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Summary. We consider treatment regimes in which an agent is administered continuously at a specified concentration until
either a response is achieved or a predetermined maximum infusion time is reached. Response is an event defined to characterize
therapeutic efficacy. A portion of the maximum planned total amount administered is given as an initial bolus. For such
regimes, the amount of the agent received by the patient depends on the time to response. An additional complication when
response is evaluated periodically rather than continuously is that the response time is interval censored. We address the
problem of designing a clinical trial in which such response time data and a binary indicator of toxicity are used together to
jointly optimize the concentration and the size of the bolus. We propose a sequentially adaptive Bayesian design that chooses
the optimal treatment for successive patients by maximizing the posterior mean utility of the joint efficacy-toxicity outcome.
The methodology is illustrated by a trial in which tissue plasminogen activator is infused intraarterially as rapid treatment
for acute ischemic stroke.
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1. Introduction
Many phase I/II designs that choose an optimal dose based
on efficacy and toxicity have been proposed. Most of these
methods characterize clinical outcomes as discrete variables
(cf. Gooley et al., 1994; Thall and Russell, 1998; O’Quigley,
Hughes, and Fenton, 2001; Braun, 2002; Ivanova, 2003; Thall
and Cook, 2004; Bekele and Shen, 2005; Zhang, Sargent, and
Mandrekar, 2006; Thall, Nguyen, and Estey, 2008). Phase I/II
methods also have been proposed based on two time-to-event
outcomes (Yuan and Yin, 2009) and two ordinal outcomes
(Houede et al., 2010). While the problem that motivated the
present paper is to optimize a two-dimensional treatment
based on efficacy and toxicity, the specific structure of our
setting does not fit any of the dose-finding paradigms noted
above. To explain why this is the case, we first give some
background on the medical setting and treatment regime.

Acute ischemic stroke (AIS) is a major cause of mortal-
ity and disability in adults (Johnson, Mendis, and Mathers,
2009). A new therapeutic modality for AIS is intraarterial
(IA) fibrinolytic infusion, wherein a thrombolytic agent to
dissolve the clot that caused the stroke is delivered via two
telescoping catheters, one supportive in the carotid artery and
a smaller microcatheter within it positioned directly into the
clot. The catheters are introduced to the arterial system via a
sheath placed into the femoral artery. Using live X-ray fluoro-
scopic guidance, the catheters are moved through the carotid
artery leading to the site in the brain artery where the clot

leading to AIS occurred, and the agent is infused via the mi-
crocatheter. A thrombolytic agent approved by the U.S. Food
and Drug Administration for intravenous (IV) treatment of
AIS in adults is tissue plasminogen activator (tPA). While ef-
fects of IV tPA in adult stroke patients are well understood,
optimally safe and efficacious concentrations of IA tPA have
not been established. The methodology described in this ar-
ticle was motivated by the desire to design a clinical trial to
optimize administration of IA tPA.

The treatment regime is as follows. For a given concentra-
tion c in mg/kg body weight and fixed maximum volume V ,
the maximum total dose is cV . Since V is fixed, hereafter we
set V = 1 without loss of generality. A proportion q of the
maximum volume is given as an initial bolus at t = 0, followed
by continuous infusion (ci) of the remaining proportion 1 −
q at a constant rate for a maximum time period t∗. In the IA
tPA trial, t∗ = 2 hours. Efficacy is the time to dissolve the
clot, YE . This includes the possibility that the clot is dissolved
immediately by the bolus (YE = 0). The ci is stopped at the
time of response if it is observed by time t∗, otherwise YE

is right-censored at t∗. Toxicity is the binary indicator YT of
symptomatic intracerebral hemorrhage (SICH), characterized
by neurological worsening compared to baseline in terms of a
standardized stroke severity scale, and is associated with high
rates of morbidity and mortality. SICH is evaluated by brain
imaging, using head computerized tomography (CT) scan or
magnetic resonance imaging (MRI), typically at a fixed time
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much later than t∗, such as 24 or 48 hours. Patients for whom
the infusion fails to dissolve the clot are believed to be at
higher risk of toxicity.

If response is observed continuously, then each patient’s
outcome data consist of YT and either the response time YE if
the clot is dissolved before t∗ or the fixed right-censoring time
t∗. When response is evaluated periodically, which may be
the only practical possibility in some settings, only the time
interval in which YE occurred is known. In the IA tPA trial,
response is evaluated at 15-minute intervals. For example, if
a patient’s clot was not dissolved by the 30-minute evaluation
but was found to have dissolved by the 45-minute evaluation,
then it is only known that the response occurred during the
interval (30, 45]. Thus, YE is interval censored from 0 to t∗ and
administratively right-censored at t∗. With either continuous
or periodic observation of YE , because the ci is stopped before
t∗ if the clot is dissolved, the amount of the agent that a
patient actually receives depends on the patient’s response
time as well as c and q. Consequently, since toxicity is scored
after the ci is completed the distribution of YT depends on
YE .

The goal is to jointly optimize (c, q) over a design space
consisting of a rectangular grid of the eight pairs obtained
from the bolus proportions q = 0.10 and 0.20, and the con-
centrations c = 0.20, 0.30, 0.40, and 0.50 mg/kg. These (c, q)
combinations were chosen by two co-authors of this article
(CMA and OOZ), expert stroke, vascular, and interventional
neurologists. The main problems that we address here are to
(1) specify tractable probability models for YE and [YT |YE ] as
functions of (c, q) reflecting the modes of administration and
observation, and (2) construct an adaptive decision procedure
utilizing YT and the response time data described above to
choose (c, q) for successive patients. We model the marginal
distribution of YE as a mixture of a discrete mass at t = 0 for
the bolus and a continuous component on (0,∞) for the ci.
The conditional toxicity probability of [YT |YE ] is a nonlinear
function of c, q, and YE . Elicited utilities of joint (YE , YT )
outcomes are used as a basis for adaptively assigning treat-
ments to successive patients as they are enrolled during the
trial. Each patient is given the treatment combination (c, q)
maximizing the current posterior mean utility.

The probability model is given in Section 2, followed by
descriptions of the utility function and design in Section 3.
Application to the IA tPA trial is described in Section 4, and
simulation studies are summarized in Section 5. We close with
a discussion in Section 6.

2. Probability Models
2.1 Models for Response and Toxicity
While there are many parametric regression models for event
time data (cf. Ibrahim, Chen, and Sinha, 2001), with this
treatment regime we model efficacy as a time-to-event out-
come, as follows. Since efficacy is monitored on the interval 0
� t � t∗, to simplify notation we define YE in terms of stan-
dardized time, s = t/t∗. Denote the parameter vector of the
marginal distribution of YE by α. We define the distribution
of [YE | c, q, α] in terms of a hazard function with two compo-
nents, a discrete component p0(c, q, α), the probability that
the clot is dissolved instantaneously by the bolus at s = 0, and
a continuous component, λ(s, c, q, α), for s � 0. For integrated

continuous hazard Λ(s, c, q, α) =
∫ s

0 λ(y, c, q, α)dy, the cumu-
lative hazard function is − log{1 − p0(c, q, α)} + Λ(s, c, q, α)
for s � 0. Consequently, denoting the indicator of an event A
by 1(A), the probability distribution function (pdf) of YE is
the discrete-continuous mixture

fE (y, c, q, α) = p0(c, q, α)1(y = 0)

+ {1 − p0(c, q, α)}λ(y, c, q, α) e−Λ(y ,c ,q ,α)1(y > 0),

and the cumulative distribution function (cdf) is

FE (y, c, q, α) = 1 − {1 − p0(c, q, α)} e−Λ(y ,c ,q ,α) (1)

for y � 0. In particular, FE (0, c, q, α) = p0(c, q, α) since
Λ(0, c, q, α) = 0.

To apply this model, functional forms for p0 and λ must
be specified. Any model used in sequential outcome-adaptive
decision making based on small-to-moderate sized samples
must balance flexibility to accurately reflect the observed data
with tractability to facilitate computation. To allow p0 and
λ to vary nonlinearly in both c and q, we will use cα 1 and
qα 2 rather than c and q as arguments, where α1, α2 > 0 are
model parameters. The additional flexibility provided by α1

and α2 provides a basis for distinguishing more reliably among
different values of (c, q) in terms of their effects on p0 and λ
when applying the adaptive decision scheme. Based on clinical
experience, we assume that

(a) p0(c, q, α) increases in both c and q, and
(b) the clot cannot dissolve instantaneously at s = 0 with-

out a bolus infusion of some tPA, hence p0(c, 0, α) = 0
for all c > 0 and p0(0, q, α) = 0 for all 0 � q � 1.

A simple, flexible function with properties (a) and (b) is

p0(c, q, α) = 1 − exp(−α0c
α 1qα 2 ) for α0 > 0. (2)

We require the hazard function λ(s, c, q, α) for the clot dis-
solving during the ci to have the following properties:

(i) λ(s, c, q, α) must be continuous in s;
(ii) λ(s, c, q, α) must be sufficiently flexible so that it may

be monotone increasing, monotone decreasing, or non-
monotone in s;

(iii) λ(s, 0, q, α) > 0, to allow a nonzero baseline hazard if
no tPA is given, c = 0;

(iv) λ(s, c, 0, α) > 0 to allow the possibility that the clot is
dissolved if no bolus is given;

(v) the integrated continuous hazard Λ(s, c, q, α) must be
numerically tractable;

(vi) λ(s, c, q, α) must increase in both c and q, and may be
nonlinear in either c or q.

An intuitive approach to constructing a function λ with
these properties is to define it in terms of the cumulative de-
livered dose by standardized time s, which is given by

d(s, c, q) = c{q + (1 − q)s}.
This function increases linearly in s with slope c(1 − q) from
minimum value d(0, c, q) = cq at s = 0 to d(1, c, q) = c
at the last possible observation time s = 1 for YE . While a
hazard function with properties (i)–(v) may be obtained by
using d(s, c, q) as an argument, to also obtain property (vi),
we use the more general function
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d(s, cα 1 , qα 2 ) = cα 1{qα 2 + (1 − qα 2 )s},
which may be considered the effective cumulative delivered
dose by standardized time s. We define the hazard function
to take the form

λ(s, c, q, α) = α3 +
α4 α5 {d(s, cα 1 , qα 2 )}α 5−1

1 + α4 {d(s, cα 1 , qα 2 )}α 5
for s > 0, (3)

where αj > 0 for all j = 1 , . . . , 5. The baseline hazard of
the clot dissolving if no tPA is α3. The ratio added to α3

is a log logistic hazard function with argument d(s, cα 1 , qα 2 )
and shape parameter α5. The parameter α1 allows λ to vary
nonlinearly in c while α2 determines the relative magnitude of
the contribution cα 1 (1 − qα 2 )s of the ci versus the contribution
cα 1qα 2 of the bolus. Thus, α = (α0 , . . . , α5) characterizes p0

and λ.
Integrating (3) gives the cumulative hazard function

Λ(s, c, q, α) = α3s +
1

cα 1 (1 − qα 2 )

× log

[
1 + α4{d(s, cα 1 , qα 2 )}α 5

1 + α4(cα 1qα 2 )α 5

]
for s > 0.

(4)

We define the distribution of YT conditional on YE because
toxicity is scored by imaging at 48 hours, after YE has been
observed. Our model must account for the possibilities that
either larger YE , hence a larger amount of the continuously
infused agent, or failure to dissolve the clot may increase the
risk of toxicity. To ensure that the probability of toxicity is a
function of c, q, and YE with these properties, denoting the
minimum of a and b by a ∧ b and β = (β0 , . . . , β4), we assume
the model

πT (YE , c, q, β) = Pr(YT = 1 |YE , c, q, β)

= 1 − exp[−{β0 +β2c
β 1q+β3c

β 1 (1 − q)(YE ∧ 1)

+ β41(YE > 1)}]. (5)

Under this model, β2c
β 1q is the effect of the bolus, β3c

β 1 (1 −
q)(YE ∧ 1) is the effect of the continuously infused portion, β4

is the effect of failing to dissolve the clot, and 1 − e−β 0 is the
baseline probability of toxicity if no tPA is given. The bolus
size q is not exponentiated as in the definition of λ since this
would result in an over-parameterized model for πT . Thus,
the model parameter vector θ = (α, β) has dimension 11.

Although treatment begins with a bolus in the IA tPA trial,
if no bolus were given then q = 0 and the effective delivered
dose at standardized time s would be d(s, cα 1 , 0) = cα 1s. In
this case, α2 would be dropped from the model, the hazard
function (3) would simplify to

λ(s, c, 0, α) = α3 +
α4 α5 (cα 1s)α 5−1

1 + α4 (cα 1s)α 5
for s > 0,

and the cumulative hazard function (4) would become

Λ(s, c, 0, α) = α3s + c−α 1 log{1 + α4(cα 1s)α 5} for s > 0,

with dim(α) reduced from 6 to 5. The model for πT would
be simplified by dropping β2 and the linear component in (5)
would be reduced to β0 + β3c

β 1 (YE ∧ 1) + β41(YE > 1), with
dim(β) reduced from 5 to 4, so θ would have dimension 9.

2.2 Joint Distribution of Response and Toxicity
Given the conditional probability πT (yE , c, q, β) for YE = yE

and the marginal distribution fE (yE | c, q, α) of YE , the joint
distribution of Y = (YE , YT ) is given in general by

fE ,T (yE , yT | c, q, θ) = fE (yE | c, q, α)

× Pr(YT = yT | yE , c, q, β) for yT = 0, 1 and yE � 0.

Since Pr(YT = 1 | yE , c, q, β) = 1 − Pr(YT = 0 | yE , c, q, β) =
πT (yE , c, q, β), if YE is observed continuously then each pa-
tient’s likelihood contribution takes the form

L(Y | c, q, θ) =
[
p0(c, q, α) πT (0, c, q, β)YT

×{1 − πT (0, c, q, β)}1−YT
]1(YE =0)

×
[
fE (YE | c, q, α) πT (YE , c, q, β)YT

×{1 − πT (YE , c, q, β)}1−YT
]1(0< YE �1)

[
{1 − F E (1 | c, q, α)}πT (1, c, q, β)YT

×{1 − πT (1, c, q, β)}1−YT
]1(YE > 1)

. (6)

The first square-bracketed expression (6) is the probability
that the clot is dissolved instantaneously by the bolus, the
second expression is the probability that the clot is dissolved
during the ci, and third expression is the probability that
the clot is not dissolved by standardized time s = 1, each
computed either with or without toxicity, i.e., YT = 1 or 0.

When YE is evaluated at the ends of successive intervals, as
in the IA tPA trial, the likelihood must account for interval
censoring. Given interval IE = (ya

E , yb
E ] ⊂ [0, 1], denote

πE ,T (IE , yT | c, q, θ) = Pr
(
ya

E < YE � yb
E , YT = yT

∣∣ c, q, θ
)
.

(7)

This is the relevant probability if the specific value of YE is not
observed but, instead, it is only known that the efficacy event
did not occur by time ya

E and did occur by time yb
E . In this

case, infusion is stopped at the end of the interval, yb
E , and

consequently the probability of toxicity is πT (yb
E , c, q, βT ). It

follows that

πE ,T (IE , yT | c, q, θ)

= Pr
(
ya

E < YE � yb
E

∣∣ c, q, α
)
fT |E

(
yT

∣∣ yb
E , c, q, β

)
=

{
FE

(
yb

E

∣∣ c, q, α
)
− FE

(
ya

E

∣∣ c, q, α
)}

πT

(
yb

E , c, q, β
)yT

×
{
1 − πT

(
yb

E , c, q, β
)}1−yT

, (8)

with FE computed by applying formulas (1), (2), and (4) and
πT specified by (5).

Let {IE ,1 , . . . , IE ,M } be a partition of (0, 1] into all possible
subintervals where YE may be known to fall. In this case,
the second square-bracketed expression in the product that
defines the likelihood (6) for continuous observation of YE is
replaced by

M∏
m =1

[
πE ,T (IE ,m , 1 | c, q, θ)YT

×πE ,T (IE ,m , 0 | c, q, θ)1−YT
]1(YE ∈IE , m )

.
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3. Decision Criteria and Trial Conduct
3.1 Utilities
Given one of the above likelihood formulations, tailored to
the trial at hand, the problem is to construct an outcome-
adaptive design for determining an optimal pair (c, q). To
do this, we take an approach similar to that of Houede et al.
(2010), who sequentially choose dose pairs in a phase I/II trial
with bivariate ordinal outcomes by maximizing the posterior
mean of an elicited utility. A fundamental difference that we
must address here when defining utilities is that the bivariate
outcome consists of a binary toxicity and continuous time to
response that may be interval censored. Denote the numerical
utility of outcome y by U (y). In practice, U (y) is elicited from
the physicians planning the trial. We will provide details of
how this was done for the IA tPA trial below. Given θ, the
mean over Y of the utility for a patient who receives the
treatment combination (c, q) is

u(c, q, θ) = EY{U (Y ) | c, q, θ}

=
1∑

yT =0

∫ ∞

yE =0

U (y) fE ,T (y | c, q, θ)dyE .
(9)

For each new cohort of patients during the trial, we exploit
the Bayesian model by adaptively selecting the (c, q) com-
bination that is optimal in the sense that it maximizes the
posterior mean of u(c, q, θ) based on the most recent data.
Let Dn denote the data from the first n patients, so that
the accumulating data may be represented by the nested se-
quence D1 ⊂ D2 ⊂ · · · ⊂ Dn ⊂ · · · as patients are treated and
their outcomes are observed during trial conduct. The opti-
mal (c, q) maximizing the posterior mean utility given Dn

(Berger, 1985) is given by the equation

u(c, q)opt(Dn ) = arg max
c ,q

Eθ{u(c, q, θ) | Dn }

= arg max
c ,q

Eθ

{
1∑

yT =0

∫ ∞

yE =0

U (y)

× fE ,T (y | c, q, θ)dyE | Dn

}
.

(10)
With interval censoring due to sequential evaluation of

YE and Pr(YE = 0) > 0, given the resulting partition {IE ,0,
IE ,1 , . . . , IE ,M } of [0, 1] with IE ,0 = {0}, a practical approach
is to elicit numerical utilities for each of the 2(M + 2) sets
of Y values obtained from the cross product {IE ,0, IE ,1 , . . . ,
IE ,M , IE ,M+1} × {0, 1}, where IE ,M+1 = (1, ∞) is the outcome
that the clot was not dissolved by the end of the infusion
at standardized time 1. Denoting the utility of the observed
outcome {YE ∈ IE ,m , YT = yT} by U (IE ,m , yT ), given this
structure, the objective function given by (10) takes the form

u(c, q)opt(Dn ) = arg max
c ,q

1∑
yT =0

M +1∑
m =0

U (IE ,m , yT )

×Eθ{πE ,T (IE ,m , yT | c, q, θ) | Dn }.

A possible alternative to the utility-based approach might
be to use a linear combination such as FE (1 | c, q, β) −

ξπT (1 | c, q, α) as an objective function, where 0 < ξ < 1
is a design parameter quantifying the importance of achiev-
ing a response relative to suffering a toxicity. Another alter-
native might be a trade-off function based on FE (1 | c, q, β)
and πT (1 | c, q, α), similar to that used by Thall and Cook
(2004). These objective functions do not distinguish between
responses achieved quickly or later during the ci period, and
they fail to account for effects of YE < 1 on πT . In contrast,
our utility function accounts for the desirability of all observ-
able (YE , YT ) pairs. Given the data structure and goals of the
IA tPA trial, choosing (c, q) to optimize the posterior mean
utility is a logical and practical approach.

3.2 Safety and Futility Constraints
It does no good to treat patients with the (c, q) that optimizes
the posterior expected utility if all pairs being considered are
either excessively toxic or inefficacious. To protect patients
during the trial, we impose the following safety/futility rules.
Given Dn , a pair (c, q) is unacceptable if either it is likely to
be too toxic,

Pr{πT (1, c, q, θ) > π̄T | Dn } > pT , (11)

or it is likely to be inefficacious,

Pr{FE (1, c, q, α) < πE | Dn } > pE , (12)

where π̄T is the maximum allowed πT (1, c, q, θ) and πE is the
minimum allowed FE (1, c, q, α). The fixed limits π̄T and πE

are elicited from the physicians, while pT and pE are cut-offs,
usually between 0.80 and 0.99, calibrated to obtain a design
with good properties. Aside from the IA tPA trial’s data struc-
ture and the models underlying πT (1, c, q, θ) and FE (1, c, q,
α), the criteria (11) and (12) are similar to the phase I/II
acceptability rules used by Thall and Russell (1998), Thall
and Cook (2004), and Thall et al. (2008). The criterion (11)
pertains to safety, and the efficacy criterion (12) is similar to
Bayesian phase II futility stopping rules (Thall, Simon, and
Estey, 1995). Denote the set of acceptable (c, q) pairs deter-
mined by (11) and (12) based on the most recent data by
A(Dn ). We impose the additional safety constraint that no
untried concentration may be skipped when escalating, since
πT (YE , c, q, βT ) increases in c but may not be monotone in q.
For example, if the largest value of c in {0.20, 0.30, 0.40, 0.50}
for which patients have been treated is 0.30, then regardless
of q the next cohort may be treated only at (c, q) pairs for
which c � 0.40.

A possible alternative to using (11) and (12) might be a
single criterion based on u(c, q, θ). One might specify a fixed
lower bound U for the utility and declare a pair (c, q) to
have unacceptably low utility if Pr{u(c, q, θ) < U | Dn } > pU

for fixed cut-off pU . If all (c, q) were unacceptable in this
sense the trial would be stopped. While choosing a value of
U might not be as intuitive as π̄T and πE , since U (Y ) jointly
quantifies safety and efficacy the use of such a single stopping
rule would provide a somewhat more unified design.

3.3 Trial Conduct
Once the design parameters and model are established, given
a set of (c, q) pairs, maximum sample size, N , and cohort size,
the trial is conducted as follows. The first cohort is treated
at a starting (c, q) combination chosen by the physicians,
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and the choice may be guided by the numerical utilities and
prior means. While the usual fear in phase I where only tox-
icity is considered is overdosing the first few patients, in the
present setting when choosing the starting (c, q) pair this fear
may be counterbalanced by the concern that patients may be
given too little tPA to dissolve their clots. A given c may
be too low to dissolve the clot that caused the stroke but
high enough to cause a variety of adverse effects not associ-
ated with observable hemmorrhage (SICH) and not easily be
detected, and thus such events cannot feasibly be included
in an outcome-adaptive decision-making procedure. Such ad-
verse effects include cytotoxicity, degradation of extracellular
matrix, and increased permeability of the neurovascular unit
with the development of cerebral edema (Kaur et al., 2004).
For each cohort after the first, if A(Dn ) is empty then the
trial is stopped early with the conclusion that all (c, q) pairs
are unacceptable. If A(Dn ) is not empty then the next cohort
is treated at the best acceptable pair (c, q)opt(Dn ), subject to
the do-not-skip rule. At the end of the trial, the (c, q)opt(data)
pair based on the final data is selected.

4. Application to the IA tPA Trial
4.1 Utilities and Design Parameters
To evaluate YE , the clot is imaged at the start of infusion when
the bolus is given, and thereafter every 15 minutes up to the
maximum infusion duration of t∗ = 120 minutes. The planned
observation intervals are thus [0, 15] , . . . , (105, 120] and (120,
∞]. These are given in Table 1 along with the corresponding
intervals in standardized time. Since YE is observed only at the
end of each observation interval up to the last, as a covariate
in the linear term of πT it can take on only the values of the
interval endpoints, also given in Table 1, unless it appears
in the indicator 1(YE > 1). If the evaluation times deviate
from this planned schedule for some patients, however, then
the likelihood can easily be modified to accommodate this,
so that the actual interval observation data on YE will be
recorded during the trial.

Up to N = 36 patients will be treated in cohorts of size
1, with the aim to choose the (c, q) pair that maximizes the
posterior mean utility among the set of eight possible pairs
obtained from q = 0.10, 0.20 and c = 0.20, 0.30, 0.40, 0.50.
The maximum sample size was chosen based on an anticipated
accrual rate of 1 patient/month/site with 15 sites participat-
ing and 5% of accrued patients both eligible and consenting.
This would give 0.75 patients per month, so a 36-patient trial

would last 48 months. The admissibility limits were specified
to be π̄T = 0.15 and πE = 0.50, and the probability cut-offs
used in (11) and (12) were pE = pT = 0.95. The starting pair
is (c, q) = (0.20, 0.10), and N was chosen based on antici-
pated accrual limitations and the desire to complete the trial
within a reasonable timeframe.

Numerical utilities, on a scale of 0 to 100, elicited for each
combination of YT = 0 or 1 and observation interval for YE ,
are given in Table 1. CMA and OOZ provided the numerical
utilities, acceptability limits, π̄T and πE , maximum sample
size, N , and means of the efficacy and toxicity events used to
establish the prior, described below in Section 4.2. The elicited
utilities are based on clinical experience and published data
on IA therapy for AIS. The elicitation was carried out in two
stages, with refinement in the second stage to ensure that the
utilities decreased strictly with the time interval required to
dissolve the clot. In a trial for interventional management of
AIS, Khatri et al. (2009) showed that the chance of good clini-
cal outcome decreased greatly with longer time from symptom
onset to initiation of treatment. In Table 1, the large drop in
utilities when SICH occurs quantifies the fact that SICH is
associated with much worse clinical outcome, as close to 50%
of all SICHs are fatal.

4.2 Establishing Priors
To establish priors, we used a three-step strategy. First, we
elicited a large number of prior means of the probabilities p0(c,
q, θ), FE (s, c, q, α), and πT (yE | c, q, β). Second, based on the
elicited values we repeatedly simulated a large pseudo data
set and, starting with a noninformative pseudo prior, used
the average of the means of the resulting pseudo posteriors as
the prior means. Third, we calibrated the prior variances of
the entries of θ to obtain a prior with desirable properties.

In step 1, for each of the eight (c, q) combinations, we
elicited the prior means of the probability of dissolving the
clot immediately with the bolus, p0(c, q, θ), within 60 min-
utes, FE ( 1

2 | c, q, θ), or within 120 minutes, FE (1 | c, q, θ). Sim-
ilarly, we elicited the probability of toxicity, πT (yE , c, q, θ),
if the clot was dissolved instantaneously (yE = 0), if it was
dissolved within the 120-minute infusion (yE = 1), or if it was
not dissolved during the infusion (yE > 1). The elicited values
are given in Table 2a. The last line of Table 2a expresses the
prior expectation that, for c = 0.50 and either q = 0.10 or
0.20, the mean of πT will increase from 0.12 (the value for

Table 1
Elicited utilities of the joint outcomes and values of YE used to compute πT (YE , c, q, β) when efficacy is monitored in 15-minute

intervals. Efficacy is defined as the time to blood clot being dissolved, and the adverse event is symptomatic intracerebral
hemorrhage (SICH), evaluated at 48 hours. The category “>120” corresponds to the clot not being dissolved by the end of the

120-minute infusion.

Time required to dissolve the blood clot

Minutes 0 1–15 16–30 31–45 46–60 61–75 76–90 91–105 106–120 >120
Elicited utilties

No SICH 100 95 90 85 80 75 70 60 50 30
SICH 7 6.5 6 5 4.5 4 2 1 0 0

Value of YE Used to Compute πT (YE , c, q, β)
0 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.00 1.00



Optimizing the Concentration and Bolus of a Drug 1643

Table 2
Elicited prior mean probabilities for each (c, q) combination studied in the IA tPA trial, and resulting parameter prior means

a. Elicited prior mean probabilities

c = 0.20 c = 0.30 c = 0.40 c = 0.50

q = 0.10 E{p0(c, q, θ)} 0.10 0.15 0.15 0.25
E{FE ( 1

2 | c, q, θ)} 0.25 0.30 0.45 0.50
E{FE (1 | c, q, θ)} 0.35 0.45 0.60 0.70
E{πT (0, c, q, θ)} 0.02 0.03 0.03 0.03
E{πT (1, c, q, θ)} 0.04 0.06 0.08 0.12

q = 0.20 E{p0(c, q, θ)} 0.15 0.20 0.25 0.30
E{FE ( 1

2 | c, q, θ)} 0.40 0.45 0.50 0.60
E{FE (1 | c, q, θ)} 0.50 0.60 0.70 0.80
E{πT (0, c, q, θ)} 0.02 0.03 0.03 0.03
E{πT (1, c, q, θ)} 0.04 0.06 0.08 0.12

q = 0.10 or 0.20 E{πT (.50, q, 1(YE > 1), β)} = 0.15

b. Prior mean of the log of each model parameter

α0 α1 α2 α3 α4 α5 β0 β1 β2 β3 β4
−1.04 −1.60 −7.25 −4.74 −2.85 2.37 −6.10 −3.79 −7.05 −5.42 −7.88

yE = 1) to 0.15 if the clot is not dissolved by the end of the
infusion.

For the second step, the elicited values were treated like the
true state of nature and used to simulate 1000 large pseudo
samples, each of size 400 with exactly 50 patients for each
(c, q) combination. Starting with a very noninformative
pseudo-prior on θ in which the logarithm of each entry fol-
lowed a normal distribution with mean 0 and standard devi-
ation 20, we used the pseudo data set to compute a pseudo
posterior. The average of the 1000 pseudo posterior means
were used as the prior means. These are given in Table 2b.
The pseudo sample size of 400 was chosen to be large enough
so that prior means obtained in this way would not change
substantively with a larger pseudo sample size.

For the third step, we calibrated the variances of the entries
of θ to ensure a prior that was suitably noninformative in
terms of the prior effective sample sizes (ESSs) of πT (s, c,
q, θ) and FE (s, c, q, θ), and also to obtain good simulated
performance of the design in the actual trial across a diverse
set of scenarios. Denoting πT (s, c, q, θ) or FE (s, c, q, θ) for s =
0 or 1 by p(θ), the ESS of the prior on p(θ) was approximated
by matching its mean and variance with those of a beta(a, b)
distribution with mean a/(a + b) and variance ab/{(a + b)2(a
+ b + 1)} and approximating the ESS as a + b ≈ E{p(θ)}[1
− E{p(θ}]/var{p(θ)} − 1. On this basis, we set the variance
σ2 of log(θj ) for each element θj of θ to equal σ2 = 81, which
gave ESS values of each p(θ) ranging from 0.17 to 0.22 with
mean 0.19. It is inappropriate to specify arbitrarily large σ2,
since this may produce priors on FE (y, c, q, α) and πT (yE | c,
q, β) with very large probability masses below 0.01 and above
0.99. For such a prior, the design behaves pathologically and
makes erroneous decisions for patients enrolled early in the
trial.

4.3 Posterior Computation
The computations for each interim decision include obtaining
the posterior probabilities in the admissibility criteria (11)
and (12) and posterior mean utility (9) for all (c, q) combi-

nations. We used Markov chain Monte Carlo (MCMC) with
Gibbs sampling (Robert and Cassella, 1999) to compute all
posterior quantities, based on the full conditionals. Each series
of sample parameters θ(1) , . . . , θ(N ) distributed proportionally
to the posterior integrand was initialized at the mode using
the two-level algorithm described in Braun et al. (2007). Be-
cause each sample chain was initialized at the mode, which
reliably identifies the region of highest posterior probability
density, we did not require any burn-in, and a single chain
was used for each posterior computation. We used MCMC
sample size N = 2000 for the dose assignments during the
trial, and N = 16,000 for the dose selection at the end of the
trial. For each sample θ(i) = (α(i), β(i)), we computed p0(c, q,
α(i)), then Λ(YE , c, q, α(i)), FE (YE , c, q, α(i)), and πT (YE , c,
q, β(i)) at every interval endpoint YE and for every (c, q), and
computed πE ,T (IE ,m , yT | c, q, θ(i)) from (8) for each IE ,m and
yT ∈ {0, 1}. The elicited utilities were averaged over each of
these distributions to obtain a utility for every (c, q) given θ(i).
We computed the (c, q) posterior mean utilities by averaging
over the samples θ(1) , . . . , θ(N ). The Monte Carlo standard er-
ror (MCSE) was computed using the batch-means method for
FE (1, c, q), πT (1, c, q), and u(c, q) at the highest and lowest
(c, q) combinations. The ratios of the MCSE to the poste-
rior standard deviation of these quantities were small (<3%),
indicating MCMC convergence.

5. Simulation Studies
Each trial was simulated 10,000 times under each of a wide
variety of scenarios. Since each scenario was specified in terms
of fixed values of the marginal probabilities πT (s, c, q)true and
FE (s, c, q)true for s = 0 and 1, to obtain fixed true probabilities
for all s in [0, 1] we used several interpolation methods, al-
lowing πT (s, c, q)true and FE (s, c, q)true to take various shapes
as functions of s. In terms of πT (s, c, q)true, the intermedi-
ate probabilities were interpolated as πT (s, c, q)true = πT (0,
c, q) + {πT (1, c, q) − πT (0, c, q)}sφ for various φ, with φ
= 1 giving linear interpolation, φ = 2 giving values “below
linear,” and φ = 0.5 giving values “above linear.” We also
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Table 3
Simulation results for the IA tPA trial. Under each scenario, utrue(c, q) denotes the expected utility of treating a patient with the

combination (c, q). The value of the utility for the combination with the highest utility is highlighted in bold. Utilities of
combinations that are too toxic or have insufficient effectiveness in the scenario have a gray background.

c

Scenario q 0.2 0.3 0.4 0.5 % none

1 0.1 utrue(c, q) 46.9 51.5 59.2 64.4 6
Prior % Sel (No. Pats.) 2% (3.2) 2% (1.6) 7% (3.4) 29% (8.7)
means 0.2 utrue(c, q) 56.1 60.5 65.1 70.6

% Sel (No. Pats.) 2% (0.8) 2% (0.8) 11% (4.5) 38% (11.5)

2 0.1 utrue(c, q) 49.0 54.9 62.4 71.5 2
Safe, % Sel (No. Pats.) 1% (2.6) 1% (1.2) 4% (2.3) 17% (5.9)
high c and 0.2 utrue(c, q) 52.6 58.4 65.9 73.8
q = 0.2 best % Sel (No. Pats.) 1% (0.5) 1% (0.6) 13% (5.3) 60% (16.9)

3 0.1 utrue(c, q) 57.3 68.9 70.1 64.0 9
Safe, % Sel (No. Pats.) 3% (2.4) 8% (3.6) 33% (9.0) 33% (9.3)
middle c and 0.2 utrue(c, q) 57.1 68.6 69.7 63.5
q = 0.1 best % Sel (No. Pats.) 2% (0.5) 2% (0.9) 7% (5.4) 3% (2.8)

4 0.1 utrue(c, q) 61.1 58.7 51.6 48.0 12
Safe, % Sel (No. Pats.) 43% (14.4) 7% (3.3) 6% (3.4) 5% (2.8)
low c and 0.2 utrue(c, q) 58.2 53.9 49.5 45.0
q = 0.1 best % Sel (No. Pats.) 22% (5.0) 3% (1.5) 2% (2.2) 1% (0.9)

5 0.1 utrue(c, q) 44.8 45.2 45.2 45.0 91
Unsafe % Sel (No. Pats.) 4% (6.5) 1% (1.5) 1% (2.0) 1% (2.2)

0.2 utrue(c, q) 45.2 45.2 45.0 44.3
% Sel (No. Pats.) 1% (0.9) 0% (0.4) 0% (0.8) 0% (0.6)

6 0.1 utrue(c, q) 38.2 40.0 41.9 43.3 83
Safe, but % Sel (No. Pats.) 0% (2.8) 0% (1.1) 1% (1.6) 7% (5.2)
no (c, q) 0.2 utrue(c, q) 39.3 41.2 43.1 44.4
acceptable % Sel (No. Pats.) 0% (0.4) 0% (0.4) 1% (1.4) 7% (4.3)

used a method that sets πT (0.5, c, q)true = 0.5{(π(0, c, q) +
π(1, c, q))} and interpolates using πT (s, c, q)true = πT (0, c,
q) + {πT (0.5, c, q)true − πT (0, c, q)}(2s)2 for 0 � s � .5 and
πT (.5, c, q) + {πT (1, c, q)true − πT (.5, c, q)}(2s − 1).5 for .5
� s � 1, to give an “S-shaped” curve. Interpolated values of
FE (s, c, q)true were obtained similarly. The joint probabilities
πE ,T (s, c, q)true used to generate (YE , YT ) given the assigned
(c, q) were computed using (7) and (8), and the resulting true
utility u(c, q)true was obtained from expression (9).

The simulation scenarios are given in Web Tables 1–6. Sce-
nario 1 uses the elicited prior means, with the utilities increas-
ing with both c and q, so that (c, q) = (0.5, 0.2) is optimal.
Scenario 2 has a similar pattern, but with a larger increase
as (c, q) goes from (0.2, 0.1) to (0.5, 0.2). In Scenario 3, the
middle values c = 0.3 and 0.4 have the highest utilities, also
with u(c, 0.1)true > u(c, 0.2)true so a smaller bolus is more
desirable. In Scenario 4, smaller values of both c and q have
higher u(c, q)true. Scenario 5 is unsafe, with unacceptably high
values of all πT (s, c, q)true compared to the upper limit π̄T =
0.15. In Scenario 6, all efficacy probabilities FE (s, c, q)true of
dissolving the clot are unacceptably small compared to the
lower limit πE = 0.50. Thus, in the last two scenarios, it is
most desirable to stop the trial early and select no (c, q) pair.

To summarize the method’s overall behavior, we used the
following statistic. For each scenario, let utrue,sel denote the
true utility of the final selected (c, q) and umax and umin the

largest and smallest true utilities among all (c, q) pairs. The
summary statistic R = (utrue,sel − umin)/(umax − umin) is the
proportion of the difference between the best and worst pos-
sible choices achieved by the selected treatment. Thus, 0 � R
� 1, with larger values corresponding to better performance
of the method. In cases such as Scenarios 5 and 6 where no
treatment is acceptable, the value of R is not relevant since it
is not useful to choose a treatment maximizing the utility if
all treatments are unacceptable. The simulations are summa-
rized in Table 3. Under Scenarios 1–4, searching among the
eight possible (c, q) pairs, the method does a reliable job of
selecting pairs with higher utilities, and subsample sizes are
favorably balanced toward more desirable pairs. The results
for Scenarios 5 and 6 show that if no pair is acceptably safe
and efficacious the method is likely to stop early and select no
pair. In Scenarios 1–4 where an acceptable (c, q) pair exists,
R increases with N . The values of “% none” selected increase
with N . These are fixed at 2% for all N studied under Sce-
nario 2, and reach a maximum of 100% by N = 240 in the
Scenarios 5 and 6 where no pairs are acceptable.

We assessed sensitivity to the prior, N , cohort size, and σ,
summarized in Web Tables 7– 9. Web Table 7 shows that, for
N = 24 to 240, using a prior with mean 0 and σ2 = 20 for
all log(θj ) substantially degrades R under Scenarios 1 and 2,
increases R under Scenarios 3 and 4, and increases the fu-
tility stopping probabilities under Scenario 6. For N = 36,
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Table 4
Hypothetical case-by-case example of a 36-patient trial. Data are given for patients 1–12, and for each sixth patient thereafter.

Treatment Outcomes Posterior mean utility for each (c, q)

Patient c q YE YT (0.2, 0.1) (0.3, 0.1) (0.4, 0.1) (0.5, 0.1) (0.2, 0.2) (0.3, 0.2) (0.4, 0.2) (0.5, 0.2)

(Prior) – – – – 42.4 42.4 42.4 42.6 42.0 42.0 41.9 42.0
1 0.2 0.1 45 No 67.7 66.6 66.3 64.1 67.3 66.2 65.9 63.6
2 0.2 0.1 45 No 75.6 73.2 71.1 66.6 74.6 72.6 70.6 66.3
3 0.2 0.1 No No 59.6 59.0 59.3 58.17 59.4 58.8 59.0 57.8
4 0.2 0.1 No No 52.3 52.2 52.7 52.8 52.1 52.0 52.5 52.5
5 0.2 0.1 No No 47.8 47.9 48.7 49.2 47.7 47.8 48.6 49.0
6 0.3 0.1 75 No 52.3 52.8 53.3 53.1 52.2 52.7 53.2 52.9
7 0.4 0.1 90 No 54.8 55.2 55.6 55.3 54.8 55.2 55.5 55.1
8 0.4 0.1 105 No 56.2 56.6 57.1 56.6 56.2 56.7 57.2 56.5
9 0.4 0.2 0 No 59.4 60.3 62.5 63.5 60.9 61.9 64.3 65.1
10 0.5 0.2 90 Yes 60.1 60.8 61.1 26.9 61.0 61.7 61.9 26.7
11 0.4 0.2 120 No 59.9 60.6 61.3 26.0 61.0 61.8 62.4 26.1
12 0.4 0.2 No Yes 54.8 54.8 53.0 33.2 54.8 54.8 52.5 32.2
18 0.3 0.1 120 No 61.3 61.8 59.6 35.0 61.6 61.9 59.1 33.7
24 0.3 0.1 No No 57.6 57.9 57.0 39.4 57.3 57.5 56.1 37.6
30 0.3 0.1 105 No 56.4 56.8 56.3 37.5 56.2 56.5 55.8 36.0
36 0.3 0.2 45 No 58.8 59.5 59.2 32.4 59.4 60.1 59.6 31.4

there is no general pattern of R or stopping probability with
cohort size 1, 2, 3, or with σ = 7 to 20. Sensitivity to the four
interpolation methods for obtaining each scenario’s probabil-
ities between successive evaluation times s = 0, 0.125 , . . . ,
1.0 is summarized in Web Table 10. The stopping probabil-
ities are insensitive to the interpolation method, but R may
change very little or substantively, depending on the scenario
and method. This is because each interpolation method gives
different shapes of πT (s, c, q)true and FE (s, c, q)true and thus a
different version of each scenario, which in turn changes u(c,
q, θ)true and thus the method’s behavior and R. Web Table
11 summarizes sensitivity to βtrue

4 , the effect on πT of failure
to dissolve the clot, for βtrue

4 = kEprior(β4), with k = 1 to 9.
In all scenarios, “% none” selected increases with k, a very
desirable property. To assess the design’s performance under
a more parsimonious model, we simplified the mixture distri-
bution given by (1) and (2) by fixing α1 = α2 ≡ β1 ≡ 1 and
β0 ≡ β4 = 0, so that πT (yE ) = 1 − e−β2cq−β3c (1−q )(yE ∧1) and
p0 = 1 − eα0cq , and assumed the Weibull hazard λ(y, c, q,
α) = {α3cq + α4c(1 − q)}ψyψ−1, in place of (5). This model
has 6 parameters, (α0, α4, α3, ψ, β2, β3), compared to 11 for
the original model. The simulations, in Web Table 12, show
that using this simpler model greatly degrades the method’s
performance in Scenarios 3 and 4 where the highest concen-
tration is not the best choice, and reduces the reliability of
the safety and futility rules, with early stopping probability
reduced from 0.91 to 0.69 under scenario 5 and from 0.83 to
0.70 under Scenario 6.

Table 4 gives a hypothetical case-by-case example to illus-
trate how a trial might play out in practice, under a scenario
with the best c in the middle. For each patient, the treat-
ment values and outcomes are given with the posterior mean
utilities of the eight (c, q) combinations. To conserve space,
results are given for the first 12 patients and thereafter each
sixth patient. The values for all 36 patients are given in Web
Table 13. For this example, posterior means and standard de-
viations of the elements of θ, and of FE (1, c, q, θ) and πT (1,

c, q, θ), with prior values for comparison, are given in Web
Table 14.

6. Discussion
The methodology proposed here may be extended to oncology
settings. For example, suitable modifications of the method-
ology may be used for a chemotherapeutic anticancer agent
administered by ci, with a possible initial bolus, with the
tumor imaged repeatedly and therapy stopped when tumor
response is achieved. In such settings, the time frame likely
would be much longer than the 120-minute schedule consid-
ered here, and the infusion typically would include successive
cycles with interim rest periods. Additionally, toxicity might
be a time-to-event variable, possibly occurring during infu-
sion and causing treatment to be suspended or permanently
stopped. Such differences are nontrivial, however, and would
require substantive modifications of λ, πT , and the decision
rules.

A simpler version of the method currently is being applied
to plan a similar trial of IA tPA in pediatric stroke patients.
Although pediatric AIS is rare, over 75% of children with
acute AIS will die or suffer long-term neurological deficits
(deVeber et al., 2000). In this trial, it was decided to fix q ≡
0.10 since a bolus of size q = 0.20 or larger was considered
too risky for children. For the model, the response hazard
λ is simplified by fixing α2 ≡ 1. The design space consists
of the four concentrations {0.20, 0.30, 0.40, 0.50} and c is
chosen based on u(copt)(Dn ), defined as the maximum over c
of Eθ{u(c, θ) | Dn }.

A computer program, named “CiBolus,” to implement
this methodology is available from the website https://

biostatistics.mdanderson.org/SoftwareDownload.

7. Supplementary Materials
Supplementary Tables 1–14, referenced in Section 5, are avail-
able under the Paper Information link at the Biometrics web-
site http://www.biometrics.tibs.org.
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