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Summary. A Bayesian two-stage phase I–II design is proposed for optimizing administration schedule and dose of an
experimental agent based on the times to response and toxicity in the case where schedules are non-nested and qualitatively
different. Sequentially adaptive decisions are based on the joint utility of the two event times. A utility function is constructed
by partitioning the two-dimensional positive real quadrant of possible event time pairs into rectangles, eliciting a numerical
utility for each rectangle, and fitting a smooth parametric function to the elicited values. We assume that each event time
follows a gamma distribution with shape and scale parameters both modeled as functions of schedule and dose. A copula
is assumed to obtain a bivariate distribution. To ensure an ethical trial, adaptive safety and efficacy acceptability conditions
are imposed on the (schedule, dose) regimes. In stage 1 of the design, patients are randomized fairly among schedules and,
within each schedule, a dose is chosen using a hybrid algorithm that either maximizes posterior mean utility or randomizes
among acceptable doses. In stage 2, fair randomization among schedules is replaced by the hybrid algorithm. A modified
version of this algorithm is used for nested schedules. Extensions of the model and utility function to accommodate death
or discontinuation of follow up are described. The method is illustrated by an autologous stem cell transplantation trial in
multiple myeloma, including a simulation study.
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1. Introduction

In clinical trials involving cytotoxic or other potentially harm-
ful agents, adverse events (toxicities) generally occur at ran-
dom times after the start of treatment. Most phase I clini-
cal trial designs determine an optimal dose, or a maximum
tolerable dose (MTD), using a binary indicator of toxicity
occurring by a predetermined time from the start of ther-
apy. These designs include the continual reassessment method
(CRM, O’Quigley, Pepe, and Fisher, 1990) and many others.
To use more available information, improve logistics, and pro-
tect patients from late onset toxicities, phase I designs based
on YT =time to toxicity have been proposed, including the
time-to-event (TiTE) CRM (Cheung and Chappell, 2000),
and the designs of Braun et al. (2007) and Bekele et al. (2008).
Many phase I/II designs based on binary or categorical re-
sponse and toxicity have been proposed (Thall and Russell,
1998; Braun, 2002; Thall and Cook, 2004; Zhang, Sargent, and
Mandrekar, 2006). Phase I/II designs also may be based on
YT and YR =time to response. Denoting Yo

m =time to the event
or right-censoring and δm = I(Ym = Yo

m) for m = R, T, with
YYY = (YR, YT ), YYYo = (Yo

R, Yo
T ), and δδδ = (δR, δT ), dose-finding may

be based on (YYYo,δδδ) (cf. Yuan and Yin, 2009).
Most phase I and phase I/II designs focus on dose, but

many agents have schedule-dependent effects. An example
in oncology is a nucleoside analog for which the MTD
of a 30-minute infusion is (i) 2100 mg/m2 if given once,
(ii) 1000 mg/m2 if given weekly for three weeks with total
dose 3000 mg/m2 over 21 days, and (iii) 300 mg/m2 if given

twice in each of weeks 1, 3, and 5 for total dose 1800 mg/m2

over 35 days. An example of an unexpected increase in toxic-
ity after changing the schedule of a preparative agent in stem
cell transplantation (SCT) from (d/2, d/2) on Days (−8, −3)
to (d/3, d/3, d/3) on Days (−8, −6, −3) is described by Thall
(2010, Section 1.1). Braun, Yuan, and Thall (2005) proposed
a Bayesian design to optimize the schedule of administration
times, sss = (s1, . . . , sk), based on (Yo

T , δT ), with fixed per-
administration dose (PAD), assuming nested schedules with
each sss corresponding to a number of cycles of therapy. Braun
et al. (2007) extended this to allow PAD to vary, and jointly
optimized (sss, PAD) by minimizing the absolute difference
between a fixed target probability and the posterior mean
probability of toxicity by a specified time, trefT , similar to the
TiTE CRM. Li et al. (2008) proposed an approach to opti-
mizing dose and schedule for the case of two nested schedules
and bivariate binary outcomes. However, no designs currently
exist that optimize either schedule or (schedule, dose) in the
case of non-nested, qualitatively different schedules, or where
the outcomes are bivariate event times.

We address the problem of sequential adaptive optimiza-
tion of treatment regime τ = (sss, d) in a phase I/II clinical
trial where schedules may differ qualitatively or quantita-
tively, and the outcomes are possibly right-censored event
times (YYYo,δδδ). The total dose is d, with fractions given at the
successive administration times. No solution to this design
problem currently exists. We propose an adaptive Bayesian
method using a utility function, U(yyy), defined on the positive
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real quadrant [0, ∞)2 of possible YYY values. We construct U(yyy)
by partitioning a compact subset of [0, ∞)2 where YYY pairs
are likely to occur into rectangles, eliciting a numerical utility
on each rectangle from the physicians planning the trial, and
fitting a parametric function to the elicited values. For each
Ym, m = R, T , we specify a gamma marginal with shape and
scale parameters each modeled as functions of (sss, d), and use
a copula to obtain association.

The design has two stages, and only allows τ with both ac-
ceptable safety and efficacy to be assigned. In stage 1, patients
are randomized fairly among schedules in blocks. Within each
schedule, the acceptable dose with maximum posterior mean
utility is chosen, unless the current sample size for the opti-
mal dose is larger than all current sample sizes for the other
doses. In that case, patients are randomized among the as-
signed schedule’s acceptable doses with probabilities propor-
tional to their posterior mean utilities. In stage 2, the block
randomization among schedules is unbalanced using similar
criteria, with each schedule’s assignment probability propor-
tional to the posterior mean utility of its optimal dose. We
include randomization to reduce the chance of getting stuck
at suboptimal τ, which may occur with a “greedy” algorithm
that only maximizes posterior mean utility.

Our design differs from those of Braun et al. (2007) and
Li et al. (2008) in that we (1) use both time-to-response and
time-to-toxicity, (2) use utilities as decision criteria, (3) use
unbalanced randomization to choose regimes, (4) assume a
bivariate gamma regression model, and (5) allow non-nested
schedules. We also consider the case where YR is evaluated at
a sequence of times rather than continuously, hence is interval
censored. We describe extensions of the model and utility to
accommodate death or discontinuation of follow up at toxic-
ity. Our methodology synthesizes the above and several other
existing ideas, including use of a copula to obtain association,
randomizing to avoid getting stuck at a suboptimal regime,
and regression modeling of both scale and shape parameters.

To provide a concrete frame of reference, we describe the
illustrative SCT trial in Section 2. Section 3 describes a
method for constructing a utility function from elicited values.
Gamma regression models for [YR|sss, d] and [YT |sss, d], and likeli-
hoods for both continuous and interval censored YR are given
in Section 4. The design is presented in Section 5. Section 6
illustrates the method by application to the SCT trial, which
has two schedules and three doses (six regimes), including a
simulation study with comparison to two alternative designs,
and evaluation of robustness and of sensitivity to the prior,
cohort size, and sample size. We close with a discussion in
Section 7.

2. Motivating Application

Melphalan is an alkalating agent commonly used as part of
the preparative regimen for autologous SCT to treat multiple
myeloma (MM), but there is no consensus for what (schedule,
dose) combination is best in older patients. To address this, we
designed a phase I/II trial to evaluate total doses d = 140, 180,
or 200 mg/m2 of melphalan given either as a single 30-minute
bolus infused on Day −2 before SCT, or with the dose split
into two equal boluses infused on Days −3 and −2. Toxicity
is defined as severe (grade 3 or 4) gastrointestinal toxicity or

diarrhea, graft failure, or regimen-related death. Response is
evaluated at 1, 3, 6, 9, and 12 months post transplant, so YR

is interval censored while YT is observed continuously, which
is common in early phase oncology trials. Response has three
requirements, (i) normal bone marrow (<5% myeloma cells),
(ii) no new lytic lesions on bone X-ray, and (iii) absence of
β2 microglobulin, a monoclonal protein characterizing MM in
two consecutive tests.

Transforming pre-transplant administration Days (−3, −2)
to (0, 1), so transplant is on Day 3 after the first ad-
ministration, the six regimes in the MM trial are τ1 =
{1, 140}, τ2 = {1, 180}, τ3 = {1, 200}, τ4 = {(0, 1), 140}, τ5 =
{(0, 1), 180}, τ6 = {(0, 1), 200}. The subsets T1 = {τ1, τ2, τ3} of
1-day schedules and T2 = {τ4, τ5, τ6} of 2-day schedules have
natural orderings, since the probabilities of toxicity and re-
sponse each increase with d within each schedule. In contrast,
for either response or toxicity, there is no obvious ordering
among all six regimes in T = T1 ∪ T2. For example, although
τ1 and τ4 deliver the same total dose, a 1- or 2-day schedule
may either be more toxic or have higher response rate. The
terms “escalate” or “de-escalate” thus are meaningful when
assigning doses within T1 or T2, but not for assigning regimes
within T. The additive hazard model of Braun et al. (2007)
does not accommodate qualitatively different schedules with
all administrations given early, or bivariate event time out-
comes. We address this by treating schedule as qualitative
and dose as quantitative, and defining a joint utility function
for the two event times.

3. Utility Functions

We obtain a utility function, U(yyy), that represents the clinical
desirability of each possible outcome pair. This utility may be
used for decision-making with any sort of regime, and is not
limited to dose–schedule optimization. Given follow up time
Tmax, the physician is asked to partition the domains of YR

and YT into subintervals that determine a grid of rectangular
subsets partitioning [0, Tmax]

2. A numerical utility is elicited
for each rectangular subset, and nonlinear regression is used
to fit a smooth surface by treating the midpoints of the rect-
angles in the YYY domain as predictors and the corresponding
elicited utilities as outcomes. The partition should be suffi-
ciently refined to provide a discretization of YYY in terms of
the anticipated joint probability distribution that is realistic
based on clinical experience, but sufficiently coarse that the
elicitation is feasible. To facilitate refinement of the elicited
numerical utilities or the grid, it is useful to show the physi-
cian a plot of the fitted surface, and iterate this process until
an acceptable utility surface is obtained.

Since smaller yR and larger yT are more desirable,
U(yyy) must decrease in yR and increase in yT , formally,
∂U(yR, yT )/∂yR < 0 < ∂U(yR, yT )/∂yT . We used the parametric
function

U(yR, yT ) = 100
b1 e−c1yR + b2 e−c2yT + b3 e−c1yR−c2yT − Umin

Umax − Umin

for yR, yT > 0. (1)

To obtain 0 ≤ U(yR, yT ) ≤ 100 with 0 corresponding to
the worst and 100 to the best possible outcomes, we
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Table 1
Utilities for rectangles of YR = time to response and YT = time to toxicity in the multiple myeloma autologous stem cell

transplantation trial

YR = months to response
YT = months to toxicity

[0, 1) [1, 3) [3, 6) [6, 9) [9, 12)

[9, 12) 95, 93.9 88, 86.0 74, 74.5 64, 62.8 54, 53.1
[6, 9) 85, 85.3 76, 77.4 63, 65.8 53, 54.0 43, 44.3
[3, 6) 75, 73.5 64, 65.5 52, 53.8 42, 41.9 32, 32.1
[1, 3) 62, 60.2 52, 52.1 41, 40.3 31, 28.3 21, 18.4
[0, 1) 50, 50.3 40, 42.2 30, 30.2 20, 18.1 10, 8.1

For each (YR, YT ) rectangle, the two tabled values are U(e) = the elicited utility and Û =the fitted parametric function evaluated at the
rectangle’s midpoint.

used the norming constants Umax = Uo(yR,min, yT,max) and
Umin = Uo(yR,max, yT,min), denoting Uo(yR, yT ) = b1 e−c1yR +
b2 e−c2yT + b3 e−c1yR−c2yT . Any compact domain for U may
be used, however. The inequalities c1, c2 > 0, b2 < 0 < b1,

and b2 < −b3 < b1 are sufficient to ensure monotonicity of
U(yR, yT ) in each argument. Subject to these constraints,
we solved for (c1, c2, b1, b2, b3) using nonlinear least squares
with the midpoint of each rectangle as the X-variable and the
elicited utilities U(e) on the rectangle as the Y -variable. For
the autologous SCT trial design (Table 1) this gave estimates
(ĉ1, ĉ2, b̂1, b̂2, b̂3) = (0.0631, 0.1088, 9.3557, −7.8677, 0.5301).
Table 1 also gives the fitted utilities Û(y), and the surface
obtained by plotting Û(y) on y is illustrated by Figure 1,
where Tmax = 12 months for the SCT trial. For example, the
rectangle defined by 1 < yR < 3 and 3 < yT < 6 has midpoint
yyymid = (2, 4.5) and elicited utility U(e) = 64.

Our criterion for choosing each cohort’s treatment regime
is the posterior mean utility,

u(τ,data) = Eθθθ[EYYY |θθθ{U(YYY) | τ,θθθ} | data] = Eθθθ[Ū(τ,θθθ) | data],

(2)

where we denote Ū(τ,θθθ) = EYYY |θθθ{U(YYY) | τ,θθθ}, the mean over YYY

of the utility U(YYY) of using regime τ for given θθθ. Another way
to view u(τ,data) is obtained by applying the Fubini-Tonelli
Theorem to switch the order of expectations in (2). Denoting
the joint pdf of [YYY | τ] by fR,T (yyy | τ,θθθ), this gives

u(τ,data) =
∫

yyy

U(yyy)Eθθθ|YYY=yyy{fR,T (yyy | τ,θθθ) | data}dyyy

=
∫

yyy

U(yyy)fR,T (yyy | τ,data) dyyy.

The posterior expectation is the predictive distribution of YYY,

given the current data, for a patient treated with regime τ.

Thus, u(τ,data) is the expected utility of τ for a newly en-
rolled patient. The design makes adaptive decisions based on
the values of {u(τ,data), τ ∈ T}, subject to safety and efficacy
acceptability requirements.

4. Probability Model

4.1. Marginal Model

Our modeling strategy is to construct marginals for YR and
YT that are functions of sss and d, and use a bivariate cop-
ula (Nelsen, 2006) to obtain a joint distribution. For each
outcome m = R, T and regime τ = (sss, d), denote the pdf, cdf,
and survivor function of Ym at time y > 0 by fm(y | τ,θθθm),
Fm(y | τ,θθθm) = Pr(Ym ≤ y | τ,θθθm) and F̄m(y | τ,θθθm) = 1 −
Fm(y | τ,θθθm), where θθθm is the marginal model parameter vec-
tor. The joint model parameter vector is θθθ = (θθθR,θθθT , ζ), where
ζ is the copula’s association parameter.

We assume that, given sss, larger d is associated with stochas-
tically smaller YR and smaller YT . This says that, at any follow
up time y, the probability of response, FR(y | (sss, d), θθθR), and
the probability of toxicity, FT (y | (sss, d), θθθT ), both increase in
d for any sss. The marginals are formulated so that these prob-
abilities may either vary qualitatively with schedule or have
monotone schedule effects. The utility function addresses the
conflict between the goals to choose τ to make FR(yR|τ,θθθR)
large while not allowing FT (yT | τ,θθθT ) to become unacceptably
large by quantifying the desirability of each possible (yR, yT )
pair.

Let d1 < d2 < · · · < dJ denote the doses being considered.
A practical difficulty when using u{(sss, d),data} for decision
making based on bivariate outcomes is that simply assum-
ing FR(t | (sss, d), θθθR) and FT (t | (sss, d), θθθT ) both are monotone
in d may not distinguish adequately between different values
of u{(sss, dj),data} for doses dj near the optimum, in the case
d1 < dj < dJ . A given change in an intermediate dj may pro-
duce changes of very different magnitudes in FR(t | (sss, dj), θθθR)
and FT (t | (sss, dj), θθθT ), which in turn may make it difficult to
identify a middle dose for which (sss, dj) has true maximum
utility. To address this problem, for each outcome we define
outcome-specific standardized doses,

xm,j = d1

d̄
+

(
dj − d1

dJ − d1

)λm
(

dJ − d1

d̄

)
, m = R, T, j = 1, . . . , J,

denoting d̄ = (d1 + · · · + dJ)/J. The parameter λm controls the
relative effects of doses that are not close to either d1 or dJ .
Note that xR,1 = xT,1 = d1/d̄ and xR,J = xT,J = dJ/d̄, while all
intermediate standardized doses for fm are parameterized by
λm.
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Figure 1. Fitted utility surface for the times to response and toxicity in the multiple myeloma stem cell transplantation
trial. Black and red dots show elicited values above and below the fitted surface, respectively.

For brevity, hereafter we will index schedules by k =
1, . . . , K and denote τ = (k, j) for the kth schedule and dose dj.

To formulate flexible but reasonably parsimonious marginals
for [Ym | τ], m = R, T, in preliminary simulations we explored
the lognormal, Weibull, and gamma distributions across a di-
verse set of regime-outcome scenarios and true event time dis-
tributions. We chose the gamma, since it had the best overall
performance and robustness of the three distributions. We
used gamma marginals having the parametric form

fm(t | τ,θθθm) = tφm,1−1 e−t/φm,2


(φm,1) φ
φm,1

m,2

,

where 
(·) denotes the gamma function. The shape parame-
ter φm,1 and scale parameter φm,2 both depend on dose and
schedule as follows:

φm,1{(k, j), θθθm} = βm,1(γm,k xm,j)
−αm,1 (3)

and

log{φm,2{(k, j), θθθm} + 1} = βm,2(γm,k xm,j)
−αm,2 , m = R, T.

(4)

We require αm,1, αm,2, βm,1, βm,2 > 0, and assume the schedule
effects, γm,1, . . . , γm,K, have support [0, 2]. Different transfor-
mations are used for φm,1(k, j) and φm,2(k, j) because the shape
and scale parameters play very different roles in determining
the form of the gamma distribution, and we found that using
a log transformation for φm,2{(k, j), θθθm} provided a well be-
haved dose-outcome model. For each outcome m = R, T and
gamma shape (r = 1) or scale (r = 2) parameter, if dose is
fixed and only schedule is varied, the right-hand sides of (3)
and (4) reduce to βm,rγm,k, so there are K + 1 parameters for

K effects. We thus define γm,1 = 2 − {∏K

k=2
γm,k}1/(K−1).

The utility U(YYY) reduces the two-dimensional outcome YYY

to a one-dimensional value, which in turn yields the posterior
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mean utility, u{(k, j),data}, that is used for decision making.
In the models (3) for shape and (4) for scale, the relative
magnitudes of the parametric contributions of k and xm,j must
reflect their actual effects on u{(k, j),data}. In these models,
βm,r may be thought of as the gamma’s usual shape (r = 1) or
scale (r = 2) parameter, modified by the effects of dose and
schedule. For each m = R, T, the same λm is used to define
each standardized dose xm,j and, for each schedule k, the same
parameter γm,k is used as a multiplicative effect on xm,j, for
both φm,1 and φm,2.

4.2. Likelihood for Continuously Observed Response
Times

Let t∗ denote study time, defined as the time from the start of
the trial to the current time when a new patient is enrolled and
an interim decision must be made. Let n∗ denote the number
of patients accrued by t∗. For the ith patient, i = 1, . . . , n∗, de-
note the treatment regime by τi and the outcome vectors eval-
uated at t∗ by YYYo

i,t∗ = (Yo
i,R,t∗ , Y

o
i,T,t∗) and δδδi,t∗ = (δi,R,t∗ , δi,T,t∗). For

a patient with entry time ei < t∗, the patient time at trial time
t∗ is ti = t∗ − ei. Each patient’s outcome data change over time,
starting at YYYi,t∗ = YYYo

i,t∗ = (0, 0) and δδδi,t∗ = (0, 0) at accrual
when ti = 0. Thereafter, each Yo

i,m,t∗ = ti as long as δi,m,t∗ = 0,
and Yo

i,m,t∗ achieves the final value Yi,m if and when the patient
experiences event m, when δi,m,t∗ jumps from 0 to 1. That is,
each (YYYo

i,t∗ , δδδi,t∗) is a bivariate sample path of two step func-
tions, jumping from 0 to 1 at their respective event times, with
administrative right-censoring, from the time of that patient’s
accrual to the most recent follow up time. Consequently, be-
fore computing posterior quantities used for making outcome-
adaptive interim decisions at any study time t∗, it is essential
to update the trial data. We denote the interim data at trial
time t∗ by data∗ = {(ei, τi,YYY

o
i,t∗ , δδδi,t∗) : i = 1, . . . , n∗}.

Denote the joint cdf and survivor function of [YYY | τ] by
FR,T (yyy | τ,θθθ) and F̄R,T (yyy | τi, θθθ) = Pr(YR > yR, YT > yT | τi, θθθ).
When both YR and YT are observed continuously, the likeli-
hood for patient i at study time t∗ is

L(YYYo
i,t∗ , δδδi,t∗ | τi, θθθ)

=
{

fR,T (Yo
i,R,t∗ , Y

o
i,T,t∗ | τi, θθθ)

}δi,R,t∗ δi,T,t∗

×
{∫ ∞

v=Yo
i,T,t∗

fR,T (Yo
i,R,t∗ , v | τi, θθθ) dv

}δi,R,t∗ (1−δi,T,t∗ )

×
{∫ ∞

u=Yo
i,R,t∗

fR,T (u, Yo
i,T,t∗ | τi, θθθ) dv

}(1−δi,R,t∗ )δi,T,t∗

×
{

F̄R,T (Yo
i,R,t∗ , Y

o
i,T,t∗ | τi, θθθ)

}(1−δi,R,t∗ )(1−δi,T,t∗ )

. (5)

Once the marginals have been specified, a joint distribu-
tion of YR and YT may be defined in numerous ways. To
obtain a parsimonious and tractable model, we use the bi-
variate Farlie–Gumbel–Morgenstern (FGM) copula (Nelsen,
2006). Hereafter, we will suppress t∗, i, τi, and θθθ for brevity
when no meaning is lost. The FGM copula is given in terms
of the marginals and one association parameter ζ ∈ [−1, 1]

by

FR,T (yR, yT | ζ) = FR(yR)FT (yT ){1 + ζ F̄R(yR)F̄T (yT )}. (6)

To obtain the terms in (5) under the FGM copula, for
(δR, δT ) = (1, 1) the joint pdf is

fR,T (yR, yT | ζ)= fR(yR)fT (yT )[1+ ζ {1−2FR(yR)}{1−2FT (yT )}],

and F̄R,T (yR, yT ) = FR,T (yR, yT ) + F̄R(yR) + F̄T (yT ) − 1. For
(δR, δT ) = (0, 1) and a > 0,

∫ ∞

a

fR,T (y, yT ) dy = F̄R(a)fT (yT )
[
1 − ζFR(a){1 − 2FT (yT )

}
],

and the term for (δR, δT ) = (1, 0) is obtained by symmetry.
All likelihood contributions thus are determined by ζ and the
marginal pdfs, with FR and FT and terms corresponding to
administratively censored event times computed by numerical
integration.

4.3. Likelihood for Interval Censored Response Times

To account for interval censoring when response is evaluated
at successive times 0 = a0 < a1 < · · · < aL−1 < aL = ∞, rather
than continuously, let Al = (al−1, al] denote the lth subinter-
val. If a response did not occur by al−1 but did occur by
al, then YR ∈ Al. Let δ1,l denote this event. Given the par-
tition {A1, . . . , AL} of [0, ∞), the pair (Yo

i,R, δi,R) for contin-
uously observed Yi,R are replaced by the vector of indicators
δδδi,R = (δi,R,1, . . . , δi,R,L), having one entry 1 and all other en-
tries 0. At study time t∗, the observed data of the ith patient
are {δδδi,R(t∗), Yo

i,T,t∗ , δi,T,t∗ }. When Yo
i,T = Yi,T has been observed

by study time t∗, so that δi,T,t∗ = 1, the ith patient’s likelihood
contribution is

L(δδδi,R(t∗), Yo
i,T,t∗ , 1 | τi, θθθ)

=
L∏

l=1

{∫ al

al−1

fR,T (y, Yo
i,T,t∗ | τi, θθθ) dy

}δi,R,l(t
∗)

=
L∏

l=1

{
P

(1)
R,T (Al, Y

o
i,T,t∗ | τi, θθθ)

}δi,R,l(t
∗)

, (7)

denoting P
(1)
R,T (Al, Y

o
T ) = ∫

Al
fR,T (y, Yo

T ) dy. Under the copula

(6), this takes the form

P
(1)
R,T (Al, Y

o
T ) = fT (Yo

T ){FR(al) − FR(al−1)}[1 + ζ{2FT (Yo
T ) − 1}

× {FR(al) + FR(al−1) − 1}].

Similarly, when patient i has not yet experienced toxicity, so
δi,T,t∗ = 0 and Yi,T is censored at study time t∗, the likelihood
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contribution is

L(δδδi,R(t∗), Yo
i,T,t∗ , 0 | τi, θθθ)

=
L∏

l=1

{∫ ∞

Yo
i,T,t∗

∫ al

al−1

fR,T (y, w | τi, θθθ) dy dw

}δi,l(t
∗)

=
L∏

l=1

{
P

(2)
R,T (Al, Y

0
i,T (t∗) | τi, θθθ)

}δi,l(t
∗)

, (8)

denoting P
(2)
R,T (Al, Y

o
T ) = ∫ ∞

Yo
T

∫
Al

fR,T (y, w) dy dw. Under the

copula (6), this takes the form

P
(2)
R,T (Al, Y

o
T ) = F̄T (Yo

T ){FR(al)

− FR(al−1)}[1 + ζFT (Yo
T ){FR(al) + FR(al−1)−1}].

Combining terms (7) and (8), if YR is interval censored the
likelihood at trial time t∗ is

L(Yo
i,T,t∗ , δδδi(t

∗) | τi, θθθ)

=
L∏

l=1

[
P

(1)
R,T (Al, Y

0
i,T (t∗)|τi, θθθ)

δi,T,t∗ P
(2)
R,T (Al, Y

0
i,T (t∗)|τi, θθθ)

1−δi,T,t∗
]δi,l(t

∗)
.

5. Trial Design

5.1. Treatment Regime Acceptability

While using utilities is a sensible way to combine efficacy and
toxicity for optimizing treatment regimes, in practice some
regimes may be excessively toxic or inefficacious. Such regimes
should not be used to treat patients, and in the extreme case
where all regimes are found to be either too toxic or ineffi-
cacious the trial should be terminated. We thus employ the
following acceptability criteria, similar to those used by Thall
and Cook (2004) and others for phase I/II trials. For m = R, T,

let trefm be a reference time from the start of therapy used to
specify a limit on Fm(trefm |τ,θθθ). Let π̄T be a fixed upper limit on
FT (trefT |τ,θθθ) and πR be a fixed lower limit on FR(trefR |τ,θθθ), both
specified by the physician. Given upper probability cut-offs
pT and pR, a regime τ is unacceptable if

Pr{FT (trefT |τ,θθθ) > π̄T | data∗} > pT or

Pr{FR(trefR |τ,θθθ) < πR | data∗} > pR (9)

and we denote the set of acceptable regimes by A.

5.2. A Design for Non-Nested Schedules

The problem that a “greedy” sequential search algorithm,
that always chooses the optimal action, may get stuck at a
suboptimal action is well-known in optimization, but only re-
cently has been addressed in dose-finding trials (Azriel, Man-
del, and Rinott, 2011; Thall and Nguyen, 2012). Our pro-
posed design is a hybrid of a greedy design that always chooses
τ = (k, j) to maximize posterior mean utility, and a nonadap-
tive, hence unethical design that simply randomizes patients
fairly among regimes. The idea is to avoid getting stuck at

a suboptimal regime, but still conduct the trial ethically by
using adaptive rules.

For each successive cohort of c patients, τ is chosen adap-
tively, as follows. Denote the regime maximizing u(τ,data∗)
among all τ ∈ A by τopt. Denote the index of the optimal
dose among acceptable regimes having schedule k by

jopt(k) = argmax
1≤j≤J, (k,j)∈A

u{(k, j),data∗}.

Because the posterior mean utility u(τ,data∗) is highly
variable throughout much of the trial, randomizing among
regimes with u{(k, j),data∗} close to τopt is ethical, and re-
duces the risk of getting stuck at a suboptimal regime. The
proposed hybrid design, Design 1, has two stages. Let n∗(k, j)
denote the number of patients up to trial time t∗ treated with
τ = (k, j). Since only τ ∈ A may be chosen, if A is empty then
the trial is stopped and no τ is selected. If A is not empty,
then for qualitatively different, non-nested schedules Design
1 proceeds as follows. Let N be the maximum overall sam-
ple size, and N1 the maximum stage 1 sample size, with N1

chosen to be a multiple of Kc reasonably close to N/2. The
following design first distributes patients evenly among sched-
ules and optimizes dose within each schedule in Stage 1, then
optimizes (schedule, dose) globally in Stage 2.
Stage 1. Randomize K cohorts of size c fairly among the sched-
ules, restricted so that each schedule is assigned to exactly
c patients. Repeat this until N1 patients have been treated.
Within schedule k, starting at the lowest dose and not skip-
ping an untried dose when escalating, treat the next patient
at dose jopt(k), unless

n{k, jopt(k)} ≥ max
j

{n(k, j) : j �= jopt(k), (k, j) ∈ A} + �1 c,

(10)

where �1 is a small positive integer. If (10) holds, then within
schedule k choose an acceptable dose randomly with proba-
bility proportional to u{(k, j),data∗}.
Stage 2. For N − N1 more patients, choose (k, j) to maximize
u{k, j,data∗}, unless

n{kopt, jopt(kopt)}
≥ max

k
[n{k, jopt(k)} : k �= kopt, {k, jopt(k)} ∈ A] + �2 c, (11)

where �2 is a small positive integer. If (11) holds,
choose a schedule with probability proportional to
u{(k, jopt(k)),data∗}.

The inequality (10) in Stage 1 says that the current sam-
ple size at the best acceptable dose within schedule k is at
least �1 c larger than the current sample size at any other ac-
ceptable dose with that schedule. One may use �1 = �2 = 1,
or slightly larger values, depending on c and possibly N, to
control the amount of sample size imbalance between regimes.
The randomization probabilities among doses within schedule
k in Stage 1 at t∗ are

r1(k, j) = u{(k, j),data∗} I{(k, j) ∈ A}∑J

j′=1
u{(k, j′),data∗} I{(j′, k) ∈ A}

, j = 1, . . . , J.
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Similarly, the inequality (11) says that the current sample
size at the best acceptable regime is at least �2 c larger than
the current sample size at any other acceptable regime. The
randomization probabilities among schedules in Stage 2 at t∗

are

r2(k) = u{(k, jopt(k)),data∗} I{(k, jopt(k)) ∈ A}∑K

k′=1
u{(k′, jopt(k′)),data∗} I{(k′, jopt(k′)) ∈ A}

,

k = 1, . . . , K.

Design 2, the “greedy” design, is a much simpler ver-
sion of Design 1 that chooses τ ∈ A by simply maximizing
u{(k, j),data∗}, subject to the constraint that an untried dose
may not be skipped when escalating within any schedule.
With Design 2, schedules are chosen by fair randomization
without replacement, as in the hybrid Design 1, but this is
done throughout the trial, and within schedule k the current
dose jopt(k) is chosen.

If schedules are nested, then γm,1 < γm,2 < · · · < γm,K for
m = R, T, and consequently YR and YT are stochastically in-
creasing in k as well as j, so the regime-finding algorithm must
reflect this. Since in this case the word “escalate” pertains to
both schedule and dose, i.e. to both k and j, the trial could be
conducted by choosing (k, j) to maximize u{(k, j),data∗} sub-
ject to a two-dimensional “do-not-skip” rule similar to that
used by Braun et al. (2007), with escalation from (k, j) to op-
timize u{τ,data∗} restricted to the three adjacent untried com-
binations (k + 1, j), (k, j + 1), or (k + 1, j + 1). This could be
elaborated, as in Design 1, to include randomization among
regimes based on u{(k, j),data∗}.

5.3. Accommodating Death During Follow Up

The model and utility may be modified to account for death
during follow up, or discontinuation of follow up due to toxic-
ity, possibly because the regime was changed at YT . This may
be done parsimoniously using a semi-competing risks model,
wherein we call either death or discontinuation of follow up at
YT “fatal” toxicity, indicated by δTD, with δTA indicating “non-
fatal” toxicity that allows follow up to continue for YR. Thus,
δTD + δTA = δT , and (δTD, δTA) has possible values (1, 0) or (0,
1) if δT = 1 and (0, 0) if δT = 0. If δTD = 1 and YT < YR then
response will not occur. In this case, we define YR = +∞ and
δR = 1, and extend the domain of (YR, YT ) from E2 = [0, ∞)2

to E+
2 = E2 ∪ [{+∞} × [0, ∞)]. We do not assume that YR cen-

sors YT , however. Suppressing τ and θθθ, we define an extended
distribution f+

R,T,D(YR, YT , δTD) in terms of πTD = Pr(δTD = 1)
and the conditional probabilities f+

R,T |D(yR, yT | δTD = 0) =
fR,T (yR, yT ) and f+

R,T |D(yR, yT | δTD = 1) = fR,T (yR, yT )I(yR <

yT ) + fT (yT )πNRI(yR > yT ), where πNR = Pr(YR > YT ) is the
probability of death before response if δTD = 1. It fol-
lows that f+

R,T,D is a probability distribution on E+
2 , since∫

E+
2

∑1

a=0
f+

R,T |D(yR, yT | δTD = a)Pr(δTD = a) dyR dyT = 1.

To extend the likelihood (5) to this case, we first note that
lines 2 and 4 of (5) are unchanged since in these cases YT is
right-censored. The first line of (5) becomes

[
{fR,T (Yo

R, Yo
T )}I(Yo

R
<+∞) {fT (Yo

T )πNR}I(Yo
R
=+∞)π

δTD

TD (1 − πTD)δTA

]δRδT

.

For line 3 of (5), if YR is censored at the time of fatal toxicity,
then δTD = 1 and YR = +∞, a case already accounted for by
line 1. If YR is censored at the time of non-fatal toxicity, this
is accounted for by simply replacing δT with δTA in line 3.

The utility may be modified to accommodate death
by considering the scaled original utility, U(yR, yT )/100,

as a multiplicative discount factor for survival time on
the follow-up interval [0, Tmax]. A utility function that
does this is U+(yR, yTA) = Tmax U(yR, yTA)/100 if δTA = 1 and
U+(yR, yTD) = yTD U(yR, yTD)/100 if δTD = 1. This definition
ensures that U+(yR, yTD) < U+(yR, yTA) if yTD = yTA. The trial
is conducted as described above. The model may be extended
similarly if follow up is stopped at YR, although this is not
commonly done if toxicity occurring during follow up period
[0, Tmax] is considered important. One also might model πTD

as a function of (s, d), if the death rate is sufficiently high
to estimate the additional parameters, although this may be
unlikely in practice.

6. Application to the SCT Trial

6.1. Prior and Design Parameters

We assumed that the positive real valued parameters
αR,1, αR,2, βR,1, βR,2, λR, αT,1, αT,2, βT,1, βT,2, λT followed log-
normal priors. The means were determined from the elicited
values in Table 2 using a pseudo-sample based method sim-
ilar to that described in Section 4.2 of Thall et al. (2011).
Prior variances were calibrated to obtain a design with good
performance across a broad range of scenarios. We assumed
that ζ followed a beta distribution with parameters (1.1, 1.1),
rescaled to have support on (−1, +1). Numerical values of the
prior hyperparameters are given in Supplementary Table S1.

Since each schedule effect acts multiplicatively on the
outcome-specific standardized doses, we found that γm,j ≤
0.80 or ≥1.20 may have a large effect on xm,j. For example,
γm,j = 0.80 would reduce some xm,j values by more than one
full dose level. A more disperse prior on the γm,j’s also may
cause the method to misinterpret a dose effect for a sched-
ule effect in certain cases, especially those where a middle
dose has highest utility. Consequently, we specified the pri-
ors of the γm,j’s to be highly concentrated beta distributions
with domain [0, 2] and parameters (47.3, 47.3), which gives
Pr[0.80 < γm,j < 1.20] = 0.95. Although these priors may ap-
pear to be overly informative, in fact small changes within
the subdomain [0.80, 1.20] of [0, 2] allow the posterior mean
utility to change substantively, so that one may detect true
differences between schedules. In this case, the observed data
easily have the necessary effect on the posterior distributions
of the γm,j’s.

6.2. Simulation Study

We simulated the SCT trial with N1 = 36, N = 72, and c = 3,
with YT monitored continuously and YR interval censored per
the actual evaluation schedule at 1, 3, 6, 9, 12 months. We
studied three competing designs: the hybrid design (Design
1), the greedy design (Design 2), and a randomized design
with no interim decisions, restricting the randomization to
treat exactly 12 patients at each of the six τ pairs, with the
regime maximizing u(τ,data) selected at the end. We consid-
ered eight simulation scenarios (Supplementary Table S2). In
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Table 2
Elicited prior means of FR(t | τ) and FT (t | τ) for the autologous stem cell transplantation trial to optimize (schedule, dose) of

melphalan

Prior means of FR(t | τ) Prior means of FT (t | τ)

Days of follow-up Total dose of Melphalan (mg/m2) Total dose of Melphalan (mg/m2)

d = 140 d = 180 d = 200 d = 140 d = 180 d = 200

t = 1 — — — 0.01 0.02 0.03
t = 3 — — — 0.05 0.07 0.09
t = 6 — — — 0.15 0.18 0.20
t = 10 — — — 0.25 0.30 0.32
t = 14 — — — 0.30 0.35 0.40
t = 28 — — — 0.33 0.38 0.43
t = 30 0.05 0.08 0.10 — — —
t = 90 0.09 0.11 0.15 — — —
t = 180 0.13 0.16 0.19 0.34 0.39 0.44
t = 270 0.16 0.19 0.24 — — —
t = 360 0.20 0.25 0.30 0.35 0.40 0.45

For each total dose d, the prior means for the regimes τ = (−2, d) and τ = ((−3, −2), d) were identical.

Scenario 1, there is no schedule effect, toxicity is acceptable,
and efficacy increases with dose. Scenario 2 also has no sched-
ule effect, but toxicity is much higher, so the lowest dose has
the highest utility. In Scenario 3, the 2-day schedule is supe-
rior due to higher efficacy. In Scenario 4, the 1-day schedule
is superior. Scenario 5 has no schedule effect, but the mid-
dle dose is best. In Scenario 6, for both schedules, the utility
is “V” shaped, lowest for the middle dose with the highest
dose optimal. All regimes are unacceptably toxic in Scenario
7, and unacceptably inefficacious in Scenario 8. Each case was
simulated 3000 times.

We use the statistic Rselect = {utrue(τselect) − umin}/(umax −
umin), (cf. Thall and Nguyen, 2012) to quantify reliabil-
ity of regime selection. This is the proportion of the dif-
ference between the utilities of the best and worst possible
regimes achieved by τselect. A statistic quantifying the ethics
of how well the method assigns regimes to patients in the trial
is Rtreat = {N−1

∑N

i=1
utrue(τ[i]) − umin}/(umax − umin), where

utrue(τ[i]) is the true utility of the regime given to patient i,
and N is the final sample size.

The main simulation results are summarized in Table 3. In
each of Scenarios 1–6, the hybrid design does a good job of
selecting regimes with high true utilities, and is very likely
to correctly stop early in both Scenarios 7 and 8. Table 4
compares the hybrid, greedy, and balanced designs in terms of
Rtreat and Rselect. More detailed summaries of the simulations
of the greedy and balanced non-adaptive designs are given in
Supplementary Tables S3a and S3b, respectively. The main
messages from Scenarios 1–6 in Table 3 are that (i) compared
to the greedy design, the hybrid design has the same or higher
Rselect while neither design is uniformly superior in terms of
Rtreat; (ii) compared to the balanced design, the hybrid design
has nearly identical Rselect but much higher values of Rtreat,

so is much more ethical; and (iii) in Scenarios 7 and 8, both
the hybrid and greedy designs correctly stop early with high
probability, and both have much higher Rselect and Rtreat than
the balanced design. In summary, the hybrid design has the

best overall performance of the three designs and, as may be
expected, the balanced design is ethically unacceptable.

In Supplementary Table S4, we evaluate robustness of the
hybrid design to the true event time distribution (lognormal,
gamma, Weibull, or uniform). It shows that that (i) Rtreat is
insensitive to the distributions studied, (ii) Rselect is insensi-
tive to whether the true distribution is lognormal, gamma,
or Weibull, but (iii) for a uniform distribution Rselect may be
lower (Scenarios 1 and 3) or higher (Scenarios 2 and 4) than
for the other distributions. Supplementary Table S5a shows
that the hybrid design is insensitive to changes in prior hy-
perparameter σ̃ = 8 to 14, the assumed common prior sd of
log(αm,l), log(βm,l), and log(λm) for all m = R, T and l = 1, 2.

Supplementary Table S5b shows that the hybrid design is in-
sensitive to changes in the 95% prior interval for the γm,j’s
varying from (0.9, 1.1) to (0.6, 1.4), although Rselect and Rtreat

both decrease slightly with the width of this interval in Sce-
nario 5. This motivated our use of the 95% prior interval (0.8,
1.2). Supplementary Table S6 shows that Rselect is insensitive
to c = 1, 2, or 3, and that Rtreat may increase or decrease
slightly with c depending on the scenario. Supplementary Ta-
ble S7 shows that, as N is increased from 48 to 360, both
Rselect and Rtreat increase substantially.

We also evaluated the hybrid design for an extended version
of the SCT trial, with 4 doses and 3 schedules (12 regimes),
obtained by interpolating the elicited priors and scenarios of
the original 6-regime design. The three doses of the original
trial are mapped into the first, third and fourth doses of the
extended trial, with a new, second lowest dose corresponding
to d = 160 mg/m2 added. Elicited prior and scenario prob-
abilities of the original first two doses were interpolated to
obtain values for the new dose. A new third schedule was ob-
tained by averaging the prior and scenario probabilities of the
two original schedules. Results for this 12-regime setting are
given in Supplementary Tables S8–S14.

Supplementary Table S8a gives a hypothetical utility that
places greater weight on quick responses. For either 6 regimes
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Table 3
The main simulation results using the hybrid algorithm with sample size 72 and cohort 3

Scenario 1-day schedule 2-day schedule Rselect

Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3 None Rtreat

1 ūtrue(s, d) 52.2 57.5 62.9 52.2 57.5 62.9
% Sel 5 8 38 5 8 35 1 0.82
# Pats 11.6 9.8 14.5 11.6 9.5 14.4 0.54

2 ūtrue(s, d) 59.0 53.7 48.1 59.0 53.7 48.1
% Sel 39 7 4 39 6 5 1 0.85
# Pats 22.6 8.2 5.0 22.7 8.2 4.9 0.75

3 ūtrue(s, d) 53.1 58.4 63.8 56.8 62.1 67.6
% Sel 3 5 16 6 12 58 1 0.81
# Pats 11.1 9.1 12.9 11.6 10.5 16.5 0.54

4 ūtrue(s, d) 58.6 54.6 49.7 55.4 51.4 46.5
% Sel 54 12 5 18 5 5 1 0.80
# Pats 23.1 9.0 5.1 21.0 8.3 5.1 0.69

5 ūtrue(s, d) 52.9 63.6 50.2 52.9 63.6 50.2
% Sel 8 34 6 9 36 6 1 0.74
# Pats 13.0 16.7 6.2 12.8 16.7 6.2 0.54

6 ūtrue(s, d) 53.5 48.1 56.5 53.5 48.1 56.5
% Sel 21 4 23 21 4 25 2 0.76
# Pats 17.2 7.3 11.0 17.2 7.2 11.2 0.62

7 ūtrue(s, d) 35.3 34.2 33.0 35.3 34.2 33.0
% Sel 0 0 0 0 0 0 100 0.87
# Pats 5.0 1.6 0.5 5.0 1.6 0.5 0.81

8 ūtrue(s, d) 39.9 37.8 35.6 39.9 37.8 35.6
% Sel 1 0 1 1 0 1 96 0.54
# Pats 5.8 4.0 4.5 5.8 4.0 4.5 0.54

The true event time distribution is assumed to be lognormal.

(Supplementary Table S8b) or 12 regimes (Supplementary Ta-
ble S15), the hybrid design’s behavior for this different utility,
compared to the actual utility, has an equally high probability
of correctly stopping the trial early in Scenarios 7 and 8, and
in Scenarios 1–6 is better in three cases and worse in three
cases. This is desirable, since otherwise there would be little
point in using a utility as an objective function.

7. Discussion

We have proposed an adaptive Bayesian method for jointly
optimizing schedule of administration and dose in phase I-
II trials based on event times for efficacy and toxicity. We
modeled schedules qualitatively because either of the two out-
come events may occur long after administration. This is very
different from the additive hazard model, with a component

Table 4
Summary statistics for the hybrid design, greedy design, and non-adaptive balanced allocation, for the (3-dose, 2-schedule)

trial

Scenario Hybrid Greedy Balanced
Rselect Rtreat Rselect Rtreat Rselect Rtreat

1 0.82 (1) 0.54 0.78 (1) 0.45 0.85 (0) 0.50
2 0.85 (1) 0.75 0.85 (1) 0.84 0.85 (0) 0.51
3 0.81 (1) 0.54 0.78 (1) 0.48 0.83 (0) 0.50
4 0.80 (1) 0.69 0.80 (0) 0.77 0.80 (0) 0.51
5 0.74 (1) 0.54 0.65 (1) 0.48 0.77 (0) 0.40
6 0.76 (2) 0.62 0.75 (3) 0.62 0.77 (0) 0.55

7 0.87 (100) 0.81 1.00 (100) 0.83 0.94 (98) 0.50

8 0.54 (96) 0.54 0.54 (96) 0.59 0.35 (72) 0.50

The “balanced” method assigns 12 patients to each (schedule, dose) pair and does only one posterior computation, at the end of the trial.
The number in parentheses after each Rselect is the percentage of times the trial is stopped with no (schedule, dose) selected. Because
scenarios 7 (too toxic) and 8 (too inefficacious) have no acceptable treatments, the Rselect values are less relevant and thus are shown
with a gray background.
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for each administration, used by Braun et al. (2007), who
dealt with time to toxicity occurring over a much shorter time
frame. For regimes administered over a period longer than a
few days, our methodology could be extended to allow each
patient’s initial dose to be changed adaptively based on in-
terim events or new data from other patients.

Our design uses a regime assignment algorithm that is a
hybrid of a greedy algorithm and adaptive randomization.
Extensive simulations show that, for a maximum sample size
of 72, the proposed model and method provide a design that
is reliable, safe, and robust, and that it works well in the cases
of either six or 12 regimes.

8. Supplementary Materials

Web Appendix 1 referenced in Section 6 is available with this
paper at the Biometrics website on Wiley Online Library.
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