2, . . . , m1 corresponding to increasing levels of sever-
ity. For efficacy, Y 2 = 0 for the worst-possible efficacy out-
come, such as PD, with Y 2 = 1, 2, . . . , m2 corresponding
to increasingly desirable outcomes. To account for the pos-
sibility that Y 2 may not be evaluable, we define Z = 1 if
Y 2 is evaluable and Z = 0 if not, with ζ = Pr(Z = 1).
Thus, the outcome vector Y = (Y 1, Y 2) is observed if
Z = 1, whereas only Y 1 is observed if Z = 0. We denote
the two-dimensional joint outcome probability mass function
(pmf) by π(y |d, θ) = Pr(Y = y |Z = 1, d, θ), where
y = (y1, y2) denotes any of the (m1 + 1)(m2 + 1) possi-
ble values of Y when Z = 1. We denote the marginal of Y 2 by
π2,y(d, θ) = Pr(Y 2 = y |Z = 1, d, θ), and we assume that
π1,y(d, θ) = Pr(Y 1 = y |Z , d, θ), that is, Z does not affect the
marginal distribution of toxicity. Let δ(y) indicate the event
(Y = y) if Z = 1 and let δ1(y1) indicate (Y 1 = y1), so that
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the likelihood takes the form

L(Y, Z |d, θ) =

[
ζ
∏

y

{π(y |d, θ)}δ (y)

]Z

×

[
(1 − ζ)

∏
y 1

{π1,y 1 (d, θ)}δ1(y 1)

]1−Z

. (1)

In practice, Z may depend on Y 1, the observed or unob-
served Y 2, or latent variables that may or may not be related
to either entry of Y, including patient dropout or the deci-
sion algorithms used by physicians for terminating treatment
early, which frequently are complex and may differ substan-
tially from trial to trial. Since Y 2 is defined only if Z = 1
whereas Y 1 is defined for either value of Z, the marginal prob-
ability in the second product in (1) may be expressed more
precisely as Pr(Y 1 = y1 |Z = 0, d, θ). The assumption made
earlier, that Pr(Y 1 = y1 |Z = 0, d, θ) = Pr(Y 1 = y1 |Z =
1, d, θ), is needed to allow our construction, given below in
Section 3.2, of a tractable parametric model wherein the joint
distribution π(y |d, θ) is defined in terms of the marginals
π1,y(d, θ) and π2,y(d, θ), regardless of Z. The simplifying as-
sumption that π1,y(d, θ) does not depend on Z thus is mo-
tivated by a desire for tractability. If one wishes to account
for a possible association between Z and Y 1, however, then a
more complex model might be used.

For the bladder cancer trial, both outcomes are three-level
ordinal variables. Since it is desired to distinguish between
severe toxicities that are or are not resolved, we define Y 1 =
0 if severe (grade 3, 4) toxicity does not occur, Y 1 = 1 if severe
toxicity occurs but is resolved within 2 weeks, and Y 1 = 2 if
severe toxicity occurs and is not resolved within 2 weeks. The
efficacy outcome is Y 2 = 0 if PD occurs at any time, Y 2 =
1 if the patient has SD at the end of the second cycle, and
Y 2 = 2 if a tumor response (PR or CR) is achieved. Treatment
is terminated if PD is observed early, for example, at the end
of the first 28-day cycle.

3.2 Parametric Models
The particular parametric model chosen for π(y |d, θ) must
be sufficiently tractable to facilitate application, including
computation of the Bayesian posterior decision criteria thou-
sands of times when simulating the trial to establish the de-
sign’s properties. To account for the joint effects of d1 and d2

on each entry of Y, as well as association among its elements,
we first model the marginal distribution of each outcome as a
function of d and then combine the marginals using a Gaus-
sian copula to obtain a joint distribution that accounts for
association among the elements of Y. For the marginals, we
will use a very flexible family obtained by generalizing the AO
model for the probability of a binary outcome as a function of
a single dose d. Given linear term η(d, α) that is a real-valued
function of d parameterized by α, the AO model is given by

ξ{η(d, α), λ} = 1 − (1 + λeη (d ,α))−1/λ , (2)

where λ > 0. In practice, η(d, α) may be tailored to the par-
ticular application at hand. For example, the AO model with
η(d, α) = α0 + α1 log(d) has the property that d = 0 im-
plies ξ = 0, that is, the outcome is impossible if no treatment

is given, whereas if η(d, α) = α0 + α1d then d = 0 implies
ξ = 1 − (1 + λeα 0 )−1/λ is a baseline toxicity rate, possibly due
to other treatment components that are not varied. A very
useful property of the AO model is that ξ is not monotone
in d and the curve may take on a wide variety of different
possible shapes. The AO model contains the logistic model
ξ{η(d, α), 1} = eη (d ,α)/{1 + eη (d ,α)} as a special case, and
since limλ→0ξ(η(d, α), λ) = 1 − exp{− eη (d ,α)} it contains
the generalized linear model with complementary log–log link
as a limiting case.

To account for effects of the dose pair d = (d1, d2), we
generalize (2) to accommodate two linear terms, one for each
dose. Denoting the linear term ηj = ηj (dj , αj ) for the effects
of the dose of agent j = 1, 2, we define the more general
probability function

ξ∗{η1, η2, λ, γ} = 1 − {1 + λ(eη 1 + eη 2 + γeη 1+η 2 )}−1/λ . (3)

In this extended model, αj parameterizes the linear term as-
sociated with dj while γ accounts for interaction between the
two agents. Values of γ > 0 ensure that ξ∗ is a probability,
although 0 > γ > −(e−η 1 + e−η 2 ) for all α allows a negative
interactive effect.

To specify marginal probabilities for the ordinal outcomes,
we first define agent-specific linear terms and then incorpo-
rate them into a model that assumes the form (3) for the
conditional probabilities Pr(Yk � y |Yk � y − 1) as follows.
We assume that, for each outcome k = 1, 2, agent j = 1, 2,
and level y = 1, . . . , mk , the linear terms that determine the
marginal distribution of Yk take the form

η
(j )
k ,y

(
dj , α

(j )
k

)
= α

(j )
k ,y ,0 + α

(j )
k ,y ,1 dj , (4)

so that α
(1)
k ,y ,0, α

(2)
k ,y ,0 are intercepts and α

(1)
k ,y ,1, α

(2)
k ,y ,1 are dose-

effect parameters. To stabilize variances, in (4), each dj is
recoded by centering it at the mean of its possible values. For
example, for the bladder cancer trial, the numerical values
of d1 are {−1.5, −0.5, 0.5, 1.5} and the numerical values of
d2 are {−1.0, 0, 1.0}. Denoting α

(j )
k = (α(j )

k ,1,0, α
(j )
k ,1,1, α

(j )
k ,2,0,

α
(j )
k ,2,1), the marginal distribution of Yk is parameterized by

the 10-dimensional vector θk = (α(1)
k , α

(2)
k , λk , γk ), that is,

πk ,y(d, θ) = πk ,y(d, θk ). We incorporate the linear terms
into the marginal distributions by assuming that, for each
y = 1, . . . , mk ,

Pr(Yk � y |Yk � y − 1, d, θk ) = ξ∗
{
η

(1)
k ,y

(
d1, α

(1)
k

)
,

× η
(2)
k ,y

(
d2, α

(2)
k

)
, λk , γk

}
≡ ξ∗k ,y (d, θk ). (5)

This implies that

πk ,y (d, θk ) =
{
1 − ξ∗k ,y +1(d, θk )

} y∏
j=1

ξ∗k ,j (d, θk ) (6)

for all y � 1, and πk ,0(d, θk ) = 1 − ξ∗k ,1(d, θk ). In the three-
level case at hand, the unconditional marginal probabilities
are given by πk ,1(d, θk ) = ξ∗k ,1(d, θk ){1 − ξ∗k ,2(d, θk )} and
πk ,2(d, θk ) = ξ∗k ,1(d, θk ) ξ∗k ,2(d, θk ).

The above model for the marginal distribution {πk ,1(d,
θk ), πk ,2(d, θk )} of Yk is especially flexible and informative
for dose-finding. While each η

(j )
k ,y(dj , α

(j )
k ) is linear in dj , the
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probability functions ξ∗k ,1(d, θk ) and ξ∗k ,2(d, θk ) take on a
wide variety of possible shapes as functions of d1 and d2,
and they accommodate the possibility that Pr(Yk � y |d, θk )
may be nonmonotone in either d1 or d2. While it may seem
self-evident, it also is important to note that defining each
outcome as an ordinal variable having three or more levels
and recording two outcome variables provides a much richer
characterization of patient outcome than would be obtained
by reducing the available clinical information to one or two
binary variables.

Given the marginal probabilities of the two outcomes to
obtain a joint distribution for Y that is sufficiently tractable
to facilitate practical application, we combine the marginals
using a Gaussian copula. Let Φρ denote the cumulative dis-
tribution function (cdf) of a bivariate standard normal distri-
bution with correlation ρ, and let unsubscripted Φ denote the
univariate standard normal cdf. A Gaussian copula is given
by

Cρ (u, v) = Φρ{Φ−1(u), Φ−1(v)} for 0 � u, v � 1. (7)

To apply this structure, we first note that the cdf of each
three-level ordinal outcome having support {0, 1, 2} is

Fk (y |d, θk ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if y < 0

1 − πk ,1(d, θk ) − πk ,2(d, θk ) if 0 � y < 1

1 − πk ,2(d, θk ) if 1 � y < 2

1 if y � 2

which is computed by recalling that πk ,1(d, θk ) + πk ,2(d,
θk ) = ξ∗k ,1(d, θk ) and πk ,2(d, θk ) = ξ∗k ,1(d, θk )ξ∗k ,2(d, θk ). Since
the support of each marginal is {0, 1, 2}, the joint pmf of Y
can be expressed as

π(y |d, θ) =
2∑

a=1

2∑
b=1

(−1)a+bCρ (ua , vb ), (8)

where u1 = F 1(y1 |d, θ), v1 = F 2(y2 |d, θ), u2 = F 1(y1 − 1 |d,
θ), and v2 = F 2(y2 − 1 |d, θ) with u2, v2 the left-hand limits of
F k at yk . Since Cρ is parameterized by ρ, the model parameter
vector is θ = (θ1, θ2, ρ), and dim (θ) = 21. Suppressing the
arguments (d, θ) for brevity, expanding (8) gives

π(y) = Φρ{Φ−1 ◦ F1(y1), Φ−1 ◦ F2(y2)}
−Φρ{Φ−1 ◦ F1(y1 − 1), Φ−1 ◦ F2(y2)}
−Φρ{Φ−1 ◦ F1(y1), Φ−1 ◦ F2(y2 − 1)}
+ Φρ{Φ−1 ◦ F1(y1 − 1), Φ−1 ◦ F2(y2 − 1)}. (9)

Thus, all bivariate probabilities can be derived from the above
expression by applying Φρ to the marginal distributions. Bi-
variate probabilities for which one or both of the yk ’s equal
0 are slightly simpler due to the facts that F k (−1) = 0,
Φ−1(0) = −∞ and Φρ (x, y) = 0 if either of its arguments
is −∞. For example, π(0, 0) = Cρ (π1,0, π2,0) = Cρ (1 −
π1,1 − π1,2, 1 − π2,1 − π2,2) and, similarly, π(1, 0) = Cρ (1 −
π1,2, 1 − π2,1 − π2,2) − π(0, 0).

3.3 Utilities and Dose Pair Selection
Because our method uses the posterior mean expected utility
as a criterion for choosing dose pairs, a key assumption is that
the utility function provides a meaningful one-dimensional

numerical summary representation of the patient’s complex
multivariate outcome. This approach is especially useful in
settings where some values of the outcome vector may be
missing, in particular when efficacy is inevaluable due to ex-
cessive toxicity. This outcome is not unlikely in the bladder
cancer trial, and more generally it occurs quite commonly in
oncology trials where the aim is to evaluate both efficacy and
toxicity.

Let U(y) denote the numerical utility of outcome y. Given
the parameter vector θ, we define the mean utility for a pa-
tient treated with d to be the mean of U(Y) over the possible
outcomes,

u(d, θ) = EY{U (Y) |d, θ} =
∑

y

U (y) π(y |d, θ). (10)

Given the current data from n patients at any point in the
trial, datan = {(Y1, d1), . . . , (Yn , dn)}, the method selects
the dose pair dopt(datan) that maximizes the posterior mean
over θ of u(d, θ) given by (10). Formally, denoting the set of
all dose pairs being considered by D,

dopt(datan ) = argmax
d∈D

Eθ{u(d, θ) | datan }

= argmax
d∈D

∑
y

U (y) Eθ{π(y |d, θ) | datan },
(11)

with the second equality obtained by reversing the expecta-
tion operators Eθ and EY .

3.4 Additional Safety Rules
Although the utility function accounts for toxicity, there is the
possibility that even the d having maximum utility will be too
toxic. While this might be considered unlikely, it may arise
due to unanticipated interactions between the two agents. To
guard against this, we include the following two safety rules.
The first rule constrains escalation, at any point in the trial,
so that untried levels of each agent may not be skipped. For-
mally, if (d1, d2) is the current dose pair, then escalation is
allowed to as yet untried pairs (d1 + 1, d2), (d1, d2 + 1), or
(d1 + 1, d2 + 1), provided that these are in the matrix of
dose pairs being studied. Thus, for example, after the first co-
hort in the bladder cancer trial is treated at (2, 2), allowable
higher dose pairs for the second cohort are (3, 2), (2, 3), and
(3, 3) but not (4, 2) or (4, 3). There is no similar constraint
on de-escalation.

To define a formal stopping rule, let πmax
1,2 denote a fixed

upper limit on the probability of the most severe level of tox-
icity. This must be specified by the physicians planning the
trial. Let pU be a fixed upper probability cut-off, for example
in the range 0.80 to 0.99. The trial will be stopped early if

min
d

Pr
{
π1,2(d, θ) > πmax

1,2 | data
}

> pU . (12)

This rule stops the trial if, based on the current data, there
is a high posterior probability for all dose pairs that the most
severe level of toxicity exceeds its prespecified limit. This is
similar to the safety monitoring rules used by Thall and Cook
(2004) and Braun et al. (2007). We formulate the safety rule
(12) to require that all dose pairs are too toxic, rather than
only the pair dmin where both doses are at their lowest level, in
order to control the false negative rate, that is, the probability
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of incorrectly stopping the trial when at least one dose pair
is safe.

3.5 Computational Methods
The main technical difficulty in obtaining the dose selection
criterion (11) is computing the posterior means Eθ {π(y |d,
θ) | datan} for all dose pairs d given each interim data set,
since then averaging over U (y) and computing the maximum
over the 12 dose pairs to obtain dopt(datan) is trivial. We used
MCMC with Gibbs sampling (Robert and Cassella, 1999) to
compute all posterior quantities. We integrated π(y |d, θ)
over θ by generating a series θ(1), . . . , θ(N ) distributed pro-
portionally to the posterior integrand, using the two-level al-
gorithm described in the Appendix of Braun et al. (2007).
MCMC convergence was confirmed by a small ratio (<3%) of
the Monte Carlo standard error (MCSE) to the standard de-
viation of the utilities of the four corner dose pairs. For each
θ(i), we first computed all linear terms η

(j )
k ,y(θ

(i)) associated
with each agent for each dose pair. For each outcome k = 1,
2 and level y = 1, 2, we then evaluated ξ∗(η(1)

k ,y , η
(2)
k ,y , λk , γk )

as given by (3) at θ(i), and applied the formula (6) to obtain
πk ,1(d, θ

(i)
k ) and πk ,2(d, θ

(i)
k ). We then computed the Gaus-

sian copula values (7) to obtain the joint pmf values π(y |d,
θ(i)) given by (8) and averaged over the θ(i)’s to obtain their
posterior means.

4. Application
4.1 Establishing Priors
To establish priors, we elicited information from the principal
investigator of the bladder cancer trial, a co-author of this ar-
ticle (N.H.). The elicited values consisted of a variety of prior
mean outcome probabilities. Toxicity is scored as Y 1 = 0 if
no grade 3, 4 toxicity occurs; Y 1 = 1 if grade 3, 4 toxicity
occurs but is resolved within 2 weeks; and Y 1 = 2 if grade 3,
4 toxicity occurs and is not resolved within 2 weeks. Efficacy
is scored as Y 2 = 0 if PD occurs, with Y 2 = 1 if the patient
has SD and Y 2 = 2 if the patient has PR/CR at the end of
two cycles. We allow the possibility that Y 2 cannot be scored
due to excessive toxicity, an outcome which has non-trivial

probability in dose-finding trials. Unconditional prior means
of πk ,1(d, θ) and πk ,2(d, θ) were elicited for each k and dose
pair d. The elicited values are summarized in Table 1. We used
an extension of the least squares method of Thall and Cook
(2004) to solve for prior means of the 20 model parameters
(θ1, θ2). We calibrated the prior variances to obtain a suitably
non-informative prior to ensure that the data will dominate
the decisions early in the trial. This was done in terms of the
effective sample size (ESS) of the prior of each πk ,y(d, θk ) by
matching its mean and variance with those of a beta(a, b),
assuming E{πk ,y(d, θk )} ≈ a/(a + b) and var{πk ,y(d, θk )} ≈
ab/(a + b)2(a + b + 1), solving for the approximate ESS as
a + b ≈ E{πk ,y(d, θk )} [1 − E{πk ,y(d, θk )}]/var{πk ,y(d, θk )}
− 1 and calibrating the variances of the elements of θ to ob-
tain suitably small ESS values. We assumed that the α

(j )
k ,y ,r ’s

and γk ’s were normally distributed, and each λk was log nor-
mal. For the correlation, we assumed ρ was uniformly dis-
tributed between −1 and +1. Setting var(α(j )

k ,y ,r ) = 102 and
var{log(λk )} = var(γk ) = 1.52 gave priors for all πk ,y(d, θ)’s
having ESS values ranging from 0.81 to 2.86 with overall mean
ESS 1.45. Thus, in terms of the outcome probabilities, the
prior is uninformative. The prior means of each pair πk ,1(d,
θ) and πk ,2(d, θ) are given along with their corresponding
elicited values in Table 1.

4.2 Utilities
Utilities of all possible outcomes (Y 1, Y 2) are given in
Table 2a. These were determined using the Delphi method, a
tool for establishing consensus among experts (Dalkey, 1969;
Brook et al., 1986). It consists of a series of repeated inter-
rogations, usually by means of questionnaires, to a group of
individuals whose opinions or judgments are of interest. After
the initial interrogation of each individual, each subsequent
interrogation is accompanied by information regarding the
preceding round of replies, usually presented anonymously.
The individual is thus encouraged to reconsider and, if appro-
priate, to change his/her previous reply in light of the replies
of other members of the group. After two or three rounds,
the group position is determined by averaging. In applying

Table 1
Elicited and computed prior means of the probabilities πk ,1(d), πk ,2(d) for each dose pair d and outcome Yk , where

k = 1 for toxicity and k = 2 for efficacy

d1 = Dose level of biological agent

d2 k 0 1 2 3 4

3 1 Elicited – 0.85, 0.10 0.85, 0.11 0.85, 0.12 0.82, 0.15
Computed – 0.58, 0.19 0.59, 0.18 0.59, 0.19 0.56, 0.22

2 Elicited 0.50, 0.33 0.50, 0.33 0.50, 0.33 0.55, 0.35 0.60, 0.38
Computed – 0.37, 0.36 0.39, 0.35 0.41, 0.36 0.41, 0.37

2 1 Elicited – 0.80, 0.04 0.80, 0.05 0.80, 0.06 0.80, 0.08
Computed – 0.59, 0.15 0.61, 0.13 0.60, 0.14 0.57, 0.18

2 Elicited 0.50, 0.33 0.50, 0.33 0.50, 0.33 0.55, 0.35 0.60, 0.38
Computed – 0.37, 0.34 0.39, 0.34 0.40, 0.35 0.41, 0.36

1 1 Elicited – 0.70, 0.02 0.70, 0.03 0.70, 0.04 0.70, 0.06
Computed – 0.56, 0.14 0.57, 0.13 0.57, 0.14 0.54, 0.17

2 Elicited 0.45, 0.25 0.45, 0.25 0.45, 0.25 0.50, 0.27 0.55, 0.30
Computed – 0.35, 0.32 0.37, 0.32 0.39, 0.33 0.39, 0.35
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Table 2
Utilities for patient outcomes in the bladder cancer trial. For
toxicity, Y 1 = 0 if no grade 3, 4 toxicity occurs; Y 1 = 1 if

grade 3, 4 toxicity occurs but is resolved within 2 weeks; and
Y 1 = 2 if grade 3, 4 toxicity occurs and is not resolved within

2 weeks

Y 2 = 0 Y 2 = 1 Y 2 = 2
Progressive Stable Tumor Y 2

disease disease response Inevaluable

a. Utilities elicited using Delphi method
Y 1 = 0 25 76 100 –
Y 1 = 1 10 60 82 –
Y 1 = 2 2 40 52 0

b. Utilities reflecting one oncologist
Y 1 = 0 40 90 100 –
Y 1 = 1 10 50 80 –
Y 1 = 2 0 40 40 0

c. Hypothetical utilities reflecting greater value on tumor
response

Y 1 = 0 10 50 100 –
Y 1 = 1 5 40 90 –
Y 1 = 2 0 30 80 0

this approach, eight medical oncologists, all members of the
Genitourinary French National Group, agreed to answer the
questionnaire out of an initial set of 15 oncologists who were
contacted. The questionnaire provided a table of the 10 pos-
sible outcomes, with accompanying definitions, and asked the
oncologist to provide a numerical utility for each outcome on
a scale of 0 to 100. After two rounds of the process described
above a consensus among the eight oncologists was reached.
In order to assess the method’s sensitivity to the numerical
utility values, we also considered two other utilities. The indi-
vidual utilities of NH are given in Table 2b, and hypothetical
utilities that place comparatively greater value on achieving
a tumor response (CR/PR), compared to SD or PD without
toxicity, are given in Table 2c.

5. Computer Simulations
For the bladder cancer trial, the maximum sample size N =
48 was chosen based on accrual limitations and preliminary
simulations examining the design’s sensitivity to values of N
in the range 36 to 60. Unless otherwise stated, each simu-
lated trial was conducted using the starting dose pair (2, 2),
with dose pairs chosen to maximize the posterior mean utility
subject to the safety rules described in Section 3.4, with the
safety stopping rule applied using πmax

1,2 = 0.33 and pU = 0.80.
For each simulation, a scenario was specified in terms of fixed
values of all marginal probabilities of both outcomes at all
doses, and the correlation parameter. Specifically, a scenario
was determined by assumed true probability values πtrue

k ,1 (d)
and πtrue

k ,2 (d) for k = 1, 2 for each d ∈ D, and true correla-
tion ρtrue. Under the Gaussian Copula, these determined the
joint probabilities πtrue(y |d) for each dose pair d, which were
used to simulate the outcome of each patient, given the dose
assigned to that patient by the method. Scenario 1 corre-
sponds to the elicited prior, and its fixed marginal probabili-

ties πtrue
k , j (d) are given in the rows labeled “Elicited” in Table 1.

In scenario 2, the dose pairs d = (1, 2), (2, 2), (3, 2) in the mid-
dle row of the dose pair matrix have the highest utilities, with
d = (2, 2) most desirable. Scenario 3 has lower toxicity and
higher synergistic effects between the two agents compared to
scenario 1. Scenario 4 has the same toxicities as scenario 1,
but with antagonistic effects between the two agents on the
response probabilities πtrue

2,y . Scenario 5 is a case where none
of the dose pairs are safe, with all severe toxicity probabili-
ties πtrue

1,2 (d) varying from 0.60 to 0.75. The values of πtrue
k , j (d)

for all scenarios are given in Web Tables 1–5, along with the
corresponding true utilities.

In order to evaluate how well the method performs in pick-
ing a dose pair to optimize the utility function, we define the
following summary statistic. Recall from (11) that dopt(datan)
is the dose pair selected by the method at an interim point in
the trial, since it maximizes the posterior mean utility based
on the current data from n patients. In each simulation, since
the outcome probabilities πtrue(y |d) at each dose pair are
specified, using these in place of the unknown probabilities
π(y |d, θ) in (10) gives the corresponding true utility of treat-
ing a patient with dose d under the assumed true distribution
{πtrue(y |d)},

utrue(d) =
∑

y

U (y)πtrue(y |d). (13)

While probabilistic averages of the form (13) are used rou-
tinely in statistics, it is important to bear in mind that, given
a utility function U(y), it is not obvious what numerical val-
ues of utrue(d) will be obtained from an assumed simulation
scenario {πtrue(y |d)}. Denoting the final selected dose pair
based on the data from N patients by dopt

N , a summary statis-
tic to evaluate the method’s performance is

R =
utrue(dopt

N ) − umin

umax − umin
, (14)

where umax = max{utrue(d) : d ∈ D} is the maximum and
umin = min{utrue(d) : d ∈ D} is the minimum possible true
utility over all dose pairs in D. Thus, R is the proportion
of umax − umin achieved by the selected dose pair, with R = 1
if the dose pair having maximum possible true utility under
{πtrue(y |d)} is chosen.

All simulations were based on 1,000 repetitions of each
case. The first simulation study assumes the consensus utili-
ties elicited using the Delphi method (Table 2a) and assumes
true correlation ρtrue = 0.10. The results are summarized in
Table 3. When interpreting these results, it is important to
bear in mind that each scenario’s true utilities are only sum-
mary values, and they may hide the complex structure of
the bivariate model probabilities. Overall, the method per-
formed well in all scenarios, as summarized by the R statistic
in each case. In each of scenarios 1–4, a dose pair having
utility close to the maximum is very likely to be chosen. In
scenario 2, where the utility surface is an inverted “U” shape
with largest utrue(d) values in the middle of the dose domain
at (d1, d2) = (1, 2), (2, 2), and (3, 2), the method correctly
selects one of these pairs with high probability, and the best
pair (2, 2) with highest probability. In scenario 4, the method
is very likely to correctly select a high utility dose pair with
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Table 3
Simulation results for the design based on the elicited utilities given in Table 2

d1

Scenario d2 1 2 3 4 R % none

1 3 utrue(d) 57.3 56.9 60.4 64.2 0.71 0
% Sel, # Pats. 1, 0.7 2, 0.7 6, 2.7 14, 5.1

2 utrue(d) 60.5 60.1 63.6 67.4
% Sel, # Pats. 4, 1.4 4, 6.9 14, 8.9 29, 12.0

1 utrue(d) 54.6 54.2 57.8 61.7
% Sel, # Pats. 1, 0.3 0, 0.3 2, 1.0 22, 8.0

2 3 utrue(d) 47.2 46.2 44.2 42.2 0.81 1
% Sel, # Pats. 2, 0.8 1, 0.8 2, 0.9 1, 0.5

2 utrue(d) 54.6 65.8 61.8 43.4
% Sel, # Pats. 8, 2.7 44, 21.9 34, 15.2 1, 1.6

1 utrue(d) 44.6 44.9 45.1 39.1
% Sel, # Pats. 3, 1.0 0, 0.5 2, 1.1 1, 0.9

3 3 utrue(d) 48.6 53.1 59.6 64.9 0.85 0
% Sel, # Pats. 1, 0.7 2, 0.7 9, 3.2 23, 9.4

2 utrue(d) 43.9 50.8 55.2 63.5
% Sel, # Pats. 0, 0.2 1, 4.1 4, 4.9 35, 14.1

1 utrue(d) 41.4 48.9 53.4 58.8
% Sel, # Pats. 0, 0.1 0, 0.1 1, 0.8 25, 9.8

4 3 utrue(d) 61.2 51.0 38.0 26.0 0.78 0
% Sel, # Pats. 12, 3.5 2, 1.0 1, 1.7 1, 3.0

2 utrue(d) 65.4 53.6 45.3 37.3
% Sel, # Pats. 19, 5.6 2, 5.8 4, 6.7 4, 5.7

1 utrue(d) 73.9 61.9 55.2 44.9
% Sel, # Pats. 44, 9.8 0, 0.3 1, 0.8 9, 4.1

5 3 utrue(d) 44.6 44.2 46.8 49.6 0.67 85
% Sel, # Pats. 1, 1.6 1, 1.3 3, 2.4 3, 4.2

2 utrue(d) 45.6 45.0 47.7 50.0
% Sel, # Pats. 0, 0.5 1, 3.8 1, 2.0 1, 0.8

1 utrue(d) 39.7 39.0 41.7 44.0
% Sel, # Pats. 0, 0.7 0, 0.7 1, 2.8 3, 4.7

d1 = 1, in the left column. The fact that the method has high
probabilities of choosing dose pairs with high utilities under
each of the scenarios, 1–4, where the pairs with highest util-
ities have very different locations in the dose domain for the
different scenarios, shows that the data rather than the prior
drive the method’s decisions. In terms of safety, the method
correctly stops the trial early and chooses no dose pair 85%
of the time in scenario 5, where all pairs were excessively
toxic. The cut-off pU = 0.80 for the safety rule was chosen af-
ter preliminary simulations using pU = 0.90 stopped the trial
early only 64% of the time under scenario 5. Note that, in
scenario 5 where all 12 dose pairs are excessively toxic and
the design stops the trial early 85% of the time, the value
R = 0.67 corresponds to the 15% of cases where the trial was
not stopped.

The aim of the second set of simulations was to assess the
method’s sensitivity to the numerical utilities. Table 4 sum-
marizes the results for each of the three utilities given in
Table 2 under each scenario. The R statistic appears to be
quite sensitive to the utility chosen for trial conduct. This
is a highly desirable property of the method, since if it were
not the case then choosing d to optimize the posterior mean
utility would be pointless.

Table 4
Comparison of the summary R statistics and stopping

percentages for conducting trials under the alternative utility
definitions given in Table 2

Utility A Utility B Utility C

Scenario R % none R % none R % none

1 0.71 0 0.57 0 0.63 0
2 0.81 1 0.68 1 0.45 1
3 0.85 0 0.77 0 0.86 0
4 0.78 0 0.83 0 0.79 0
5 0.67 85 0.66 89 0.80 61

The R statistic is insensitive to using c = 1 versus c =
3 under all scenarios. However, c = 1 is slightly safer un-
der scenario 5 with early stopping probability of 92% com-
pared to 85% for c = 3. This is not surprising, since it is well
known that continuous monitoring provides the safest design
when using outcome-adaptive methods, although it must be
borne in mind that using c = 1 may not be logistically feasible
in practice. For cohort size c = 3, we evaluated a two-stage
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version of the design with either the first n1 = 12 or 24 pa-
tients assigned dose pairs with the chemo agent dose fixed at
1000 mg/m2 (d2 = 2) and only the biological agent dose var-
ied, and dose pairs chosen from the entire set of 12 for the
remaining 48 − n1 patients. This has a negligible effect on the
values of R for all scenarios. These simulations are summa-
rized in Web Table 6.

The R statistic increases with Nmax in all scenarios, with
small increases in R as Nmax increases from 36 to 60 and, as
a numerical check of consistency, much larger R values for
the somewhat unrealistic sample size Nmax = 240. To assess
sensitivity of the method to the prior, if a naive prior is used
with all prior means 0 and prior standard deviations σ(α) =
σ{log(λ)} = σ(γ) = 1000, the R statistic drops substantially
under scenarios 1, 2, and 3, but increases by 0.11 under sce-
nario 4. These simulations are summarized in Web Table 7.
We also varied the prior variances, studying several configu-
rations of the standard deviations σ(α(j )

k ,y ,r ) and σ{log(λk )} =
σ(γk ), summarized in Web Table 8.In terms of R and % no
dose selected, the method is insensitive to varying σ(α(j )

k ,y ,r )
from 7 to 15 and σ{log(λk )} = σ(γk ) from 1 to 3, with the
exception that, under Scenario 4, R = 0.68 for σ(α(j )

k ,y ,r ) =
7 and σ{log(λk )} = σ(γk ) = 1.5, compared to R = 0.78 to
0.82 for the other cases. These simulations indicate that it is
important to use elicited values to establish prior means and
carefully calibrate the prior variances, rather than choosing
arbitrary hyperparameter values that appear to be noninfor-
mative.

We also studied the method’s sensitivity to ρtrue = 0 to
0.90 (not tabled), and found that there was little or no ef-
fect on the design’s performance. A surprising result is that,
if we assume independence between Y 1 and Y 2 by setting ρ ≡
0, there is virtually no degradation of the design’s perfor-
mance for 0 � ρtrue � 0.50. However, for 0.60 � ρtrue � 0.90,
assuming independence gives a design with slightly smaller
stopping probability under scenario 5 where all dose pairs are
excessively toxic. Finally, Web Table 9 summarizes sensitivity
to starting at d = (1, 1) versus (2, 2), (1, 2), or (2, 1). The
method is insensitive to the starting pair under scenarios 3
and 5, but under scenario 2 starting at (1, 1) gives R = 0.66
versus R = 0.81 when starting at (2, 2), whereas under the
“antagonistic dose effect” scenario 4 starting at (1, 1) gives
R = 0.94 versus R = 0.78 when starting at (2, 2). So there
seems to be a trade-off with regard to choice of starting dose
pair.

An associate editor has asked the interesting question of
how much improvement is obtained by using the data, com-
pared to relying on the prior to choose an optimal d. The
prior mean utilities of the 12 dose pairs vary from mini-
mum uprior(1, 1) = 47.7 to maximum uprior(4, 2) = 51.5.
If d = (4, 2) were chosen on this basis without conducting
a trial, then the respective values of R for the scenarios 1, 2,
3, and 4 in Table 3 having acceptably safe dose pairs would
be 1.00, 0.16, 0.94, and 0.24, compared to the values 0.71,
0.81, 0.85, and 0.78 obtained from running the trial. Thus,
essentially, using the prior mean utilities to choose d would
rely on making a lucky guess, since d = (4, 2) would be a
very good choice in scenarios 1 and 3, a very poor choice in

scenarios 2 and 4, and a disaster in scenario 5 where all d
pairs are unacceptably toxic.

6. Discussion
We have proposed an outcome-adaptive Bayesian design for
the common clinical problem of choosing a dose pair of a
chemotherapeutic and biological agent used in a combination.
While characterizing patient outcome as a vector of two ordi-
nal variables provided a very informative characterization of
treatment effect, developing a tractable model, and conduct-
ing computer simulations were both quite complex and time
consuming. However, the computations required for actual
trial conduct are quite feasible. The use of numerical utilities
that characterize the desirability of the outcomes yielded a de-
sign with very attractive properties. This may be contrasted
with the very different, more conventional approach of the
continual reassessment method and similar designs, which use
only toxicity and choose a dose having posterior mean toxic-
ity probability closest to a given fixed target value. As noted
earlier, another advantage of using utilities is that one may
account formally for the not uncommon outcome that efficacy
is inevaluable due to severe toxicity.

In our design, patients are not randomized among doses,
but rather a single dose pair is chosen for each new cohort to
optimize a statistical decision criterion, in our case posterior
mean utilities. This common practice in phase I and phase
I/II dose-finding trials is motivated by safety concerns, since
they are the first trials to study a new agent or combina-
tion in humans and higher doses, or higher dose pairs, carry
a higher risk of severe toxicity. Thus, doses are chosen in a
sequential, outcome-adaptive manner primarily due to ethi-
cal concerns. However, our design could be modified so that,
once an acceptable level of safety has been established for all
dose pairs, if two or more pairs have posterior mean utilities
that are numerically very close to each other, then the pa-
tients in the next cohort could be randomized among these
dose pairs. This might spread the sample more evenly over
the two-dimensional dose domain, and thus provide improved
posterior estimates of π(y |d, θ) and u(d, θ) as functions of
d without sacrificing safety.

The design stops early if all d are excessively toxic, but
not if all d have a low response rate. In the latter case, the
method is likely to run the trial to completion and choose the
pair d having highest utility. If all response rates are about
equal, this would correspond to choosing the pair having low-
est toxicity. The design could be modified to include a “phase
II” type rule, similar to (12), to stop the trial if all d have low
response rates, as is done in the phase I/II design of Thall and
Cook (2004). In the case where Y 2 is trinary, such a rule could
be formulated in terms of either π2,2(d) or possibly π2,1(d) +
π2,2(d).

A menu-driven computer program, named “U2OET,” to
implement this methodology is available from the website
http://biostatistics.mdanderson.org/SoftwareDownload.

7. Supplementary Materials
Supplementary Tables 1–9, referenced in Section 5, are avail-
able under the Paper Information link at the Biometrics web-
site http://www.biometrics.tibs.org.
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