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SUMMARY

Late-onset (LO) toxicities are a serious concern in many phase I trials. Since most dose-limiting toxicities
occur soon after therapy begins, most dose-finding methods use a binary indicator of toxicity occurring
within a short initial time period. If an agent causes LO toxicities, however, an undesirably large number
of patients may be treated at toxic doses before any toxicities are observed. A method addressing this
problem is the time-to-event continual reassessment method (TITE-CRM, Cheung and Chappell, 2000).
We propose a Bayesian dose-finding method similar to the TITE-CRM in which doses are chosen using
time-to-toxicity data. The new aspect of our method is a set of rules, based on predictive probabilities, that
temporarily suspend accrual if the risk of toxicity at prospective doses for future patients is unacceptably
high. If additional follow-up data reduce the predicted risk of toxicity to an acceptable level, then accrual
is restarted, and this process may be repeated several times during the trial. A simulation study shows
that the proposed method provides a greater degree of safety than the TITE-CRM, while still reliably
choosing the preferred dose. This advantage increases with accrual rate, but the price of this additional
safety is that the trial takes longer to complete on average.

Keywords: Adaptive design; Bayesian inference; Dose finding; Isotonic regression; Latent variables; Markov chain
Monte Carlo; Ordinal modeling; Predictive probability.

1. INTRODUCTION

Phase I clinical trials focus on treatment-related adverse events so severe that they impose a practical
limitation to the delivery of therapy. Such an event is called a dose-limiting toxicity (DLT) or simply
“toxicity.” The primary scientific goal in a phase I trial is to determine the maximum tolerable dose
(MTD), which is the highest dose with an acceptable risk of toxicity (cf. Storer, 1989; Babb and others,
1998). Because most DLTs occur soon after the start of therapy, most phase I methods are based on a
binary variable indicating that a DLT has occurred within a time interval of fixed length, t∗, which we will
call the assessment window.

The possibility of late-onset (LO) toxicities is an important concern in phase I trials. Basing dose
finding on DLTs scored within a fixed window t∗ is a practical compromise motivated by algorithms
that choose doses sequentially for successive patients based on previous patients’ doses and outcomes.
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Conventional methods consider a patient to be fully evaluated if he/she experiences toxicity before t∗ or
is followed for this length of time without toxicity. A problem with such methods is that they may cause
investigators to treat an undesirably large number of patients at toxic doses before LO toxicities are first
observed. While a safer approach would be to use a very large t∗ and wait for each patient’s outcome
before choosing the next patient’s dose, in most settings this would produce an infeasibly long trial.

A method that deals with LO toxicities is the time-to-event continual reassessment method
(TITE-CRM, Cheung and Chappell, 2000), which uses the time to toxicity, T , as the outcome, rather than
a binary indicator. Denoting the cumulative distribution function (cdf) of T for dose d by FT (t ; d, θθθ)=
Pr(T � t |d, θθθ), where θθθ is the model parameter, the TITE-CRM relies on the fact that FT (t ; d, θθθ)=
Pr(T � t |d, θθθ, T � t∗) Pr(T � t∗|d, θθθ) for t � t∗, approximates Pr(T � t |d, θθθ, T � t∗) by a
weight function w(t, t∗) such as t/t∗ or a sample-based estimator, and uses πw(t, t∗, d) = w(t, t∗) Pr(T �
t∗|d, θθθ) as a weighted version of the usual probability in the CRM (O’Quigley and others, 1990). Indexing
patients by i = 1, . . . , n and denoting the time to toxicity or right censoring for the i th patient by T o

i , the
resulting approximate likelihood is

L̃n(θθθ) =
n∏

i=1

πw(T o
i , t∗, d(i))

I{Ti�min(T o
i ,t∗)}{1 − πw(T o

i , t∗, d(i))}I{Ti >min(T o
i ,t∗)}, (1.1)

where d(i) is the dose for patient i . Using this approximation, the TITE-CRM applies the usual CRM
criterion by choosing the dose with posterior mean E{πw(T, t∗, d)|data} closest to a given target, π∗.
Although the TITE-CRM does not increase the risk of LO toxicities when accrual is slow, if accrual is
faster it has a higher risk of treating patients at unsafe doses. This is because, with faster accrual, new
patients are more likely to be assigned to doses considered safe but later found to be unsafe if patients
who have not been fully evaluated experience LO toxicities.

In this paper, we address the problem of LO toxicities by using predictive probabilities to quantify
the risks that prospective doses for future patients will turn out to be excessively toxic. A fundamental
difference between our method and existing methods is that we provide rules for suspending accrual if
the predicted risk of toxicity (PRT) is unacceptably high. If additional follow-up data reduce the predicted
risk at any prospective dose to an acceptable level, then accrual is restarted. We present a simulation study
showing that, compared to the TITE-CRM, our proposed method provides an extra measure of safety
when toxicities are likely to occur late in the assessment window, and this advantage increases with the
patient accrual rate. The price of this improved safety is that, on average, the trial takes longer to complete.

The probability model is presented in Section 2. Priors and posteriors are developed in Section 3.
Decision criteria and rules for trial conduct are presented in Section 4. In Section 5, we provide guidelines
and an illustration of the method, and in Section 6, we present a computer simulation study, including
comparison to the TITE-CRM. We conclude with a discussion in Section 7.

2. PROBABILITY MODEL

To describe the relationship between dose and time to toxicity, we use the sequential ordinal model of
Albert and Chib (2001), which provides flexibility in modeling the hazard function while facilitating
computation. We first fix a sequence of times 0 = t0 < t1 < · · · < tC−1 < tC = ∞, where [t0, tC−1] =
[0, t∗] is the assessment window, and we define Yi = j if patient i experiences toxicity in the j th interval,
t j−1 � Ti < t j , for j = 1, . . . , C . Thus, Yi is a discretized ordinal representation of Ti , with Yi = C
if toxicity does not occur within the assessment window. Given the current time T o

i to toxicity or right
censoring, we denote the usual indicator δi = 1 if T o

i = Ti and δi = 0 if T o
i < Ti , and we also define

Y o
i = j if t j−1 � T o

i < t j so that Y o
i is the current interval index for the i th patient. Denote the doses to

be studied by d1 < · · · < dK . For j = 1, . . . , C − 1 and k = 1, . . . , K , denoting the standard normal
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cdf by �(·), we define the discrete-time hazard �(β j,k) = Pr(Y1 = j |Y1 � j, dk) such that β j,k is the
effect of dose k on the hazard of toxicity in the j th interval. It can be shown that the probability of toxicity
during the j th interval is Pr(Y1 = j |dk) = �(β j,k)

∏ j−1
h=1{1 − �(βh,k)}, and the probability of toxicity

not occurring by t j is Pr(Y1 > j |dk) = ∏ j
h=1{1 − �(βh,k)} for j � C − 1. Let k(i) be the index (level)

of the dose administered to the i th patient. At any point in the trial, the discretized data from the current
n patients take the form Dn = {(Y o

i , k(i), δi ), i = 1, . . . , n} and, denoting βββ = (β1,1, . . . , βC−1,K ), the
likelihood is

L(βββ|Dn) =
n∏

i=1

�
(
βY o

i ,k(i)

)δi
Y o

i −1∏
h=1

{1 − �(βh,k(i))}. (2.1)

Our procedure will be based on the conditional probabilities π(βββ, dk, j) = Pr(Y � C − 1|Y �
j, βββ, dk) for j = 1, . . . , C − 1 and k = 1, . . . , K . This is motivated by the fact that π(βββ, dk, Y o) is the
probability that a patient who has survived Y o − 1 intervals without toxicity will experience toxicity by
t∗ = tC−1 at dose dk . Since Pr(Y � 1) = 1, the unconditional probability of toxicity within the window
[0, t∗] is π(βββ, dk, 1). We will abuse the notation slightly by writing this as π(βββ, dk). It follows from the
discrete-time hazard given above that π(βββ, dk, j) = 1−∏C−1

h= j {1 − �(βh,k)}, and in particular π(βββ, dk) =
1 − ∏C−1

h=1 {1 − �(βh,k)}.
To facilitate computation of posterior quantities, following the general computational strategy of

Albert and Chib (1993), we express the likelihood (2.1) using a latent variable formulation. For patient i ,
define the vector of latent variables Zi =

(
Zi,1, . . . , Zi,Y o

i

)
if Y o

i < C and Zi = (Zi,1, . . . , Zi,C−1) if

Y o
i = C , with Zi, j ∼ N (β j,k, 1) if the i th patient received dose dk . Denote the N (µ, σ 2) density by

φ(z; µ, σ 2). Since �(µ) = ∫ 0
−∞ φ(z; µ, 1)dz, the likelihood (2.1) may be expressed equivalently in

terms of the latent variables as

L(βββ|Dn) =
n∏

i=1

{∫ 0

−∞
φ
(

Zi,Y o
i
; βY o

i ,k(i), 1
)

dZi,Y o
i

}δi Y o
i −1∏
j=1

∫ ∞

0
φ(Zi, j ; β j,k(i), 1)dZi, j . (2.2)

Comparing the representation given in (2.2) to the original form given in (2.1) shows that one can think of
Zi, j as a continuous latent variable with mean equal to the patient’s risk of toxicity during the j th interval
given the dose administered. The general strategy is to reformulate (2.2) by including Z = (Z1, . . . , Zn) as
arguments of the likelihood rather than integrating them out. The advantage of this “data-augmentation”
technique, in terms of latent quantities, is that it provides full conditional distributions for the Gibbs
sampling algorithm when computing the posterior. Without this device, computing posteriors would be
very inefficient and time consuming. Thus, the augmented likelihood may be expressed as

L(βββ|Dn, Z) =
n∏

i=1

{
φ
(

Zi,Y o
i
; βY o

i ,k(i), 1
)

I
(

Zi,Y o
i

< 0
)}δi

Y o
i −1∏
j=1

φ(Zi, j ; β j,k(i), 1)I (Zi, j > 0). (2.3)

Using this augmented likelihood, the latent variable vector Z is sampled repeatedly from its full condi-
tional distribution as a step in the Albert–Chib Markov chain Monte Carlo (MCMC) framework.

3. PRIORS AND POSTERIORS

For each interval [t j−1,t j ), j = 2, . . . , C − 1, we assume a state-space model for the prior of βββ j =
(β j,1, . . . , β j,K ), defined by the recursive relationship β j,k |β j,k−1 ∼ N (β j,k−1, σ

2
β ) for k = 2, . . . , K ,
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with β j,1 ∼ N (β j,0, σ
2
β ) and β j,0 fixed to ensure identifiability. Under this prior, E(β j,k) = E{E(β j,k |

β j,k−1)} = E(β j,k−1), which by recursion implies that E(β j,k) = β j,0 for all k = 1, . . . , K . However,
var(β j,k) = kσ 2

β so that, with this prior, the uncertainty about the risk of toxicity increases with dose.
This model does not assume a parametric dose–toxicity function. Rather, βββ is used to characterize

the probability of toxicity π(βββ, dk, j) for j = 1, . . . , C − 1 and k = 1, . . . , K . Although the model
can flexibly characterize the relationship between dose and toxicity, it does not guarantee that π(βββ, dk, j)
increases with dk . Although a prior constraint on �(β j,k−1) < �(β j,k) for all k and j would guarantee
that the π(βββ, dk, j) are monotone increasing in dk , imposing such a constraint would lead to highly biased
posterior estimates of the toxicity probabilities and would also lead to major computational difficulties.
Thus, we take the alternative approach of applying the Bayesian isotonic regression method of Dunson and
Neelon (2003). This method produces transformed versions of π(βββ, dk, j) that are monotone increasing
in dk by taking weighted averages of subvectors of πππ(βββ, j) = (π(βββ, d1, j), . . . , π(βββ, dK , j)). In the
present setting, this ensures that the probability of toxicity by t∗ = tC−1 is monotonically increasing in
dose, while retaining the flexibility and tractability of the state-space model on βββk without introducing
bias into posterior estimates for toxicity. We use the following 3-step algorithm to compute posteriors,
applied each time a new patient is enrolled. These steps combine the Albert–Chib method for exploiting
latent variables and the Dunson–Neelon method for enforcing monotonicity, in the context of our dose–
toxicity model. Denote A0 = (−∞, 0], A1 = (0, ∞), and Āi, j = A1−I (Y o

i = j,δi =1). The following process
is initialized using the prior mean of βββ; Steps 1 and 2 are iterated until convergence and then Step 3 is
applied.

Step 1: Generation of the latent variables. Generate each Zi, j independently from the full conditional
which follows a truncated normal distribution φ(z; β j,k(i), 1)I (z ∈ Āi, j ).

Step 2: Generation of βββ. Denote

S j,k =
n∑

i=1

Y o
i∑

h=1

I{k[i] = k, h = j}σ 2
β and Z+

j,k =
n∑

i=1

Y o
i∑

h=1

Zi,h I (k[i] = k, h = j).

Given Z and the current data, generate βββ from its full conditional distribution under which, for k =
1, . . . , K , β j,k is normal with mean β̃ j,k = {σ 2

β Z+
j,k +β j,k−1+ I (k < K )β j,k+1}/{1+ I (k < K )+S j,kσ

2
β }

and variance σ̃ 2
β,k = σ 2

β/{1+ I (k < K )+ S j,kσ
2
β }. This step exploits the fact that βββ has a closed-form full

conditional distribution under the augmented likelihood, which is not the case using the original likelihood
(2.1).

Step 3: Isotonic regression transformation. Apply the Dunson–Neelon algorithm to πππ(βββ, j) as follows.
Denote the posterior variance–covariance matrix of πππ(βββ, j) by V j and, for each pair of indices k1, k2 ∈
{1, . . . , K } with k1 � k2, denote the subvector πππ(βββ, j)[k1:k2] = (π(βββ, dk1 , j), . . . , π(βββ, dk2 , j)). Let
V j,[k1:k2] be the submatrix of V j of dimension (k2 −k1 +1)×(k2 −k1 +1) corresponding to πππ(βββ, j)[k1:k2].
The vector obtained by the Dunson–Neelon Bayesian isotonic regression transformation is

π̃ππ(βββ, dk, j) = min
k2∈Uk

max
k1∈Lk

(
1′

k2−k1+1V−1
j,[k1:k2]πππ(βββ, j)[k1:k2]

1′
k2−k1+1V−1

j,[k1:k2]1k2−k1+1

)
,

where Lk = {s: s � k}, Uk = {s: s � k}, and 1k is the k-vector with all entries 1. This transformation
ensures that π̃ππ(βββ, d1, j) � π̃ππ(βββ, d2, j) � · · · � π̃ππ(βββ, dK , j) for all j . Despite the apparent complexity
of the above notation, this transformation is straightforward to apply in our setting and does not introduce
any substantive computational difficulties. In summary, our approach is to first compute the posterior of
πππ(βββ, j) without requiring monotonicity in dose (Steps 1 and 2) and then apply the Bayesian isotonic
regression algorithm (Step 3) to obtain π̃ππ(βββ, dk, j), which increases in dose.
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4. DECISION RULES

4.1 Specifying design parameters

Once a formal definition of what constitutes a DLT has been established, the physicians should be asked
to choose t∗ as the smallest value that includes possible LO toxicities based on their clinical judgment. For
example, if one course of treatment lasts 6 weeks but there is substantial concern about DLTs occurring
up to 12 weeks from the start of treatment, then t∗ should be set equal to 12 weeks. Given this, they should
then choose the corresponding target π∗ for the posterior mean of Pr(T � t∗|d, θθθ).

The decision rules for our method rely on 2 different types of Bayesian criteria, the posterior probabili-
ties ξk(Dn) = Pr{π̃(βββ, dk) > π∗|Dn} for k = 1, . . . , K , and predictive probabilities based on approximate
values of the ξk’s that involve both Dn and future outcomes. To characterize the level of risk associated
with each dose, we partition the unit interval into 3 subintervals determined by the probability cutoffs
0 < ξ < ξ < 1.

DEFINITION Given data Dn , the probability of toxicity at dose dk is “negligible” if ξk(Dn) < ξ ,

“acceptable” if ξ � ξk(Dn) � ξ , and “excessive” if ξk(Dn) > ξ .

Reasonable values for these cutoffs are 0.05 � ξ � 0.30 and 0.70 � ξ � 0.95, with the particular
values chosen to reflect how aggressively or conservatively the physicians wish the algorithm to behave.
This decision should be guided by preliminary computer simulations, with ξ and ξ adjusted to obtain
a design with desirable properties. In Section 6, below, we will illustrate how one may conduct such a
sensitivity analysis in (ξ , ξ).

4.2 Criteria for suspending accrual

Our goal is to construct a method that protects patient safety by controlling accrual without sacrificing the
dose-finding method’s reliability. To help motivate how we will address this problem, we first describe
the following crude method. When a new patient arrives and a dose must be chosen, one may perform a
deterministic look ahead (DLA) by assuming that, of the patients treated but not yet fully evaluated, either
(i) all will have toxicity by t∗ or (ii) none will have toxicity by t∗. If the next assigned dose is the same
under both these extreme assumptions, then the next patient is accrued and treated at that dose. Otherwise,
accrual is suspended (Thall and others, 1999). The problem with the DLA algorithm is that it does not
account for the follow-up times of patients who have not been fully evaluated. For example, if t∗ = 100
days and 2 patients have been followed without toxicity for 10 days and 90 days, respectively, the DLA
algorithm treats them identically.

To address this problem, we define criteria for choosing doses and deciding whether to suspend accrual
based on the “PRT”. Our approach may be considered as an extension of the DLA that utilizes predicted
outcomes of patients treated but not yet fully evaluated, thus accounting for the times they have gone
without toxicity. Let dk denote the most recently assigned (current) dose. The basic idea is to use predictive
probabilities of either negligible or excessive toxicity at the current dose to decide whether to treat the next
cohort of patients at dk , treat them at dk+1, or suspend accrual until subsequent follow-up data lead to a
decision to either assign a dose or stop the trial.

Let pk(ak, bk) be the beta(ak, bk) random variable defined to have the same mean and variance as
π̃(βββ, dk) under the current posterior. Specifically, E{pk(ak, bk)} = ak/(ak + bk) = E{π̃(βββ, dk)|Dn} and
var{pk(ak, bk)} = E(pk){1 − E(pk)}/(ak + bk + 1) = var{(π̃(βββ, dk)|Dn}. Thus, pk(ak, bk) is a tractable
approximation to π̃(βββ, dk). Let mk be the number of patients treated at dk who have not been fully eval-
uated, indexed by i1, . . . , imk . For each r = 1, . . . , mk , the available outcome data are δir = 0 and the
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follow-up time T o
ir

without toxicity. We define the indicator Wir = I (Yir � C − 1) that patient ir will
eventually have toxicity within his/her assessment window. Thus, Wk = (Wi1 , . . . , Wimk

) is a vector of
future observations, and S(Wk) = Wi1 + · · · + Wimk

is the number of patients among the mk not yet
fully evaluated who will have toxicity by t∗. Let pk(Wk, mk, ak, bk) denote the probability following a
beta(ak + S(Wk), bk + mk − S(Wk)) distribution. This is an approximation of π̃(βββ, dk) that is obtained
by updating a beta(ak, bk) prior with the future toxicity indicators for all patients treated at dk . The PRT
criteria are defined as follows:

PNk(Dn) =
∑

w

I [Pr{pk(w, mk, ak, bk) > π∗} � ξ ] Pr(Wk = w|Dn), (4.1)

and
PEk(Dn) =

∑
w

I [Pr{pk(w, mk, ak, bk) > π∗} � ξ ] Pr(Wk = w|Dn), (4.2)

where the sums in (4.1) and (4.2) are over the 2mk possible realizations of Wk . Thus, PNk(Dn) and
PEk(Dn) are approximate predictive probabilities that dk has negligible or excessive toxicity, respec-
tively, and PAk(Dn) = 1 − PNk(Dn) − PEk(Dn) is the predictive probability that dk has acceptable
toxicity. The PRT criteria will be used during the trial as a basis for deciding whether to suspend ac-
crual or choose a dose for the next cohort. Computing the indicators in the sums in (4.1) and (4.2) is
straightforward since they are determined by beta probabilities. Denoting the marginal posterior of βββ by
f (βββ|Dn), since E

(
Wir |βββ, Dn

)
= π̃

(
βββ, dk, Y o

ir

)
, the predictive probabilities in the sums in (4.1) and (4.2)

may be expressed as

Pr(Wk = w|Dn) =
∫ mk∏

r=1

{
π̃

(
βββ, dk, Y o

ir

)}wr
{
1 − π̃

(
βββ, dk, Y o

ir

)}1−wr f (βββ|Dn)dβββ, (4.3)

which are computed as a by-product of the MCMC algorithm described earlier.

4.3 Rules for trial conduct

The following rules will be used to decide whether or not to suspend accrual and, if accrual is not sus-
pended, determine an appropriate dose for the next cohort of patients. These rules will be applied after
the last patient of the current cohort has been enrolled. If the rules indicate that accrual should not be
suspended, the investigators should enroll the next cohort of patients and treat them at the dose indicated
by the rules. If the rules indicate accrual should be suspended, the investigators should reapply these rules
each time a new patient arrives at the clinic or a patient previously not allowed to enroll due to suspended
accrual is reconsidered for enrollment. A patient previously not allowed to enroll may be reconsidered
whenever the current trial data are updated, which occurs when a toxicity is observed or a currently en-
rolled patient advances from one interval to the next. From a practical perspective, the investigators may
wish to define a maximum waiting time after which a patient would receive an alternative treatment. Reap-
plication of these rules may result in continued suspension or reopening of accrual. If accrual is reopened,
then a new cohort of patients will be enrolled and the rules will be applied again after the last patient of
this new cohort has entered the trial.

Index the current dose by k, let nk be the total number of patients who have received that dose, and
recall that mk is the total number of patients out of the nk who have not been fully evaluated. Now, define
P̃Nk(Dn) and P̃Ek(Dn) such that

P̃Nk(Dn) =
{

1 if mk = 0

PNk(Dn) if mk > 0
and P̃Ek(Dn) =

{
0 if mk = 0,

PEk(Dn) if mk > 0.
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That is, P̃Nk(Dn) = 1 if all nk patients have been fully evaluated, and P̃Nk(Dn) = PNk(Dn) otherwise.
Similarly, P̃Ek(Dn) = 0 if all nk patients have been fully evaluated, and P̃Ek(Dn) = PEk(Dn) otherwise.
Recall that the current dose dk has negligible toxicity if ξk(Dn) < ξ , and it is excessively toxic if

ξk(Dn) > ξ . The trial is conducted as follows:

1) The first cohort of patients are treated at a starting dose chosen by the physicians.
2) No untried dose may be skipped when escalating.
3) At any point in the trial, if ξ1(Dn) > ξ , then stop the trial and conclude that none of the doses are

acceptably safe.
4) If ξk(Dn) > ξ and k > 1, then de-escalate to the highest dose k′ < k such that ξk′(Dn) � ξ .
5) For lower probability cutoff ε, if ξ � ξk(Dn) � ξ and

5.1) P̃Ek(Dn) � ε, then treat next cohort at dk ;

5.2) P̃Ek(Dn) > ε, then suspend accrual.

6) If ξk(Dn) < ξ and

6.1) k = K or ξk+1(Dn) > ξ , then apply rules (5.1) or (5.2);

6.2) k < K , P̃Nk(Dn) � 1 − ε, and P̃Ek+1(Dn) � ε, then treat next cohort at dk+1;

6.3) k < K , P̃Nk(Dn) � 1 − ε, and P̃Ek+1(Dn) > ε, then suspend accrual;

6.4) for k < K and P̃Nk(Dn) < 1 − ε, then suspend accrual.

7) At the end of the trial, among set of acceptable doses
{

j : ξ j
(
DNmax

)
� ξ, j = 1, . . . , K

}
, select the

dose minimizing |E{π̃(βββ, d j )|Dn} − π∗|.
Rules (5) and (6) utilize the PRT criteria when the risk of toxicity at the current dose based on the cur-

rent data is either acceptable or negligible. These rules exploit the fact that predictive probabilities provide
information about the risk of future toxicities that cannot be obtained from posterior probabilities alone.
In a large sample evaluation of the method’s asymptotic “dose-selection” properties, we relax rules (3)
and (6.1) because these rules impose a constraint on the number of patients being exposed to unsafe doses,
thus potentially preventing sample sizes at these doses from becoming arbitrarily large. Similar to our as-
sumptions, published studies of the asymptotic properties of the CRM and the TITE-CRM do not include
early stopping rules (Shen and O’Quigley, 1996; Cheung and Chappell, 2000), even though when used in a
clinical trial setting early stopping is appropriate. Similarly, evaluations of the asymptotic properties of an
algorithmic competitor to the CRM (the up-and-down design) also assume no early stopping rules (Gezmu
and Flournoy, 2006), although, in practice, rules similar to (3) and (6.1) are typically used. Appendix A of
the supplementary material available at Biostatistics online (http://www.biostatistics.oxfordjournals.org)
provides consistency results and explains their practical relationship to the method’s decision rules.

Computer programs for implementation of the method and running simulations, respectively,
can be obtained at the MD Anderson software download site http://biostatistics.mdanderson.org/
SoftwareDownload/, under the name PRT.

5. GUIDELINES AND ILLUSTRATION

5.1 Guidelines

Because our method is complex, we provide the following guidelines. Initially, the model and design pa-
rameters must be established in collaboration with the physicians. These include the definition of toxicity,

http://www.biostatistics.oxfordjournals.org
http://biostatistics.mdanderson.org/SoftwareDownload
http://biostatistics.mdanderson.org/SoftwareDownload
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anticipated accrual rate, number of discrete-time intervals, C , length of the assessment window t∗, target
toxicity probability π∗, maximum sample size N , and decision cutoffs ξ , ξ , and ε. The choice of t∗ and
C should be guided by practical considerations including the particular disease, agent, and how often
patients are evaluated. The target toxicity rate π∗ should be chosen to correspond to the event T � t∗.
Because C = 1 reduces toxicity to a binary outcome while each interval requires K additional parameters,
we recommend 4 � C � 10. Although π∗ = 0.20–0.30 are commonly used with the CRM or TITE-CRM,
targets as high as 0.50 or as low as 0.10 may be appropriate. A rule of thumb is to set N = 6K , although
resource limitations must also be considered. The design’s sensitivity to (ε, ξ , ξ ) is discussed in Section 6.

We found that ε=0.05, 0.20 � ξ � 0.30, and 0.90 � ξ � 0.95 gave reasonable designs with good
operating characteristics.

At trial initiation, the first cohort of patients who enter the trial are enrolled immediately upon arriving
to the clinic. Subsequently, after the last patient of any cohort has been enrolled, one should perform the
computations in Steps 1–3 given in Section 3 and follow the rules for trial conduct in Section 4.3. If trial
conduct rule (3) has not stopped the trial, there are two general cases.
Case 1. All currently enrolled patients have been fully evaluated, that is, have either experienced toxicity
before t∗ or been followed until time t∗ without toxicity. Based on {ξk(Dn), k = 1, . . . , K }, if toxicity at
the current dose is negligible, acceptable, or excessive, then “escalate, stay, or de-escalate,” respectively.
Case 2. Some currently enrolled patients have not been fully evaluated, that is, have been followed for
less than time t∗ and have not had toxicity. Based on {ξk(Dn), k = 1, . . . , K } and {P̃Nk(Dn), P̃Ek(Dn),
P̃Ek+1(Dn), k = 1, . . . , K } “escalate, stay, de-escalate, or suspend accrual.”

5.2 Illustration

We illustrate our method with a clinical trial of an experimental radio-sensitizing agent given in com-
bination with radiation to patients with brain cancer or metastases to the brain due to other cancers. A
known severe adverse side effect of this treatment is LO neurotoxicity, including cognitive problems, de-
mentia and neuropathy. Typically, patients receiving a radio-sensitizing agent which has not been studied
previously in humans will be followed for at least 3 months to assess these LO toxicities.

To illustrate implementation of our method, we consider a case exploring 6 dose levels where doses
1–4 are safe but severe LO neurotoxicity occurs with this agent at dose levels 5 and 6, first appearing
roughly 5–6 weeks from the start of therapy. A reasonable approach for the agent and disease described
above would be to design a trial with start at dose level 2, using 3 patients per cohort, a maximum sample
size of 36 patients, toxicity window t∗ = 90 days, π∗ = 0.30 , ε = 0.05, ξ = 0.30, and ξ = 0.90.
Assuming that patients arrive in approximately 6-day intervals (4 per month), an example of how such
a phase I trial would proceed is illustrated by the event chart in Figure 1, which shows results for the
first 18 patients. The event chart is complemented by Table 1, which provides numerical values of the
quantities ξk , P̃Nk(Dn), P̃Ek(Dn), and P̃Ek+1(Dn) used in the decision rules provided in Section 4.3.
Each of the interim times at which a decision is made based on one or more of these quantities is denoted
by a vertical arrow on the horizontal axis of Figure 1. The numerical values of these interim decision
times also are given in Table 1 along with the corresponding decision criteria values and the decisions
made. For example, on day 192 when the current dose is k = 3, P̃N3(Dn) = 0.999 which is larger than
(1−ε) = 0.95, and P̃E4(Dn) is set equal to 0 since there is no data at dose level 4. Therefore, according to
rule (6.2), we escalate and treat the next cohort at dose 4. In this illustration, the PRT method would have
suspended accrual for a total of 210 days but resulted in only 3 toxicities in 36 patients. Figure 1 illustrates
the general property of the algorithm that, early in the trial, it tends to suspend accrual for several weeks
after each cohort is accrued, although patients still are enrolled at a reasonable rate. Once data at higher
doses have been obtained, thereafter accrual tends to remain open. If desired, the method can be modified
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Fig. 1. Illustration of the PRT method for a hypothetical phase I trial. We assume that patients arrive in 6-day intervals.
The horizontal axis represents the days since first patient enrolled into the trial. Each horizontal line is the time course
of a patient. Numerical values preceding each time course represent the dose administered to that patient. Open
circles indicate times at which patients were fully evaluated without toxicity and x’s indicate toxicity times. Darker
gray denotes periods when accrual was open. Lighter gray denotes periods when accrual was suspended.

Table 1. Each “time of interim decision” given here corresponds to a time denoted by “↓” on the hori-
zontal (time) axis of Figure 1. For each time point, specific values of the quantities ξk , PNk(Dn), PEk(Dn),
and PEk+1(Dn) are given along with the rule in Section 4.3 triggered, and the decision to suspend accrual
(SA), escalate to a higher dose (Esc), stay at the current dose (Stay), or de-escalate (D-Esc). Quantities

not relevant to the decision made are denoted by NA

Current dose Time of interim decision (days from 1st patient enrollment)

18 67 90 138 192 312 324 342
2 2 2 3 3 5 4 4

ξk 0.170 0.150 0.020 0.122 0.015 0.997 0.041 0.032

ξk+1 NA NA 0.256 NA 0.260 NA 0.998 0.998

P̃Nk(Dn) 0.620 0.66 0.988 0.740 0.999 NA NA NA

P̃Ek(Dn) NA NA NA NA NA NA 0.001 0.001

P̃Ek+1(Dn) NA NA 0.0 NA 0.0 NA NA NA

Rule triggered 6.4 6.4 6.2 6.4 6.2 4.0 6.1 6.1

Decision SA SA Esc SA Esc D-Esc Stay Stay
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to suspend accrual for shorter amounts of time. For example, if we set ε = 0.20, accrual suspension can be
shortened early in the trial, but at the cost of an increased average number of toxicities. If the method had
been implemented with ε = 1 (i.e. disallowing any accrual suspension), we would have observed at least
6 toxicities but never suspended accrual, similar to what the TITE-CRM would have done. Alternatively,
if ε = 0 (i.e. suspend accrual until all patients in a cohort have been fully evaluated for toxicity, as would
be the case with a conventional CRM method), we would have suspended accrual for 1080 days and seen
3 toxicities. We believe that our approach provides a reasonable compromise between these two extremes,
with an average savings of 1 toxicity for every 70 days of accrual suspension when compared to the design
with no accrual suspension and a total of 870 fewer suspended days when compared to the conventional
design.

6. SIMULATIONS

6.1 Simulation design

To assess the average behavior of the PRT method, we performed a simulation study under a wide variety
of scenarios. We designed the study to address several key issues related to LO toxicities, including
the shape of the hazard of toxicity within the window [0, t∗] and the accrual rate, as well as the usual
considerations of how the true values of FT (t∗|dk) vary with dk . Since addressing these issues requires a
model sufficiently flexible to include a wide range of hazard functions, we simulated toxicity times from
a piecewise exponential distribution, described in detail in Appendix B of the supplementary material
available at Biostatistics online. In all scenarios studied, there were K = 6 doses, a maximum of N = 36
patients, the first patient was treated at the lowest dose level, and we assumed an accrual rate of 4 patients
per month. Since patients are evaluated for toxicity on a weekly or biweekly basis in many oncology
settings, for our simulations we chose biweekly assessments and assumed a t∗ = 3-month assessment
window, with target π∗ = 0.30. Based on our preliminary simulations, we used ξ = 0.30, ξ = 0.90, and
ε = 0.05. For the scenarios studied, Figure 2 illustrates the shapes of the hazard functions used in the
simulations, in particular the distinction between late- and early-onset toxicities. Scenarios 1–5 have LO
toxicities, while toxicities occur early in scenario 6. Since the state-space model is uniquely parameterized
by β0k and σβ , for the prior we set β0k = −14 and σβ = 28, which is a sufficiently large variance that the
data dominate the method’s decisions early in the trial.

In additional preliminary simulations, we assessed the MCMC algorithm’s convergence using stan-
dard diagnostics. Based on these results, we chose a burn-in of 1000 iterations with a chain of length
1000. Although the posterior sample size is constrained by the need to generate many replications in the
simulations, one may use larger posterior sample sizes when used in a clinical trial setting. We simulated
1000 trials for each scenario. The computer program was written using Visual Fortran, and the simulations
were carried out on an IBM compatible personal computer with dual 3.06-GHz math coprocessors and
1-GB memory. For each scenario, 1000 simulations were completed in approximately 1 h.

For the TITE-CRM, the model parameters are θθθ = ( p̂1, . . . , p̂K , α) with p̂α
k , the probability of

toxicity by time t∗ at dose level k, where α has exponential prior with mean 1 and each p̂k is fixed
with 0 < p̂1 < p̂2 < · · · < p̂K < 1. The TITE-CRM is implemented with πw(T o

i , t∗, d(i)) =
w(T o

i , t∗) p̂α
k(i), where {w(T o

i , t∗), i = 1, . . . , n} are patient-specific weights calculated using the adap-
tive sample-based weighting scheme given in Display (3) of Cheung and Chappell (2000). For the simu-
lations, we used ( p̂1, p̂2, . . . , p̂6) = (0.05, 0.10, 0.20, 0.30, 0.5, 0.70), with each successive dose chosen
to minimize | E(pα

k |θθθ, Dn) − π∗|. To ensure a fair comparison, we modified the TITE-CRM to stop
early for excessive toxicity since our method does this. The additional rule is to terminate the trial if
Pr( p̂α

1 >π∗|θθθ, Dn)> 0.95.
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Fig. 2. Hazard functions and cumulative toxicity probabilities of the piecewise exponential distribution used in the
simulations.

6.2 Simulation results

Table 2 summarizes the operating characteristics of the PRT method and TITE-CRM, including the se-
lection probability, average number of patients treated, average number of toxicities at each dose, average
total number of toxicities, and average overall trial duration. For all 6 scenarios, both methods had compa-
rable correct selection probabilities. While both the average numbers of toxicities and the average numbers
of patients treated at toxic doses were lower for the PRT method, the lengths of the trials using the PRT
method were typically longer due to the accrual suspension rule. These simulations show that the PRT
method has a trade-off between trial safety and trial duration. In addition, we varied the monthly accrual
rate from 1 to 6 under scenario 1 (Figure 3) and showed that the percentage of toxicities allowed by the
PRT method does not increase with accrual rate, while this is not the case for the TITE-CRM.

Table 3 summarizes a sensitivity analysis in the parameters ξ and ξ , under each of scenarios 1, 2,
and 3. In this table, elasticity measures the total number of patients “spent” at doses with probability of
toxicity more than 10% less than π∗. Based on these simulations, we see that setting ξ = 0.10 results

in relatively inelastic escalation while setting ξ = 0.85 results in low correct selection probability and
relatively high early stopping even when all doses are safe under scenario 1. These simulations suggest
setting ξ ∈ (0.20, 0.30) and ξ ∈ (0.90, 0.95).
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Table 2. Operating characteristics of the PRT and TITE-CRM designs

Scenario 1 (late onset) True Probability(T < 3 months|dk) None Total Duration

d1 d2 d3 d4 d5 d6

0.25 0.35 0.50 0.60 0.68 0.73

PRT
% Selected 41 43 4 0 0 0 12 — 1.5
No. of patients 13.1 15.2 4.4 0.5 0.0 0.0 33.2 —
No. of toxicities 3.3 5.3 2.2 0.3 0.0 0.0 11.1 —

TITE-CRM
% Selected 46 42 8 0 0 0 4 — 1.0
No. of patients 10.6 11.0 7.8 4.0 1.4 0.6 35.5 —
No. of toxicities 2.6 3.8 3.9 2.4 1.0 0.5 14.1 —

Scenario 2 (late onset) 0.03 0.05 0.10 0.30 0.50 0.60

PRT
% Selected 0 1 26 64 9 0 0 — 1.8
No. of patients 3.5 4.8 9.8 12.5 4.6 0.8 36.0 —
No. of toxicities 0.1 0.3 1.0 3.7 2.2 0.5 7.8 —

TITE-CRM
% Selected 0 0 12 70 19 0 0 — 1.0
No. of patients 3.0 3.2 4.5 11.2 9.4 4.7 36.0 —
No. of toxicities 0.1 0.2 0.4 3.4 4.7 2.8 11.6 —

Scenario 3 (late onset) 0.50 0.60 0.68 0.73 0.76 0.78

PRT
% Selected 11 0 0 0 0 0 89 — 0.8
No. of patients 13.0 5.1 0.5 0.0 0.0 0.0 18.6 —
No. of toxicities 5.6 2.6 0.3 0.0 0.0 0.0 8.6 —

TITE-CRM
% Selected 18 0 0 0 0 0 82 — 0.7
No. of patients 15.1 5.6 3.7 1.8 0.7 0.3 27.2 —
No. of toxicities 5.7 3.1 2.2 1.2 0.5 0.2 12.8 —

Scenario 4 (late onset) 0.01 0.02 0.03 0.05 0.50 0.60

PRT
% Selected 0 0 0 67 32 1 0 — 1.8
No. of patients 3.1 3.5 4.5 13.1 9.4 2.4 36.0 —
No. of toxicities 0.0 0.1 0.1 0.6 4.7 1.5 7.0 —

TITE-CRM
% Selected 0 0 1 45 54 0 0 — 1.0
No. of patients 3.0 3.0 3.1 5.9 13.1 7.8 36.0 —
No. of toxicities 0.0 0.1 0.1 0.3 6.6 4.7 11.8 —

Continued . . .
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Table 2. Continued

Scenario 5 (late onset) True Probability(T < 3 months|dk) None Total Duration

d1 d2 d3 d4 d5 d6

0.05 0.06 0.08 0.11 0.19 0.34

PRT
Selected 0 0 5 16 49 30 0 — 1.8
Patients 3.5 4.8 6.2 7.5 7.8 6.2 36.0 —
Toxicities 0.2 0.3 0.5 0.8 1.5 2.1 5.4 —

TITE-CRM
Selected 0 0 0 13 58 29 0 — 1.0
Patients 3.1 3.3 3.9 7.1 9.9 8.6 36.0 —
Toxicities 0.1 0.2 0.3 0.8 1.9 2.8 6.2 —

Scenario 6 (early onset) 0.250 0.350 0.500 0.600 0.680 0.730

PRT
% Selected 44 38 3 0 0 0 14 — 1.0
No. of patients 16.6 12.6 2.7 0.3 0.0 32.1 —
No. of toxicities 4.4 4.7 1.6 0.2 0.0 10.9 —

TITE-CRM
% Selected 40 41 6 1 0 0 12 — 0.9
No. of patients 17.0 11.4 3.8 0.6 0.0 0.0 32.8 —
No. of toxicities 4.2 4.0 1.9 0.3 0.0 0.0 10.5 —

Fig. 3. Comparison of toxicities observed using the PRT method and TITE-CRM under scenario 1 with varying
accrual rates. Each toxicity percentage is labeled by the mean trial duration in years.

We also simulated various other scenarios which are presented in Appendix C of the supplementary
material available at Biostatistics online. These simulations show the method is robust to nonconstant
accrual rate, performs worse if instead of suspending accrual patients are assigned to lower doses, and
performs worse if the isotonic regression transformation is not used.
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Table 3. Sensitivity analyses of the PRT method to ξ and ξ , under scenarios 1, 2, and 3 (S1, S2, S3).
% Correct decision denotes the percentage of times the method selects a dose with true toxicity probability
0.25 � Pr(T < 3) � 0.35, within 0.05 of the target π∗ = 0.30 under scenarios 1 and 2, and the early
stopping probability under scenario 3. Elasticity denotes the number of patients assigned to doses with

true toxicity probability �0.20

ξ = 0.10 ξ = 0.20 ξ = 0.30

S1 S2 S3 S1 S2 S3 S1 S2 S3

ξ = 0.95
% Correct decision 91.8 63.7 75.1 89.1 70.9 75.8 87.3 69.0 78.9
Total no. of toxicities 11.4 5.1 11.9 11.7 7.3 11.2 11.9 8.1 10.4
Elasticity NA 25.4 NA NA 19.2 NA NA 16.6 NA

ξ = 0.90
Correct decision 87.4 56.0 86.7 86.0 64.3 87.4 84.0 63.7 88.7
Total no. of toxicities 10.6 4.9 9.0 10.9 6.7 8.6 11.1 7.8 8.6
Elasticity NA 27.0 NA NA 21.0 NA NA 18.5 NA

ξ = 0.85
% Correct decision 82.2 52.6 91.6 81.8 60.3 94.2 81.8 59.0 89.6
Total no. of toxicities 10.0 5.3 8.1 10.0 7.2 7.3 10.4 7.6 7.7
Elasticity NA 26.2 NA NA 19.8 NA NA 19.0 NA

6.3 Prior specification

Sensitivity to prior specification is an important concern. In most trials, the only prior information the
principal investigator has available is that the probability of toxicity increases with dose, and it is rea-
sonable to assume that the starting dose is relatively safe with low levels of toxicity. Apart from these
considerations, physicians are generally most concerned that the method should reliably select the MTD
or stop the trial early when all doses are too toxic. Before using the method, it is important to understand
how changes in the hyperparameters β0k and σ 2

β can affect the performance of the method. Increasing
β0k results in higher E{π̃(βββ, dk)} (for k = 1, . . . , K ), the expected prior probabilities of toxicity at
each dose, while higher values of σ 2

β increase the uncertainty in the prior distributions of the π̃(βββ, dk)’s.

Preliminary simulations (not provided) showed that setting σ 2
β between 20 and 40 works well for our

method.
Given these provisions, a first step is to calculate E{π̃(βββ, dk)}. For our prior, these values were (0.03,

0.18, 0.33, 0.45, 0.53, 0.60) for doses 1 through 6, respectively. As with our parameter settings, we rec-
ommend that E{π̃(βββ, d1)} be less than the target π∗. Model parameters may be calibrated by starting with
an initial guess of the appropriate prior hyperparameters and then running a small number of simulations
(50–100 repetitions) for scenarios in which the lowest dose is too toxic, or has toxicity close to the target,
and also a case in which the target toxicity rate is achieved at a relatively high dose. These simulations
allow one to assess the effect of the prior on the method’s ability to stop appropriately when all doses are
too toxic, not when the first dose is close to the target, and escalate appropriately without sticking too
rigidly to doses that are not too toxic. In practice, it takes only a few iterations of this process to find a
parameterization that works well. As a final step, a few parameter settings with reasonable operating char-
acteristics should be presented to the principal investigators to allow them to choose a prior with which
they are comfortable.
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One also may carry out an analysis of the method’s sensitivity to prior variability by extending the
state-space model so that β j,k |β j,k−1 ∼ N (β j,k−1, qσ 2

β ) for k = 2, . . . , K and 0 < q < 1. Since

var(β j,k) = ∑K
k=1 σ 2

β qk−1, with this prior q may be used as a tuning parameter to adjust the rate at
which the variability of the risk of toxicity increases with dose.

7. DISCUSSION

We have proposed a new method for controlling the risk of LO toxicities in a phase I clinical trial by using
the PRT at prospective doses to decide whether to temporarily suspend accrual. Our main conclusions are
that, if patient accrual is rapid and toxicities occur at the targeted rate in the toxicity evaluation window
[0, t∗] but are likely to occur late in this interval, then, on average, (i) the PRT method gives a trial with
fewer toxicities but a longer duration compared to the TITE-CRM, (ii) the percentage of toxicities allowed
by the PRT method does not increase with accrual rate, while this is not the case for the TITE-CRM, and
(iii) in some cases (scenarios 2 and 4 of our study), the TITE-CRM is much more likely than the PRT
method to select a final dose having excessive toxicity probability. The additional safety provided by
the PRT method compared to the TITE-CRM, in terms of percent reduction in number of toxicities and
reduced probability of selecting a final dose that is excessively toxic, is greatest in the most dangerous
cases, namely when the probability of toxicity increases sharply between dose levels, when toxicities
occur late in the assessment interval, or when accrual is rapid. In the presence of LO toxicities, the lower
toxicity rate of the PRT method is due to the fact that it treats fewer patients at excessively toxic doses,
which may be attributed to the rules for delaying accrual based on predictive probabilities. In contrast,
when toxicities occur early (scenario 5), the two methods perform nearly identically.

Our model and decision rules are complex. A less complex model or method, possibly under a fre-
quentist approach, would be desirable, provided that it maintains the advantages of our method. Imple-
mentation of a frequentist version of our method, that is, with accrual suspension, stopping for excessive
toxicity, and not escalating to excessively toxic doses, although theoretically possible, would pose certain
challenges. One possible likelihood-based approach would employ a penalized time-to-event model to
avoid singularities in estimation of model parameters, especially early in the trial before toxicities have
been observed. Two possible models that might work in this context are a version of the TITE-CRM model
in which the prior is treated as a penalty and a Cox model with Firth’s penalty (Heinze and Schemper,
2001). For both models, dose finding could be based on maximum penalized likelihood estimation. In
any case, estimation must be constrained to ensure that the probability of toxicity increases with dose.
Moreover, the exact sampling distribution of the parameter estimates would be needed, possibly obtained
using bootstrap methods, since asymptotic approximations would likely be inaccurate for use in decision
making. A difficult challenge in developing such a method would be constructing reasonable frequentist
rules for escalating, de-escalating, staying at the same dose, or suspending accrual.

There are some limitations to our method. For example, although in many trial settings toxicity is
measured at discrete time points, there are other situations in which toxicity is evaluated continuously.
Clearly, for such settings, using our method would be suboptimal due to loss of information. In this
context, a model with nonconstant hazard such as a Weibull distribution may be better suited than our
method. The main considerations in developing such a method would be model parameterization and
prior calibration. Another limitation is that our method is not suited for choosing a best dose from a
continuum since it was developed with the goal of selecting a best dose from a finite set of doses.

To address this problem, one could assume a model for the probability of toxicity as a smooth mono-
tone function of dose and estimate dose using standard inverse dose–response methods. If LO toxic-
ity is not a concern, a version of the TITE-CRM based on a logistic regression model, rather than the
1-parameter model given in (1.1), could be used for this purpose.
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