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Abstract

A general utility-based testing methodology for design and conduct of randomized compar-
ative clinical trials with categorical outcomes is presented. Numerical utilities of all elementary
events are elicited to quantify their desirabilities. These numerical values are used to map the
categorical outcome probability vector of each treatment to a mean utility, which is used as
a one-dimensional criterion for constructing comparative tests. Bayesian tests are presented,
including fixed sample and group sequential procedures, assuming Dirichlet-multinomial models
for the priors and likelihoods. Guidelines are provided for establishing priors, eliciting utilities,
and specifying hypotheses. Efficient posterior computation is discussed, and algorithms are
provided for jointly calibrating test cutoffs and sample size to control overall type I error and
achieve specified power. Asymptotic approximations for the power curve are used to initialize
the algorithms. The methodology is applied to re-design a completed trial that compared two
chemotherapy regimens for chronic lymphocytic leukemia, in which an ordinal efficacy outcome
was dichotomized and toxicity was ignored to construct the trial’s design. The Bayesian tests
also are illustrated by several types of categorical outcomes arising in common clinical settings.
Freely available computer software for implementation is provided.

Keywords: Bayesian Methods; Dirichlet-multinomial; Multiple Outcomes; Oncology; Randomized
Comparative Trials; Utility Elicitation.
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1 Introduction

Medical outcomes often are complex and multivariate. Physicians routinely select each patient’s
treatment based on consideration of risk-benefit tradeoffs between desirable and undesirable clinical
outcomes. Conventional designs for randomized comparative trials (RCTs) seldom reflect this
aspect of medical practice. Rather, most designs in clinical trial protocols are based on one outcome,
identified as “primary,” with all other outcomes given the nominal status of “secondary.” This
dichotomy often is codified in institutionally required protocol formats. For example, in cancer
studies of chemotherapies for solid tumors, the primary outcome may be objective response, defined
as 30% or greater tumor shrinkage compared to baseline evaluation, while regimen-related adverse
events, called “toxicities,” are listed as secondary outcomes Eisenhauer et al. (2009). This approach
is convenient because it facilitates sample size and power computations in terms of the probabilities
of a one-dimensional outcome in the treatment arms. It does not reflect the way that practicing
physicians actually think and behave, however. Alternative design approaches include defining
a composite outcome that treats efficacy and safety events equally Sankoh et al. (2003); Pocock
(1997), using a test statistic that is a weighted average Freedman et al. (1996), or basing a test on a
quadratic form, such as Hotelling’s T-squared statistic, with weights estimated to reflect variability
Hotelling (1931). These approaches ignore the relative clinical importance of beneficial and adverse
outcomes, however.

Safety is never a secondary concern in a clinical trial. In actual trial conduct, if interim data from
a randomized clinical trial (RCT) show that one treatment has a much higher adverse event rate
than the other, or that both arms are unacceptably toxic in a trial comparing two experimental
agents, the physicians conducting the trial will terminate accrual whether the protocol’s design
includes a formal safety stopping rule or not. Such a decision shows that, due to their unwillingness
to continue the trial, the physicians have decided that one treatment is inferior to the other in
terms of safety. While stopping a trial due to an unacceptably high adverse event rate is an ethical
decision, it also is part of the general consideration of how much risk of an adverse outcome is
acceptable as a tradeoff for a given level of therapeutic benefit.

This paper is motivated by the consideration that, because clinical trial conduct must accom-
modate medical practice, a trial design should account formally for risk-benefit tradeoffs between
all clinically relevant outcomes. That is, in actual trial design and conduct, scientific and ethical
considerations should not be separated. We provide a practical framework for including such trade-
offs explicitly in the treatment comparison underlying the design of two-arm RCTs. We focus on
settings where the clinically relevant events are categorical, and thus the outcome Y is a realization
from a finite set of elementary patient outcomes. The clinically relevant events, and the result-
ing set of elementary outcomes, are determined in collaboration with the physician(s) planning
the trial. The proposed framework accommodates most discrete outcome structures that occur in
practice, including univariate ordinal, bivariate binary indicators of efficacy and safety, bivariate
ordinal variables, and such bivariate variables with death as a separate event.

1.1 A Trial in Chronic Lymphocytic Leukemia

We illustrate the proposed methodology by applying it to re-design a RCT reported by Flinn et al.
(2007) that compared two chemotherapy regimens for untreated chronic lymphocytic leukemia
(CLL), FC = fludarabine plus cyclophosphamide versus F = fludarabine alone. Patients in this
study were treated for up to six 28-day cycles. Following the recommended guidelines at the time
of the trial Cheson et al. (1996), patients were monitored for clinical response, with categories CR
= Complete response, PR = Partial response, SD = Stable disease, and PD = Progressive disease.
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Patients also were monitored for several adverse events (AEs), including infections, with severity
grades {None, Minor, Major, Fatal}, hematological toxicities with severity grades 0-5, and non-
hematological toxicities graded 0-5, according to the National Cancer Institute (NCI) Common
Terminology Criteria for Adverse Events (CTCAE). Detailed definitions of the levels of clinical
response and the AEs are given in Cheson et al. (1996).

In the CLL trial design, CR was designated as the primary outcome, with all other outcomes
designated as secondary. Thus, the comparison of FC to F was based on the probabilities of CR
in the two arms. For this comparison, since clinical response was not evaluable for patients that
died during the observation period, these patients were counted as non-responders. This approach
is sensible since it counts death during response evaluation as a treatment failure. In contrast, the
non-fatal AEs were not included in the study design, despite the fact that the safety of FC was an
important concern. Because the above approach to constructing the design for this trial is quite
typical, it serves as a useful illustration of our proposed methodology.

To apply our methodology to design this trial would have required working with the physicians
planning the trial to determine the clinically relevant outcomes and elicit their utilities. Thus, for
the sake of illustration, we first assume that the physicians decided that the relevant outcomes
were clinical response, specifically the ordinal variable with possible values {CR, PR, SD, PD},
and also the worst AE with levels {Minimal, Moderate, Severe, Fatal}. Here, “minimal” is defined
as no AE requiring medical intervention, “moderate” as a non-life-threatening AE requiring med-
ical intervention without hospitalization, “severe” as an imminently life-threatening AE requiring
hospitalization, and “fatal” as an AE resulting in death. Using these definitions, a moderate AE
includes grade 3 hematologic and non-hematologic toxicities and minor infections, and a severe AE
includes grade 4 hematologic and non-hematologic toxicities and major infections. To define the
values of Y, we denote the 12 = 4×3 non-fatal elementary patient outcomes by the pairs (r, s),
for r = {CR,PR, SD,PD} and s = {Min,Mod, Sev}, with the 13th elementary event D = a
fatal AE. Thus, for example, (PR,Mod) is the elementary outcome that the patient had a partial
response and a moderate worst AE level. Our design requires numerical utilities for the 13 ele-
mentary outcomes, which in practice would be elicited from the physicians. Since we cannot do
this retrospectively, we specify numerical utilities (Table 1) for the CLL trial’s 13 outcomes that
may be considered a reasonable representation of what would be obtained in practice. In Section
6, once our methodology has been established, we will compare our proposed design to a design
that compares the two regimens based on the probabilities of CR. Because the numerical utilities
are a key component our methodology, we also include an analysis of the sensitivity of the final
inferences to alternative utilities (Table 6).

1.2 Mean Utilities

For the general development, we index the elementary outcomes by k = 1, . . . ,K, and denote their
numerical utilities by Uk = U(Y = k), with U = (U1, U2, · · · , UK)′. These are elicited from the
physician(s) planning the trial. For some specific examples, we will replace these integer indices with
more descriptive indexing schemes. For convenience, we assign the most desirable outcome utility
100, the least desirable outcome utility 0, with all other outcomes assigned utilities between these
two extremes. The domain [0, 100] is chosen to facilitate communication with the physician(s),
although in general any compact domain will work. In Section 2, we provide practical strategies
for utility elicitation, and illustrate them for the case of bivariate-ordinal outcomes that include
the possibility of death.

For treatments j = A and B, we denote the patient response probabilities θj,k = Pr(Y =
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k | trt = j), with θj = (θj,1, θj,2, · · · , θj,K)′, and θ = (θA,θB). The mean utility of treatment j is

U (θj) = U ′θj =
K∑
k=1

Uk θj,k. (1)

Our testing methodology relies on the mean utilities U (θA) and U (θB) as one-dimensional criteria
to compare overall treatment effects, since U (θA) > U (θB) corresponds to the mean clinical desir-
ability of patient outcome being higher for A than B, and conversely. The Bayesian comparative
test relies on the posterior of δU ,A−B(θ) = U(θA)− U(θB).

As a first illustration, suppose that the clinically relevant outcome is trinary where a treatment
may result in response (R), failure (F ), or neither response nor failure (N) so, temporarily sup-
pressing j, for a single treatment θ = (θR, θN , θF ). In particular, R and F are not complementary
events. Since UR = 100 and UF = 0 in this case, only UN ∈ (0, 100) need be elicited, and the mean
utility is U(θ) = θR×100 + θN ×UN , which increases with UN for any θ. If, for example, UN = 60
and the true outcome probabilities are (θR, θN , θF )′ = (0.30, 0.60, 0.10)′ then the mean utility
is U(θ) = U ′θ = 0.30×100 + 0.60×60 + 0.10×0 = 66. Next, consider a trial to compare two clot
dissolving agents, A and B, for rapid treatment of stroke, with the outcome evaluated within 24
hours from the start of treatment. Response, R, is defined as the clot that caused the stroke being
dissolved without a brain hemorrhage or death, failure, F, is defined as a brain hemorrhage or
death, and N is the third event that no brain hemorrhage occurred, the patient did not die, but the
clot was not dissolved. Suppose that the true outcome probabilities are θA = (θA,R, θA,N , θA,F )′

= (0.50, 0.30, 0.20)′ and θB = (θB,R, θB,N , θB,F )′ = (0.60, 0.30, 0.10)′. Since B has both a
larger response probability and a smaller failure probability compared to A, it is clear that B is
clinically superior to A. The mean utilities reflect this, since U(θB) = 60 + θB,NUN and U(θA) =
50 + θB,NUN , so U(θB)− U(θA) = 10 for all UN ∈ (0, 100).

If a third agent, C, has θC = (0.60, 0.10, 0.30)′, then C has a larger response probability than A
but also a larger failure probability, so it is not obvious which of the treatments A or C is superior.
If UN = 50, then U(θA) = 65 compared to U(θB) = 75, so B is superior to A for this utility. The
large difference δU ,B−A(θ) = U(θB) - U(θA) = 75 - 65 = 10 is due to the fact that B increases
θA,R by 0.10 and also decreases θA,F by 0.10. This might be described as a “win-win” scenario
for B versus A. Comparing C to A, since U(θC) = U(θA) = 65, that is, A and C have identical
mean utilities with δU ,C−B(θ) = 0, they are equally desirable despite the fact that θA 6= θC .
This is because the increases in both the response and failure probabilities with C compared to
A, specifically θC,R − θA,R = 0.60 - 0.50 = 0.10 and θC,F − θA,F = 0.30 - 0.20 = 0.10, cancel each
other out if UN = 50. If UN = 20 rather than 50, however, then δU ,C−A(θ) = 62 − 56 = 6, so for
this utility C is slightly superior to A since the increase in failure probability with C versus A is
considered a favorable tradeoff for the increase in response probability.

1.3 Utility-Based Design Framework

Given this general categorical outcome and utility structure, since θA and θB are not known they
must be estimated, and data for doing this must be obtained. The statistical problem thus is
how to design and conduct a clinical trial to obtain the necessary data. This requires specification
of decision rules, a trial design, and a practical method for establishing a consensus among the
investigators for the numerical values in U , since the methodology requires one utility and one
utility only. This provides a transparent, formal structure that reflects what physicians actually
do in practice, rather than constructing a trial design that focuses on a single primary outcome
and then, formally or informally, also monitors secondary outcomes. For the Bayesian version, we
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call the methodology categorical outcome Bayesian utility-based (CAT-BUB) tests. To implement
the proposed design framework, in cooperation with the physician(s) planning the trial, one should
take the following steps:

(a) Specify the clinically relevant outcomes and resulting set of elementary patient responses.

(b) Elicit numerical utilities.

(c) Specify design parameters, including targeted alternative treatment differences that will be
identified with a specified power, type I error, timing of interim analyses for a group sequential
test, and test cut-offs.

(d) Implement the design algorithm, developed below, to determine maximum and interim sample
sizes and operating characteristics.

(e) Repeat steps (a-d) until a design with satisfactory operating characteristics is identified.

1.4 Outline

In Section 2 we provide practical guidelines for utility elicitation, illustrated for bivariate categorical
outcomes. The Dirichlet-multinomial model is reviewed in Section 3. In Section 4 we present the
Bayesian utility-based comparative testing procedure. For the Bayesian test, we provide a scaled-
beta approximation for the posterior distribution of the mean utility to facilitate calculation of the
test statistic and derive frequentist properties, including an approximate sample size calculation
that we use to initialize our computational algorithms. In Section 5, we discuss designs for a single
test or a group sequential procedure, and provide guidelines for eliciting targeted alternatives,
and computational algorithms to derive a CAT-BUB design having given overall type I error and
power. In Section 6, we illustrate how to implement the CAT-BUB procedure in several settings
and report simulation results, including comparison of the CAT-BUB design for the CLL trial to
the design based on a binary indicator of CR. We conclude with a brief discussion in Section 7.
The Web Supplement provides additional illustrations for several categorical outcome structures
often encountered in practice. To facilitate application, freely available user-friendly software is
provided (see Supplementary Materials).

2 Utility Elicitation

Since a utility function is required for implementing the proposed methods, we provide practical
utility elicitation guidelines. In our experience, specifying U is an intuitive process for the physi-
cian(s) that they find to be quite natural. An extension of the previously discussed trinary outcome
case with elementary events {R,N,F} is an ordinal Y with four or more categories. For example, in
oncology trials it is very common to characterize solid tumor response from the start of chemother-
apy as an ordinal variable. Following the RECIST tumor evaluation guidelines Eisenhauer et al.
(2009), the outcome may be defined using tumor size relative to baseline, with a 100% decrease a
complete response (CR), a 30% to 99% decrease a partial response (PR), a 19% increase to 19%
decrease stable disease (SD), and a 20% or greater increase progressive disease (PD). In this and
similar contexts, the statistician can simply provide each physician a spreadsheet with the out-
comes ordered by desirability and, given U(CR) = 100 and U(PD) = 0, the physicians can specify
numerical utilities for the intermediate outcomes. When there are multiple physicians planning the
trial, one approach to establish a consensus utility is the “Delphi” method Dalkey (1969); Brook
et al. (1986), wherein one asks each physician independently to specify their numerical utilities,
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then shows the mean of all elicited utilities to all physicians and allows them to adjust their utilities
if desired on that basis, and if needed iterates the process until a consensus is reached.

Another common categorical structure is a bivariate binary (efficacy, toxicity) outcome. An
example from chemotherapy for acute myelogenous leukemia (AML) defines efficacy as complete
remission, C, in terms of recovery of circulating white cells, platelets, and blastic (undifferentiated)
cells to normal levels, and toxicity, T , as severe (NCI grade 3 or 4) non-hematologic toxicity, both
scored within 42 days. Denoting the respective complementary events by C and T , the statistician
can again simply provide each physician with a spreadsheet that contains a 2×2 utility table with
U(C, T ) = 100, U(C, T ) = 0, so only the two intermediate utilities U(C, T ) and U(C, T ) must be
specified.

A refinement of the bivariate binary (efficacy, toxicity) outcomes is to define these events for
patients who are alive, and include death as a fifth event. This is appropriate for treatment of
rapidly fatal diseases, such as AML, where death during therapy has a non-trivial probability.
In the AML example, the four elementary events determined by C and T are defined only for
patients alive at day 42, and the fifth event is D = [death within 42 days]. This structure may
motivate the question of whether assigning a finite utility to death is ethically appropriate, since
the utilities will be the basis for medical decision making. If the value UD = −∞ were assigned,
however, the mean utility is −∞ whenever the probability of D is non-zero, so in practice a single
death would terminate the trial. Thus, when death has a non-trivial probability, if one wishes to
actually do utility-based decision making then death must be assigned a finite numerical utility
having magnitude comparable to the numerical utilities of the other possible patient outcomes.
We recommend that the physician(s) first specify U(C, T ), i.e., the worst outcome for a patient
who is alive, relative to U(C, T ) = 100, i.e., the best outcome, and U(D) = 0, and then specify
U(T ,C) and U(C, T ) relative to the U(C, T ) = 100 and the selected U(C, T ). To implement this,
the statistician may ask the physician(s) to fill in the following two tables sequentially,

(C, T ) (C, T ) D

100 0

C C

T 100

T U(C, T )

where U(C, T ) in the right-hand table takes the specified value from the left-hand table. This
sequence decomposes utility elicitation into two intuitive steps. It also provides a partial motivation
for establishing utilities for our re-design of the CLL trial.

To establish or elicit utilities for the CLL trial outcomes, and in general for bivariate ordinal
outcomes with death as a separate event, we propose the following two alternative strategies,
one direct and the other indirect. The direct elicitation strategy simply requires the statistician
to provide the physician(s) with a utility table and suggest a specification order. For the CLL
outcomes, using the direct strategy one would provide the physician(s) the table below and tell
them to fill the empty cells in alphabetical order.

CR PR SD PD

Min 100 C C B Death

Mod C D D C 0

Sev B C C A

The basic idea is to first specify the utility of the worst non-fatal outcome, then the two most
extreme (efficacy, toxicity) trade-off outcomes, then the intermediate outcomes where either the
best efficacy or worst toxicity event occurs, and finally the remaining outcomes in the interior
portion of the table.
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In contrast, the indirect strategy decomposes elicitation into a series of intuitive, mutually
independent steps that induce numerical utilities. For the CLL outcome, we would implement the
indirect strategy by having the physician(s) specify the following sub-tables,

(CR,Min) (PD,Sev) D

100 100×ν 0

CR PD

Min 100 100× ζ1

Sev 100× ζ2 0

(CR,Min) (PR,Min) (SD,Min) (PD,Min)

100 100× φ1,1 100× φ1,2 0

(CR,Sev) (PR,Sev) (SD,Sev) (PD,Sev)

100 100× φ2,1 100× φ2,2 0

(CR,Min) (CR,Mod) (CR,Sev)

100 100× ξ1 0

(PD,Min) (PD,Mod) (PD,Sev)

100 100× ξ2 0

In the above sub-tables, we denote the proportions that will be specified by the physician with
Greek symbols, e.g. ν and ζ1, which we use to determine the induced numerical utilities later.
When the statistician provides the sub-tables to the physician(s), these entries will be left blank for
the physician(s) to fill in, with the instruction that, for example, ν is the proportion quantifying the
desirability of (PD,Sev) relative to (CR,Min), and so on. The sub-tables are mutually independent,
i.e., the values in a particular sub-table are not restricted by, or dependent on the values from any
other sub-table. Therefore, the sub-tables can be specified in whatever order the physicians prefer,
and each can be revisited and adjusted during the specification process until the physicians are
satisfied.

Based on the previous sub-tables, the induced numerical utilities can be determined sequentially
as follows,

U(CR,Min) = 100, U(D) = 0, U(PD,Sev) = 100ν,

U(PD,Min) = ζ1[U(CR,Min)− U(PD,Sev)] + U(PD,Sev),

U(CR,Sev) = ζ2[U(CR,Min)− U(PD,Sev)] + U(PD,Sev),

U(PR,Min) = φ1,1[U(CR,Min)− U(PD,Min)] + U(PD,Min),

U(SD,Min) = φ1,2[U(CR,Min)− U(PD,Min)] + U(PD,Min),

U(PR, Sev) = φ2,1[U(CR,Sev)− U(PD,Sev)] + U(PD,Sev),

U(SD, Sev) = φ2,2[U(CR,Sev)− U(PD,Sev)] + U(PD,Sev),

U(CR,Mod) = ξ1[U(CR,Min)− U(CR,Sev)] + U(CR,Sev),

U(PD,Mod) = ξ2[U(PR,Min)− U(PR, Sev)] + U(PR, Sev),

U(PR,Mod) =

[
ξ2(φ1,1 − φ2,1) + φ2,1

1− (ξ1 − ξ2)(φ1,1 − φ2,1)

]
[U(CR,Mod)− U(PD,Mod)] + U(PD,Mod), and

U(SD,Mod) =

[
ξ2(φ1,2 − φ2,2) + φ2,2

1− (ξ1 − ξ2)(φ1,2 − φ2,2)

]
[U(CR,Mod)− U(PD,Mod)] + U(PD,Mod).

To aid elicitation, we recommend that the statistician provide the physician(s) with a spreadsheet
that contains the relevant sub-tables and a numerical utility table that automatically populates
based on the physician’s specified values. As an example, we provide such a spreadsheet for the
CLL outcome (see Supplementary Materials). In the Web Appendix A, we provide a generalization
and detailed derivation of the induced numerical utilities for the indirect elicitation strategy with
a K × L bivariate ordinal outcome plus death.
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Table 1: Numerical utilities for the CLL trial’s 13 elementary outcomes.
Level of Worst Clinical Response
Adverse Event CR PR SD PD

Minimal 100 84 35 19 Death
Moderate 93 77 29 14 0
Severe 28 24 14 10

The proposed indirect strategy facilitates utility elicitation in several important ways. First,
when an individual physician is selecting numerical utilities, they can adjust the values in any sub-
table and the resulting numerical utilities will repopulate automatically while preserving the partial
ordering constraints. In contrast, for the direct strategy, adjusting a single numerical utility may
require changing several other values, perhaps even the entire table, which may become impractical
if the elementary patient outcome set is large. Second, when the physicians convene to obtain
consensus utilities, each sub-table can be addressed independently in turn. Therefore, should a
disagreement arise, the physicians can focus on a specific low-dimensional sub-table rather than
the entire numerical utility table. Third, the indirect strategy requires the physician(s) to specify
fewer values than the direct strategy, which can be a great practical advantage when K and L are
both moderately large, say ≥ 4. An advantage of the indirect approach for the statistician is that
the sub-tables provide low-dimensional bases for conducting a utility sensitivity assessment, which
we discuss below in Section 6.

For our re-design of the CLL trial, suppose that the physician(s) specified sub-table entries
corresponding to the following parameters: ν = 0.10, ζ1 = 0.10, ζ2 = 0.20, φ1,1 = φ2,1 = 0.80,
φ1,2 = φ2,2 = 0.20, ξ1 = 0.90, and ξ2 = 0.40. The numerical utilities induced by these values
are given in Table 1. Our choice to specify ν = 0.10 in this illustration reflects the belief that
(PD,Sev) is very undesirable relative to (CR,Min). Specifying ζ1 = 0.10 and ζ2 = 0.20 reflects
that (CR,Sev) is more desirable than (PD,Min), yet both responses have desirabilities more
similar to (PD,Sev) than (CR,Min), i.e., both are undesirable outcomes with utilities < 30.
Specifying φ1,1 = φ2,1 = 0.80 and φ1,2 = φ2,2 = 0.20 reflects the belief that PR and SD have
desirabilities similar to CR and PD, respectively, and moreover their desirabilities relative to
CR and PD are invariant across the AE severity levels. In contrast, specifying ξ1 = 0.90 and
ξ2 = 0.40 reflects the belief that a moderate AE is more tolerable given an efficacious clinical
response. Conditional on CR, a moderate AE has similar desirability compared to a minimal AE,
whereas, conditional on PD, it has desirability more similar to a severe AE than to a minimal
AE. In summary, these choices reflect the general belief that (CR,Min), (CR,Mod), (PR,Min),
and (PR,Mod) are all desirable patient outcomes with numerical utilities > 75, whereas all other
patient outcomes are relatively undesirable with numerical utilities ≤ 35.

3 Dirichlet-Multinomial Model

Let Xj = (Xj,1 Xj,2 · · · Xj,K)′ denote the count vector of patient outcomes, with probabilities

θj = (θj,1 · · · θj,K)′ and nj =
∑K

k=1Xj,k the number of observations for treatment j = A,B. For
the Bayesian tests presented in Section 4, we will assume the Dirichlet-multinomial model

Xj |θj ∼ Mult(nj , θj), (Likelihood)

θj ∼ Dir(n∗jθ
∗
j ), (Prior)

(2)
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where θ∗j = (θ∗j,1 · · · θ∗j,K)′ is the prior mean of θj and n∗j is the effective sample size (ESS) of the
prior (cf. Morita, et al., 2008, 2010). This is well known for the important special case K = 2,
which is the beta distribution, where the ESS of f(θj |n∗j ,θ∗j ) is n∗j = n∗j (θ

∗
j,1 + θ∗j,2). The model

(2) has a simple conjugate structure, with each θj |Xj ∼ Dir(Xj + n∗jθ
∗
j ), a posteriori, which

greatly facilitates posterior computation. The Dirichlet-multinomial model is quite general, and
accommodates any categorical outcome structure. The multinomial pdf is

f(Xj |θj) = Γ (nj + 1)

K∏
k=1

θ
Xj,k

j,k

Γ (Xj,k + 1)
, (3)

and the Dirichlet pdf is

f(θj |n∗jθ∗j ) = Γ
(
n∗j
) K∏
k=1

θ
n∗
j θ

∗
j,k−1

j,k

Γ
(
n∗jθ
∗
j,k

) , (4)

where Γ(·) is the gamma function. The Dirichlet has E(θj |n∗j ,θ∗j ) = θ∗j , V ar(θj,k|n∗j ,θ∗j ) = θ∗j,k(1−
θ∗j,k)/(n

∗
j + 1), and Cov(θj,k, θj,`|n∗j ,θ∗j ) = θ∗j,kθ

∗
j,`/(n

∗
j + 1), for k 6= ` = 1, . . . ,K. The posterior has

a conjugate form with pdf

p(θj |Xj , n
∗
j ,θ
∗
j ) = Γ

(
nj + n∗j

) K∏
k=1

θ
Xj,k+n∗

j θ
∗
j,k−1

j,k

Γ
(
Xj,k + n∗jθ

∗
j,k

) , (5)

and posterior mean E(θj |Xj , n
∗
j ,θ
∗
j ) = (Xj + n∗jθ

∗
j )/(nj + n∗j ).

For prior specification, the two priors for θj should match, i.e. n∗A = n∗B and θ∗A = θ∗B, so
that any statistical comparisons are unbiased, and the priors should not include an inappropriate
amount of information, which is quantified by ESS. For this reason, we drop the treatment subscript
on these hyperparameters in the sequel. As a default prior, i.e., in the absence of prior information,
we will assume n∗ = 1 and θ∗k = K−1 so that each ESS = 1 and all elementary events are equally
likely a priori. This default choice allows the accruing data to quickly overwhelm the prior while
shrinking response probabilities away from 0 and 1 in small samples. When historical information is
available, n∗ and θ∗ can be specified to reflect that experience and its relevance to the investigation.
Alternatively, for a more robust use of historical information, power priors Ibrahim and Chen
(2000) or commensurate prior methods Murray et al. (2015) could be applied. Because the use of
historical data to construct informative priors for Bayesian models underlying RCTs is a complex
and controversial issue, however, we will not use such priors here, and assume n∗ = 1 in the sequel.

4 Comparative Tests

Treatment differences are characterized by the mean utility difference, and we test the hypotheses

H0 : δU ,A−B(θ) = 0 versus H1 : δU ,A−B(θ) 6= 0. (6)

If desired, a one-sided version of (6) may be appropriate. For example, to test whether A is superior
to B, the hypotheses would be H0 : δU ,A−B(θ) ≤ 0 versus H1 : δU ,A−B(θ) > 0. In what follows,
we will focus on two-sided hypotheses, since the one-sided case is a straightforward modification.

Let X = (XA, XB) denote the observed elementary outcome count data. We conduct a
CAT-BUB comparative test using the following symmetric decision criteria. If

TA>B(X;n∗,θ∗) = Pr{δU ,A−B(θ) > 0|X, n∗,θ∗} > pcut (7)
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then conclude superiority of A over B, denoted by A > B. If

TB>A(X;n∗,θ∗) = Pr{δU ,A−B(θ) < 0|X, n∗,θ∗} > pcut, (8)

then conclude superiority of B over A, denoted by B > A. We select the probability cutoff, pcut, to
ensure an approximate level α test for all θ = (θA, θB) with δU ,A−B(θ) = 0. We discuss technical
details for doing this below.

4.1 Efficient Posterior Computation

While the posterior distributions of U(θA) and U(θB) are not analytically tractable, because mean
utilities are linear combinations of Dirichlet random vectors there are several feasible numerical
approximations. With a Monte Carlo (MC) approach, one would generate M samples from the
posterior mean utility (PMU) distribution for treatment j, i.e. p

{
U(θj)|Xj , n

∗,θ∗
}

, by drawing

θ
(m)
j ∼ Dir(Xj +n∗θ∗), since p(θj |Xj , n

∗,θ∗) ≡ Dir(Xj +n∗θ∗) (see (5)), and defining U(θ
(m)
j ) =

U ′θ
(m)
j , for m = 1, . . . ,M and j = A,B (see Carlin and Louis (2009), Chapter 3.3). These samples

provide estimates of TA>B(X;n∗,θ∗) and TB>A(X;n∗,θ∗) in (7) and (8). For data analysis, any
desired level of accuracy can be obtained by increasing M, since it only needs to be conducted once.
In contrast, the MC approach is computationally expensive for constructing a clinical trial design,
since it requires iterative simulations to assess frequentist operating characteristics in a variety of
scenarios, and thus a very large number of MC calculations.

For the CAT-BUB design, a more computationally efficient method for estimating the posterior
quantities in (7) and (8) is a parametric approximation to the PMU distribution based on a scaled-
beta distribution. To implement this approach, we exploit the following well known forms of the
posterior moments of a Dirichlet:

E[θj |Xj , n
∗,θ∗] = θ̃j =

Xj + n∗θ∗

(nj + n∗)
,

V ar[θj,k|Xj , n
∗,θ∗] =

θ̃j,k (1− θ̃j,k)
(nj + n∗ + 1)

=
(Xj,k + n∗θ∗k)[(nj + n∗)− (Xj,k + n∗θ∗k)]

(nj + n∗)2(nj + n∗ + 1)
, and

Cov[θj,k, θj,`|Xj , n
∗,θ∗] =

− θ̃j,k θ̃j,`
(nj + n∗ + 1)

=
−(Xj,k + n∗θ∗k)(Xj,` + n∗θ∗` )

(nj + n∗)2(nj + n∗ + 1)
, for k 6= `.

(9)

It follows that

µ̃j = E
[
U(θj)|Xj , n

∗,θ∗
]

= U ′θ̃j , and σ̃2
j = V ar

[
U(θj)|Xj , n

∗,θ∗
]

= U ′Σ̃jU , (10)

where Σ̃j = V ar[θj |Xj , n
∗,θ∗] with entries defined in (9). Using (10), we match the support, mean,

and variance of each PMU distribution with those of a scaled-beta distribution. Let Beta(λ, γ)
denote a beta distribution with mean µ = λ/(λ+ γ) and variance σ2 = µ(1− µ)/(λ+ γ + 1). We
approximate p

{
U(θj)|Xj , n

∗,θ∗
}

with 100×Beta(λ̃j , γ̃j), where

λ̃j = µ̃j

[
µ̃j(1− µ̃j)

σ̃2
j

− 1

]
, γ̃j = (1− µ̃j)

[
µ̃j(1− µ̃j)

σ̃2
j

− 1

]
, (11)

and the mean µ̃j and variance σ̃2
j are defined in (10). When K = 2 the PMU distribution is

precisely this scaled-beta distribution. We provide the derivation for (11) in Web Appendix B.
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Using this approximation, the posterior decision criterion is

TA>B(X;n∗,θ∗) ≈
1∫

0

[1−B(x|λ̃A, γ̃A)]b(x|λ̃B, γ̃B)dx, (12)

where B(x|λ, γ) and b(x|λ, γ) denote the cdf and pdf of a Beta(λ, γ) distribution. The approxima-
tion for TB>A(X;n∗,θ∗) follows by symmetry. We use adaptive quadrature via the integrate()

function in R to evaluate (12) efficiently Piessens et al. (1983). In Web Appendix B, we confirm
the validity of (12) by comparing it to the usual MC approach using simulation under a variety of
settings. The scaled-beta approximation is 1,000 times faster than the usual MC approximation
with M = 100,000, and it works well even with very small sample sizes, such as nA = nB = 10.
We will use the scaled-beta approximation for the remainder of the paper, and recommend its use
in practice.

4.2 Type I Error, Power, and Sample Size

We derive an expression for the approximate power function of the CAT-BUB procedure based
on (7) and (8), and use this result to show control of type I error and to obtain a sample size
formula. We first apply the Bayesian central limit theorem, and use the resulting posterior asymp-
totic normality to obtain tractable expressions for TA>B(X;n∗,θ∗) and TB>A(X;n∗,θ∗). We will
show that the resulting approximate test statistics are tractable functions of the data, X. We
then take the frequentist perspective, treating θ = (θA, θB) as a fixed quantity, and apply the
classical central limit theorem to derive the asymptotic sampling distributions of TA>B(X;n∗,θ∗)
and TB>A(X;n∗,θ∗), and an approximate power function.

Since Xj is multinomial with parameter θj , the MLE is θ̂j = Xj/nj and the estimated Fischer

information is njΣ̂
−1
j , where Σ̂j has k-th diagonal entry θ̂j,k(1− θ̂j,k) and (k, `)-th off-diagonal entry

−θ̂j,kθ̂j,`, k, ` = 1, . . . ,K, j = A,B. Applying the Bayesian central limit theorem (see Gelman et al.
(2014), Chapter 4)

θj |Xj , n
∗,θ∗ ∼̇ NK(θ̂j , n

−1
j Σ̂j), j = A,B.

Since XA and XB are independent, U ′(θA − θB)|X, n∗,θ∗ ∼̇ N (δ̂U ,A−B, σ̂
2
+,n), where δ̂U ,A−B =

U ′
(
θ̂A − θ̂B

)
and σ̂2

+,n = U ′
(
Σ̂A/nA + Σ̂B/nB

)
U . It follows that

TA>B(X;n∗,θ∗) ≈ Φ

(
δ̂U ,A−B
σ̂+,n

)
and TB>A(X;n∗,θ∗) ≈ Φ

(
−
δ̂U ,A−B
σ̂+,n

)
, (13)

where Φ(·) denotes the standard normal cdf. We use the notation “≈” to mean that an approxi-
mation can be made arbitrarily accurate for sufficiently large sample size.

To derive an approximate power function, we treat the posterior quantities in (13) as functions of
the data X given a fixed θ, and derive asymptotic approximations for their sampling distributions.
First, the exact power function is the probability of rejecting the null for a fixed θ, i.e.

ψ(θ) = Pr {TA>B(X;n∗,θ∗) > pcut |θ}+ Pr {TB>A(X;n∗,θ∗) > pcut |θ} . (14)

Applying the classical central limit theorem, (δ̂U ,A−B − δU ,A−B(θ))/σ̂+,n ∼̇ N (0, 1), so plugging
(13) into (14) gives the approximate power function

ψ(θ)approx = Φ

[(
δU ,A−B(θ)

σ+,n(θ)

)
− Φ−1(pcut)

]
+ Φ

[
−
(
δU ,A−B(θ)

σ+,n(θ)

)
− Φ−1(pcut)

]
, (15)
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where σ+,n(θ)2 = U ′ (ΣA(θ)/nA + ΣB(θ)/nB)U . is a function of θ.
The type I error is sup{ψ(θ) : δU ,A−B(θ) = 0}, and since ψ(θ)approx = 2(1− pcut) for all θ with

δU ,A−B(θ) = 0, using pcut = 1−α/2 provides an asymptotic level α test. To derive an approximate
sample size formula, we set pcut = 1 − α/2 and define n = nA = nB. If desired, one could instead
define n = nA and nB = η×nA, where η controls the randomization ratio. For a given fixed target
alternative θ(Alt), e.g., the hypothesized outcome probabilities, we equate ψ(θ(Alt))approx = 1 − β
and solve for n, which gives approximate sample size

nf

(
θ(Alt), α, β

)
=

[
Φ−1(1− β) + Φ−1(1− α/2)

]2
σ2

+(θ(Alt))

δ2
U ,A−B(θ(Alt))

. (16)

We discuss elicitation of θ(Alt) in Section 5.

5 Designing a CAT-BUB Trial

In this section, we derive design parameters that control overall type I error at level α and provide
1-β power for targeted alternatives, i.e., the set of treatment effects that we want to identify with
the specified power. For this computation, we distinguish between fixed sample designs with one
comparative test at the end of the trial, and group sequential designs with up to S comparative
analyses over the course of the trial, allowing early termination with rejection of the null at each
interim analysis. We first present guidelines for eliciting targeted alternatives, then discuss fixed
sample CAT-BUB designs, followed by group sequential CAT-BUB designs. For each design setting,
we provide a computational algorithm for deriving the probability cut-offs and sample size, given
α, β and the targeted alternatives.

5.1 Eliciting Targeted Alternatives

Consider a fixed sample CAT-BUB test with type I error α for all θ for which δU ,A−B(θ) = 0,
and power 1 − β for a set of fixed targeted alternatives with |δU ,A−B(θ)| > 0. The approximate
power function in (15) shows that selecting pcut to control type I error for one fixed null response

probability vector, say θ(Null) =
(
θ

(Null)
A , θ

(Null)
B

)
with δ

(Null)
U ,A−B = 0, will control type I error for all

fixed θ with δU ,A−B(θ) = 0. In contrast, the power varies with both the targeted utility difference
and the fixed θ from which this difference arises, via σ+,n(θ). Therefore, targeted alternatives must

be elicited in the θ domain. We denote a fixed target by θ(Alt) =
(
θ

(Alt)
A , θ

(Alt)
B

)
and its utility

difference by
∣∣∣δ(Alt)

U ,A−B

∣∣∣ > 0.

Since it may not be intuitively obvious how to specify θ(Alt), we provide the following guidelines,
which require a discussion between the statistician and the physicians. For simplicity, we will treat
A as the null or standard treatment, although the algorithm works if A and B are both experimental
and considered to be symmetric. The statistician begins by eliciting an expected probability vector

corresponding to historical experience with standard therapy, say θ
(Alt)
A , which may be based on

the physician(s)’ experience or analysis of historical data. Given θ
(Alt)
A , the statistician asks the

physician(s) to specify one or more alternative probability vectors, θ
(Alt,1)
B , · · · ,θ(Alt,m)

B , that are

considered equally desirable improvements over θ
(Alt)
A . In practice, m should be reasonably small,

in the range 1 ≤ m ≤ K. Each elicited alternative θ
(Alt,r)
B gives standardized utility difference

s(Alt,r) = δ
(Alt,r)
U ,B−A/σ

(Alt,r)
+ , where δ

(Alt,r)
U ,B−A and σ

(Alt,r)
+ are evaluated at θ(Alt,r) =

(
θ

(Alt)
A , θ

(Alt,r)
B

)
12



for r = 1, . . . ,m. For the sample size calculation in (16), one then selects the targeted alternative

θ
(Alt)
B giving smallest s(Alt,r), formally

θ(Alt) =
{(
θ

(Alt)
A , θ

(Alt,r∗)
B

)
: s(Alt,r∗) = min{s(Alt,1), . . . , s(Alt,m)}

}
. (17)

This choice is conservative since it ensures the test will achieve the desired power for all elicited
θ(Alt,r).

In practice, if this computation gives a sample size that is not feasible, then the physician(s)
should be asked to re-consider their set of specified alternatives. This is not unlikely, since it may
not be intuitively obvious, when specifying one or more fixed target probability vectors, how they
translate into a required sample size. To help guide the physician(s) in this process, one should

show them the numerical values of δ
(Alt,r)
U ,B−A, s

(Alt,r), and θ
(Alt,r)
B , for r = 1, · · · ,m, possibly as a

table with m rows and three columns to facilitate comparison and interpretation. Since smaller

values of s(Alt,r) and δ
(Alt,r)
U ,B−A require a larger sample size to detect the corresponding θ

(Alt,r)
B , this

provides a quantitative index of the relative difficulty of detecting each target, and it also identifies

the targeted alternative θ
(Alt,r∗)
B having the smallest s(Alt,r) that produced the sample size. If a

modified set of targets is specified, the sample size may be recomputed, with this process iterated
if desired. This may be considered a multidimensional analog of a conventional power and sample
size computation in terms of a one-dimensional parameter. If desired, the CAT-BUB test’s power
function computed over a set of (θA, θB) values also may be examined.

Recall the trinary outcome example where U = (UR, UN , UF )′ = (100, 60, 0)′. Given stan-

dard vector θ
(Alt)
A = (0.30, 0.50, 0.20)′, suppose that the three equally desirable targets θ

(Alt,1)
B =

(0.40, 0.50, 0.10)′, θ
(Alt,2)
B = (0.50, 0.35, 0.15)′, and θ

(Alt,3)
B = (0.35, 0.60, 0.05)′ are elicited. Then

s(Alt,1) = 10/45.8 = 0.218, s(Alt,2) = 11/49.2 = 0.224, and s(Alt,3) = 11/42.6 = 0.258, so we would

take θ(Alt) =
(
θ

(Alt)
A , θ

(Alt,1)
B

)
. If the standardized utility differences, s(Alt,r), differ substantially,

then the physician(s) may instead select the a priori most likely alternative, perhaps sacrificing

power for some alternatives as a trade-off for a smaller sample size. If the utility differences, δ
(Alt,r)
U ,B−A,

differ substantially, then the physician(s) may wish to reconsider the choices of equally desirable
targets, or possibly may decide to modify some entries of the numerical utility vector U .

5.2 Computational Algorithm for Fixed Sample CAT-BUB Design

Given α, β and the targeted alternative θ(Alt) defined in (17), we jointly select a sample size and
cutoff pcut for a fixed sample CAT-BUB design using the following algorithm:

Step 0. Set n̂ = nf (θ(Alt), α, β), where nf (·) is defined by (16).

Step 1. Generate G0 null datasets as follows. For g0 = 1, . . . , G0,

(i) generate X
(g0)
j ∼Mult

(
n̂, θ

(Alt)
A

)
for j = A,B.

(ii) store X(Null,g0) =
(
X

(g0)
A , X

(g0)
B

)
.

(iii) calculate and store
T (Null,g0) = max

{
TA>B

(
X(Null,g0);n∗,θ∗

)
, TB>A

(
X(Null,g0);n∗,θ∗

)}
.

Step 2. Set p̂cut to the empirical (1− α)%-tile of
{
T (Null,1), · · · , T (Null,G0)

}
.

Step 3. Generate G1 alternative datasets as follows. For g1 = 1, . . . , G1,

(i) generate X
(g1)
j ∼Mult

(
n̂, θ

(Alt)
j

)
for j = A,B.
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(ii) store X(Alt,g1) =
(
X

(g1)
A , X

(g1)
B

)
.

(iii) If δ
(Alt)
U ,A−B > 0, calculate and store T (Alt,g1) = TA>B

(
X(Alt,g1);n∗,θ∗

)
.

Otherwise, calculate and store T (Alt,g1) = TB>A
(
X(Alt,g1);n∗,θ∗

)
.

Step 4. Set β̂ = G−1
1

G1∑
g1=1

[
T (Alt,g1) ≤ p̂cut

]
, where [E] = 1 if E is true, and 0 otherwise.

Step 5. If β̂ ∈ [β − ε, β + ε], stop and select n = n̂ and pcut = p̂cut.

Otherwise, update n̂ = n̂
(

Φ−1(1−β)+Φ−1(p̂cut)

Φ−1(1−β̂)+Φ−1(p̂cut)

)2
and return to Step 1.

In practice, n̂ is rounded to its nearest integer value and p̂cut is rounded to its nearest larger
thousandth. We use default values ε = 0.005, G0 = 50, 000 and G1 = 25, 000. Since choosing G0

and G1 is non-intuitive, detailed guidelines are given in Web Appendix C. Briefly, these default
values allow us to estimate pcut accurately to three digits, and be certain that the power for θ(Alt)

at the selected n is within 2× ε = 0.01 of 1−β. The sample size adjustment in step 5 is motivated
by (16), and allows n̂ to be increased or decreased by a magnitude proportional to the current
discrepancy between the estimated and desired power.

5.3 Computational Algorithm for Group Sequential CAT-BUB Design

In typical practice, RCTs require group sequential tests Jennison and Turnbull (2000). Here, we
discuss implementation of the CAT-BUB test in this context, denoting the sample sizes where an
analysis occurs by ns, s = 1, . . . , S. We take use the α-spending approach proposed by Slud and
Wei (1982) and extended by Lan and DeMets (1983), with an α-spending function f(ns;α, ρ, nS)
= α(ns/nS)ρ suggested by Kim and DeMets (1987). The design parameter ρ ≥ 0 controls the
α-spending rate, with larger values spending less α at early looks. This approach is appealing in
practice because the actual analysis schedule need not follow the planned schedule. At the first
interim look with n1 of the planned nS samples, we calibrate the probability threshold, pcut,1, to
spend f(n1;α, ρ, nS) of the overall type I error. Similarly, at s-th interim look, we calibrate pcut,s
to spend f(ns;α, ρ, nS) - f(ns−1;α, ρ, nS) of the overall type I error. So if the trial reaches a final
analysis at nS samples, the overall type I error is exactly α.

To determine a maximum sample size, nS , for a group sequential CAT-BUB design with up to
S tests, power 1−β for the elicited alternative θ(Alt), we specify a complete analysis schedule using
the proportions of nS , denoted by ts, s = 1, . . . , S. We determine nS using the following algorithm:

Step 0. Set n̂S = nf (θ(Alt), α, β), where nf (·) is defined by (16), and n̂s = ts × n̂S , for s =
1, . . . , S − 1.

Step 1. Generate G0 null sequential datasets as follows. For g0 = 1, . . . , G0,

(i) generate X
(g0)
j,s ∼Mult

(
n̂s, θ

(Alt)
A

)
for j = A,B and s = 1, . . . , S.

(ii) store X
(Null,g0)
s,+ =

(
X

(g0)
A,s,+, X

(g0)
B,s,+

)
, where X

(g0)
j,s,+ =

s∑
m=1

X
(g0)
j,m

for j = A,B and s = 1, . . . , S.
(iii) calculate and store, for s = 1, . . . , S,

T
(Null,g0)
s = max

{
TA>B

(
X

(Null,g0)
s,+ ;n∗,θ∗

)
, TB>A

(
X

(Null,g0)
s,+ ;n∗,θ∗

)}
.

Step 2. Calculate p̂cut,1, . . . , p̂cut,S as follows.

(i) Set p̂cut,1 to the empirical {1− f(n1;α, ρ, nS)}%-tile of
{
T

(Null,1)
1 , . . . , T

(Null,G0)
1

}
.

14



(ii) Set p̂cut,s to the empirical [{1− f(ns;α, ρ, nS)}/{1− f(ns−1;α, ρ, nS)}]%-tile of{
T

(Null,g0)
s : T

(Null,g0)
1 ≤ p̂cut,1, · · · , T (Null,g0)

s−1 ≤ p̂cut,s−1, g0 = 1, . . . , G0

}
for s = 2, . . . , S.

Step 3. Generate G1 alternative sequential datasets as follows. For g1 = 1, . . . , G1,

(i) generate X
(g1)
j,s ∼Mult

(
n̂s, θ

(Alt)
j

)
for j = A,B and s = 1, . . . , S.

(ii) store X
(Alt,g1)
s,+ =

(
X

(g1)
A,s,+, X

(g1)
B,s,+

)
, where X

(g1)
j,s,+ =

s∑
m=1

X
(g1)
j,m for j = A,B and

s = 1, . . . , S.

(iii) If δ
(Alt)
U ,A−B > 0, calculate and store T

(Alt,g1)
s = TA>B

(
X

(Alt,g1)
s,+ ;n∗,θ∗

)
, for s =

1, . . . , S.

Otherwise, calculate and store T
(Alt,g1)
s = TB>A

(
X

(Alt,g1)
s,+ ;n∗,θ∗

)
, for s =

1, . . . , S.

Step 4. Set β̂ = G−1
1

G1∑
g1=1

[
T

(Alt,g1)
1 ≤ p̂cut,1, · · · , T (Alt,g1)

S ≤ p̂cut,S

]
, where [E] = 1, if E is true,

and 0, otherwise.

Step 5. If β̂ ∈ [β − ε, β + ε], stop and select nS = n̂S .

Otherwise, update n̂S = n̂S

(
Φ−1(1−β)+Φ−1(p̂cut,S)

Φ−1(1−β̂)+Φ−1(p̂cut,S)

)2
, n̂s = ts × n̂S for s = 1, . . . , S − 1, and

return to Step 1.

We use the same default values as the fixed sample algorithm, that is ε = 0.005, G0 = 50, 000 and
G1 = 25, 000. Using the planned analysis schedule, we can assess the operating characteristics at a
variety of alternatives. The actual analysis schedule may differ from the planned schedule, so the
realized power may differ from 1−β; however, Jennison and Turnbull (2000) show that the realized
power is quite robust to deviations from the planned analysis schedule. During an actual trial, we
can follow steps 1–2 to re-estimate pcut,s for the actual ns being used, given the previous interim
analysis sample sizes n1, . . . , ns−1 and their corresponding pcut,1, . . . , pcut,s−1 values.

6 Illustrations

In this section, we illustrate CAT-BUB tests and report results of various simulation studies com-
paring both fixed sample and group sequential CAT-BUB designs with beta-binomial designs. We
investigate the proposed procedure in the contexts of a trinary outcome, a bivariate-binary out-
come, and the CLL trial, which actually had a bivariate ordinal outcome including death. We also
report the results of utility sensitivity analyses.

6.1 Trinary Outcomes

6.1.1 Fixed Sample Tests

Returning to the example involving clot dissolving agents for rapid treatment of stroke with a trinary
outcome and utility U = (100, 50, 0)′, we investigate the frequentist operating characteristics of
the proposed CAT-BUB approach for a variety of fixed response probability vectors. We consider a
CAT-BUB test with type I error α = 0.05, and power 1−β = 0.80 for targeted alternative θ(Alt) =(
θ

(Alt)
A , θ

(Alt)
B

)
= ((0.50, 0.30, 0.20)′, (0.60, 0.30, 0.10)′) with δ

(Alt)
U ,B−A = 10. In this context, the

fixed sample CAT-BUB design algorithm, given in Section 5.2, gives pcut = 0.976 and n = 208.
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Table 2: Power of a fixed sample CAT-BUB design for trinary outcome {R,N,F} versus a beta-
binomial design based on “success” probability πj = θj,R, for j = A,B. In all scenarios, θA =
(0.50, 0.30, 0.20)′ and nA = nB = 208. Results in the first row are based on 50,000 simulations
(std.err. ≈0.001), whereas all other results are based on 25,000 simulations (std.err. <0.0032).

Scenario CAT-BUB Design Beta-Bin Design
θB δU ,B−A(θ) B > A A > B B > A A > B

1.0: (0.50, 0.30, 0.20) 0 0.025 0.025 0.025 0.025

2.1: (0.60, 0.00, 0.40) -5 0.001 0.206 0.552 0.000
2.2: (0.60, 0.10, 0.30) 0 0.024 0.025
2.3: (0.60, 0.20, 0.20) 5 0.246 0.001
2.4: (0.60, 0.30, 0.10) 10 0.798 0.000
2.5: (0.60, 0.40, 0.00) 15 0.997 0.000

3.1: (0.65, 0.05, 0.30) 2.5 0.088 0.006 0.877 0.000
3.2: (0.65, 0.15, 0.20) 7.5 0.485 0.000
3.3: (0.65, 0.25, 0.10) 12.5 0.936 0.000
3.4: (0.65, 0.35, 0.00) 17.5 1.000 0.000

4.1: (0.70, 0.00, 0.30) 5 0.217 0.001 0.989 0.000
4.2: (0.70, 0.10, 0.20) 10 0.720 0.000
4.3: (0.70, 0.20, 0.10) 15 0.987 0.000
4.4: (0.70, 0.30, 0.00) 20 1.000 0.000

We compare the CAT-BUB approach for trinary outcomes {R,N,F} with a Bayesian design
that follows the more common approach of combining the events N and F so that outcome may be
considered binary, specifically R = “success,” versus N ∪F = “failure,” and compares therapies in
terms of the probabilities πj = Pr(Y = R | j) for j=A,B. For this design, we assume a Bayesian beta-
binomial model with common beta priors πj | qj ∼ Beta(qj,1 = 0.50, qj,2 = 0.50) for j = A,B, which
has ESS = 1. The posterior is Beta(Sj + 0.50, nj −Sj + 0.50), where Sj is the number of successes
out of nj in arm j. Denoting W = (SA, nA−SA, SB, nB−SB) and q = (qA,1, qA,2, qB,1, qB,2), we
use the test statistic SA>B(W ; q) = Pr(πA > πB|W , q), which we calculate similarly to (12). This
is the special case of the Dirichlet-multinomial model and CAT-BUB test with K = 2, since the
mean utility for treatment j is 100× πj , so the utility is superfluous. To ensure comparability, for
the binary test we also use n = 208, and set pcut = 0.975 to obtain a 0.05-level test when πA = πB.

Operating characteristics of the fixed sample CAT-BUB and beta-binomial tests are given in
Table 2. Scenario 1.0 is the null case used to calibrate pcut for each design, so the type I error for
both designs is 0.05, with equal probabilities for concluding A > B or B > A. Scenario 2.4 is the
alternative used to select a sample size that provides power 0.80, so the estimated power is in the
interval [0.80− ε, 0.80 + ε]. For Scenarios 2.1-2.5, πB is fixed at 0.60 versus πA = 0.50, so the beta-
binomial design always has power 0.55, despite obvious differences between these four scenarios.
For example, in Scenarios 2.1 and 2.2, the beta-binomial design fails by concluding B > A 55%
of the time even though A is clinically superior or equal to B in terms of δU ,B−A(θ). In contrast,
the CAT-BUB test distinguishes between these scenarios, correctly concluding A > B 21% of the
time in Scenario 2.1 and controlling type I error at 0.05 in Scenario 2.2. Scenarios 2.3-2.5 exhibit
various tradeoffs that favor B over A in an increasing manner in terms of δU ,B−A(θ) = 5, 10, 15
and the CAT-BUB test reflects this with increasing power figures 0.246, 0.798, 0.997. In particular,
the CAT-BUB test has substantially more power than the beta-binomial test for the “win-win”
Scenarios 2.4 and 2.5. Scenarios 3.1-3.4 and 4.1-4.4 respectively fix the probability of response
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at 0.65 or 0.70, for which the beta-binomial test has 0.88 and 0.99 power figures. In contrast,
the power of the CAT-BUB test increases as the true utility difference δU ,B−A(θ) increases, and
equals or exceeds that of the beta-binomial design in “win-win” scenarios where the probability of
failure is also reduced (Scenarios 3.3-3.4 and 4.3-4.4). The failure of the beta-binomial design is
due to B providing an unfavorable trade-off between the probability of response and failure versus
A. Such tradeoffs cannot be identified by the naive binary outcome design, which is used very
commonly. The price of the CAT-BUB approach is potentially less power for “tradeoff” scenarios
when the treatment redistributes probability away from N to R and/or F (Scenarios 2.3, 3.2, 4.1
and 4.2). However, we feel that this price is well worth being able to distinguish between, for
example, Scenarios 2.1-2.5 in practice. Lastly, the CAT-BUB test has varying power over the set of
θ with the same utility difference. For example, Scenarios 2.3 and 4.1 have utility difference 5, yet
power figures 0.25 and 0.22, respectively. The CAT-BUB design’s power varies more substantially
with δU ,A−B(θ) than over the set of θ with the same utility difference.

6.1.2 Sensitivity to Elicited Utilities

The power of the CAT-BUB design at the targeted alternatives, and thus the required sample size,
depend on the particular elicited utilities. The sensitivity of the CAT-BUB test’s power to the
elicited utilities can be assessed by fixing the sample size and calculating the power for targeted
alternatives using other numerical utilities. Continuing with the example involving clot dissolving
agents, we fix n = 208, pcut = 0.976 and θA = (0.50, 0.30, 0.20)′, and calculate the CAT-BUB
test’s power for alternative Scenarios 2.1, 2.2, 2.4 and 2.5 in Table 2 over the entire domain UN ∈
[0, 100]. We calculate power using (15), which is quite accurate when n = 208.

Figure 1 plots the overall power as a function of UN at each alternative; that is, we do not
explicitly distinguish between the decisions A > B and B > A. Scenarios 2.1 and 2.2 are trade-off
scenarios, wherein B relative to A has a higher probability of R and F , and lower probability of N ,
so δU ,A−B(θ) varies substantially with UN and the power is thus quite sensitive. This sensitivity is
a desirable property, because the numerical value of UN determines whether a particular trade-off
favors B > A or A < B. For Scenarios 2.1 and 2.2, although not explicitly depicted, the CAT-
BUB test has power primarily for A > B (B > A) to the left (right) of the numerical utility with
minimum power. In Scenario 2.4, the probability of N is equal for both A and B, so δU ,B−A =
10 for all UN , and the sensitivity merely reflects the relationship between UN and σ+. In win-win
Scenario 2.5, power increases with UN because δU ,B−A(θ) increases with UN . Lastly, each scenario
in Figure 1 fixes θR,B = 0.60 and θR,A = 0.50, and for UN = 0 the CAT-BUB test is based exclusively
on 100 × θR, so it is identical to the usual beta-binomial test, providing 54% power. Therefore,
even in settings where selecting a particular UN may be challenging, the proposed CAT-BUB test
obviously is more sensible than the usual beta-binomial test, which implicitly sets UN = 0.

It is useful to consider sensitivity of inferences to the elicited utilities. We illustrate how this may
be done for bivariate binary outcomes. Figure 2 depicts the posterior probability for B > A, defined
by (8), for the AML bivariate binary example from Section 1, given three different realizations of
XB while fixingXA = (XA,[C,T ], XA,[C,T ], XA,[C,T ], XA,[C,T ])

′ = (15, 20, 25, 40)′ and enumerating

over (UC,T , UC,T ) ∈ [0, 100]2, i.e. all possible intermediate utilities. In Scenario 1, XB = (10, 40,
20, 30)′ and XA = (15, 20, 25, 40)′. For these data, inference is more sensitive to UC,T than
UC,T , because the two treatments appear to differ greatly for the probability of [C, T ] (40 versus

20 observations) and little for the probability of [C, T ] (20 versus 25 observations). The data in
Scenario 2 reflect a similar yet smaller treatment difference, and inference is less sensitive to the
utilities. In Scenario 3, the data suggest that B is a win-win relative to A in that B has both
higher marginal probability of C and lower marginal probability of T, and the CAT-BUB design’s
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Figure 1: Sensitivity to UN of the fixed sample CAT-BUB design’s power for various alternative
θBs, fixing n = 208, pcut = 0.976, and θA = (0.50, 0.30, 0.20)′. The thick dot denotes power for
the elicited utilities, i.e. UN = 50.
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Figure 2: Posterior probability of B > A while varying (UC,T , UC,T ) for three different realizations
of XB and XA = (XA,[C,T ], XA,[C,T ], XA,[C,T ], XA,[C,T ])

′ = (15, 20, 25, 40)′. The thick dot

denotes our inferential result at the elicited utilities, i.e. (UC,T = 80, UC,T = 40).

inference always supports the conclusion B > A. For these data, posterior evidence supporting
B > A becomes stronger as UC,T is increased.

6.1.3 Group Sequential Tests

To assess the operating characteristics of the group sequential tests, we continue with the trinary
versus binary example. We assume the analysis schedule has S = 3 equally spaced looks at t1
= 0.33, t2 = 0.66 and t3 = 1. We use the same targeted alternative as the fixed sample design
for calibration, and compare the operating characteristics of the group sequential versions of the
CAT-BUB design and beta-binomial design for Scenarios 1.0 and 2.1-2.5 used for the fixed sample
simulation. We applied the group sequential CAT-BUB design algorithm, given in Section 5.3, to
maintain α ≤ 0.05 with ρ = 3. This gave nS = 213, pcut,1 = 0.999, pcut,2 = 0.993 and pcut,3 =
0.978. Scenarios 1.0 and 2.4 were used to jointly calibrate the planned sample size and probability
thresholds to provide type I error of 0.05 and overall power of 0.80, respectively. For the beta-
binomial design, to maintain size 0.05 we used pcut,1 = 0.999, pcut,2 = 0.992 and pcut,3 = 0.979. We
used nS = 213 for both designs to ensure comparability.

The results of the group sequential simulations are reported in Table 3. For the null Scenario 1.0,
the operating characteristics of the CAT-BUB and beta-binomial designs are practically identical.
Both designs have an average sample size of 212 and overall type I error of 0.05. In contrast, for
Scenarios 2.1-2.5, the operating characteristics of the two designs differ dramatically. The beta-
binomial design does not distinguish between these scenarios because πB,R = 0.60 and πA,R = 0.50
for all 5 scenarios, whereas the CAT-BUB test distinguishes between them quite well. In Scenario
2.1, A is preferred over B due to an unfavorable tradeoff between R and F . The beta-binomial
design incorrectly selects B over A 54% of the time with an average sample size of 193, whereas the
CAT-BUB design correctly selects A over B 21% of the time with an average sample size of 208.
In Scenario 2.2, B and A are equivalent due to the increase in response probability being canceled
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Table 3: Power figures of a group sequential CAT-BUB design for a trinary outcome {R.N, F}
versus a beta-binomial design based on “success” probabilities πj = θj,R, for j = A,B. In each
scenario, θA = (0.50, 0.30, 0.20)′, n1 = 71, n2 = 142, n3 = 213, and ρ = 3.

Scenario Specification CAT-BUB Design Beta-Binomial Design
θB δU ,B−A(θ) Ave SS B > A A > B Ave SS B > A A > B

1.0: (0.50, 0.30, 0.20) 0 211.9 0.025 0.025 211.8 0.026 0.024

2.1: (0.60, 0.00, 0.40) -5 207.7 0.001 0.214 192.8 0.541 0.000
2.2: (0.60, 0.10, 0.30) 0 211.8 0.026 0.025
2.3: (0.60, 0.20, 0.20) 5 206.6 0.250 0.001
2.4: (0.60, 0.30, 0.10) 10 177.8 0.800 0.000
2.5: (0.60, 0.40, 0.00) 15 123.8 0.998 0.000

out by the increase in failure probability. Here, the CAT-BUB design controls type I error at level
0.05. Scenarios 2.3-5 have increasing magnitudes of the benefit for B over A, and the CAT-BUB
design has increasing power for concluding B > A. As the true benefit of B over A increases, the
average sample size of the CAT-BUB design decreases because the probability of early termination
increases. In the most favorable Scenario 2.5, the CAT-BUB design has power 0.998 and terminates
early nearly 95% of the time, with average sample size 124 that is 42% smaller than the planned
maximum sample size. In contrast, the beta-binomial design has 54% power and average sample
size 193 in this case, as in all Scenarios 2.1 - 2.5, essentially because it ignores the distinction
between N and F.

6.2 Redesigning the CLL Trial

Returning to the CLL trial, we illustrate how to implement the CAT-BUB design in this context.
We assume that the elicited numerical utilities are those in Table 1. Recall that, since we cannot
elicit utilities for this trial retrospectively, as explained in Section 1 the utilities in Table 1 are
specified to be a reasonable representation of what one actually would elicit in practice. We
compare the CAT-BUB design with a beta-binomial design based on an efficacy test, which we
denote by BB-EO. Like the actual trial, the BB-EO design defines efficacy using a binary indicator
for CR, where the comparative test was based on targeted alternative CR probability πCR,FC =
0.45 versus null πCR,F = 0.25 Flinn et al. (2007). We also compare the CAT-BUB design to an
alternative approach that is based on a hierarchical testing procedure. This alternative design first
compares the probabilities of efficacy (here, CR) as the primary endpoint and, if this test fails to
reject the null, then the procedure compares the probabilities of toxicity (here, severe or fatal AE)
in a second test. This design, which we denote by BB-ET, assumes independent beta-binomial
models for the two outcomes. Based on this hierarchical testing procedure, the BB-ET design
recommends a treatment if it is found to have either better efficacy or toxicity compared to the
other treatment.

Because the actual CLL trial outcome is bivariate ordinal plus death, to implement the CAT-
BUB design, a practical approach for eliciting the targeted alternative(s) is as follows. First, ask
the physicians to hypothesize the marginal probabilities of the AE levels, {Min, Mod, Sev, Fatal},
in each treatment group. Denote these probabilities by

θj,T = (θj,Min, θj,Mod, θj,Sev, θj,Fatal), where θj,Min + θj,Mod + θj,Sev + θj,Fatal = 1, j = F, FC.

Next, ask the physicians to hypothesize probabilities of the clinical response events, {CR, PR, SD,
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Table 4: Response probabilities for the scenarios considered in our CLL trial simulation study.
Toxicity probabilities correspond to {Min, Mod, Sev, Fatal}, and efficacy probabilities correspond
to {CR, PR, SD, PD}, given that the patient is alive.

Scenarios Abbreviation Response Probabilities

All NA θF,T = (0.67, 0.25, 0.05, 0.03)
1.0, 2.0, 3.0, 4.0 = θFC,T = (0.67, 0.25, 0.05, 0.03)
1.1, 2.1, 3.1, 4.1 > θFC,T = (0.44, 0.40, 0.10, 0.06)
1.2, 2.2, 3.2, 4.2 >> θFC,T = (0.26, 0.45, 0.20, 0.09)

All NA θF,E = (0.25, 0.35, 0.20, 0.20)
1.0, 1.1, 1.2 = θFC,E = (0.25, 0.35, 0.20, 0.20)
2.0, 2.1, 2.2 > θFC,E = (0.35, 0.35, 0.15, 0.15)
3.0, 3.1, 3.2 >> θFC,E = (0.45, 0.35, 0.10, 0.10)
4.0, 4.1, 4.2 >>> θFC,E = (0.60, 0.30, 0.05, 0.05)

PD}, conditional on being alive. Denote these conditional probabilities by

θj,E = (θj,CR, θj,PR, θj,SD, θj,PD), where θj,CR + θj,PR + θj,SD + θj,PD = 1, j = F, FC.

Assuming independence for simplicity, set θ
(Alt)
j,Fatal = θj,Fatal and θ

(Alt)
j,k,` = θj,kθj,` for j = F, FC,

k = {Min,Mod, Sev}, and ` = {CR,PR, SD,PD}. We assume that the targeted alternative
arises from θF,T = θFC,T = (0.67, 0.25, 0.05, 0.03), i.e., FC and F have equivalent toxicity, and
θF,E = (0.25, 0.35, 0.20, 0.20) versus θFC,E = (0.45, 0.35, 0.10, 0.10), i.e., FC compared to F has
higher efficacy. This alternative maintains similar marginal CR probabilities πCR,FC = 0.4365
versus πCR,F = 0.2425 specified for the actual trial design, and it results in a large mean utility

difference δ
(Alt)
U ,FC−F = 13.5 for the utilities given in Table 1. Specifying n∗ = 1 and θ∗ = θF for the

Dirichlet priors, a fixed sample CAT-BUB test requires slightly more patients than a beta-binomial
test to achieve 90% power, nF = nFC = 127 versus 120. To ensure comparability, we determine
the power figures for all three designs using the larger sample size 128. We compare the designs for
12 scenarios covering a wide range of different possibilities. The response probabilities for F and
FC in each scenario are reported in Table 4. These probabilities for F are fixed at the targeted
alternative values throughout, whereas the probabilities for FC vary with the combinations of
the ordinal efficacy and toxicity outcomes. For each outcome, we characterize these numerical
probability vector pairs nominally as being “equivalent” (=), or having “moderate” (>), “large”
(>>), or “very large” (>>>) differences.

The results of our simulation reported in Table 5 show that, in general, the CAT-BUB design is
sensitive to efficacy-toxicity tradeoffs characterized by the utilities, while the beta-binomial design
with an efficacy test (BB-EO) is not. In contrast, if there is low power for detecting an efficacy
difference between the two treatments, then the hierarchical beta-binomial design (BB-ET) is sen-
sitive to toxicity, otherwise it is not. Because the BB-ET design is based on two tests, rather than
one test like the BB-EO design, it requires a more stringent cut-off to control the type I error,
and thus has lower power compared to the BB-EO design for selecting the treatment with supe-
rior efficacy, which is FC in all the scenarios we considered. Scenario 1.0 is the null, i.e., θFC =
(θFC,E ,θFC,T ) ≡ (θF,E ,θF,T ) = θF , and the cut-off for all three designs was calibrated to control
type I error at the α = 0.05-level, where F and FC are selected with the same 0.025 probabilities.
In Scenarios 1.1 and 1.2, FC has equivalent efficacy with moderate and high toxicity, respectively,
and both the CAT-BUB design and the BB-ET design are increasingly likely to select F , whereas
the BB-EO design is unable to distinguish between these clinically very different scenarios since it
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Table 5: Power figures for the CLL trial based on the CAT-BUB design, the beta-binomial design
with an efficacy test only (BB-EO), and the hierarchical beta-binomial design with an efficacy
test followed by a toxicity test (BB-ET). Comparisons of θFC,E vs θF,E and θFC,T vs θF,T are
characterized as being “equivalent” (=), or having “moderate” (>), “large” (>>), or “very large”
(>>>) differences.

Scenario Probability of Final Conclusion
Beta-Binomial Designs

Efficacy Toxicity CAT-BUB Design Efficacy Only Efficacy then Toxicity
FC vs F FC vs F δU,FC−F FC > F F > FC FC > F F > FC FC > F F > FC

1.0: = = 0.0 0.025 0.025 0.026 0.024 0.024 0.025
1.1: = > -5.2 0.001 0.222 0.019 0.035 0.007 0.388
1.2: = >> -11.9 0.000 0.782 0.012 0.047 0.005 0.982

2.0: > = 6.8 0.352 0.000 0.402 0.000 0.289 0.010
2.1: > > 1.1 0.041 0.012 0.331 0.000 0.226 0.308
2.2: > >> -6.5 0.000 0.314 0.278 0.000 0.173 0.818

3.0: >> = 13.5 0.903 0.000 0.910 0.000 0.846 0.002
3.1: >> > 7.3 0.397 0.000 0.873 0.000 0.778 0.097
3.2: >> >> -1.1 0.041 0.015 0.816 0.000 0.716 0.281

4.0: >>> = 21.0 1.000 0.000 1.000 0.000 1.000 0.000
4.1: >>> > 14.2 0.917 0.000 1.000 0.000 0.999 0.001
4.2: >>> >> 5.0 0.201 0.001 0.999 0.000 0.997 0.003

ignores toxicity. The BB-ET design is more likely to correctly select F than the CAT-BUB design,
0.39 versus 0.22 and 0.98 versus 0.78, respectively. In Scenario 2.0, FC has a moderate efficacy
advantage with equivalent toxicity, and the BB-EO, CAT-BUB, and BB-ET designs select FC
with probabilities 0.40, 0.35, and 0.29, respectively. In Scenario 2.1, FC has a moderate efficacy
advantage and toxicity disadvantage, where this tradeoff that slightly favors FC for the assumed
utilities. The CAT-BUB design is unlikely to select either treatment, whereas the BB-EO design
selects FC with probability 0.33, and the BB-ET design selects FC and F with probabilities 0.23
and 0.31, respectively. In Scenario 2.2, because the toxicity disadvantage for FC increases, the
tradeoff moderately favors F for the assumed utilities. The CAT-BUB design selects F with higher
probability 0.31 and does not select FC, whereas the BB-EO design selects FC with probability
0.28 and does not select F , and the BB-ET design selects F with probabilities 0.82 and FC with
probability 0.17. Scenario 3.0 is the targeted alternative, which is a case where FC has higher
efficacy and equivalent toxicity compared to F . In this ideal case, the CAT-BUB design has 90%
power compared to 91% power for the BB-EO design and 85% for the BB-ET design. Scenarios
3.1, 3.2, 4.1, and 4.2 are tradeoff settings where FC has an a large or very large efficacy advantage,
and either a moderate or large toxicity disadvantage. In these cases, the CAT-BUB design selects
treatments with probabilities that are sensitive to the assumed utilities, whereas the beta-binomial
designs consistently select FC with high probability, regardless of the toxicity burden of FC.

Scenarios 1.2, 2.2, and 3.2 show very undesirable potential consequences of using the BB-
EO design, which completely ignores toxicity. The BB-EO design based on the probability of
CR treats Scenario 1.2 like a null case since πCR,FC = 0.2275 versus πCR,F = 0.2425, while in
fact the two pairs of toxicity probability vectors θFC and θF are very different, with θFC,T =
(0.26, 0.45, 0.20, 0.09) versus θF,T = (0.67, 0.25, 0.05, 0.03), so that FC has a much lower minor
toxicity probability but much higher moderate, severe, and fatal AE probabilities compared to F .
The CAT-BUB design recognizes this, concluding that F > FC with power 0.78 compared to 0.05
for the BB-EO design. Scenario 2.2 is an intermediate case, since FC has moderate efficacy with
θFC,E = (0.35, 0.35, 0.15, 0.15) versus θF,E = (0.25, 0.35, 0.20, 0.20) but also high toxicity, with
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θFC,T = (0.26, 0.45, 0.20, 0.09) versus θF,T = (0.67, 0.25, 0.05, 0.03). The BB-EO design detects
the 0.3185 − 0.2425 = 0.076 difference in CR probabilities in favor of FC with power 0.28, but
since the probability of severe toxicity or death is 0.29 with FC versus 0.08 with F , the CAT-
BUB design concludes F is superior to FC with power 0.314 and never concludes that FC is
superior to F . In Scenario 3.2, FC has a large efficacy advantage but also high toxicity burden,
with θFC,E = (0.45, 0.35, 0.10, 0.10) versus θF,E = (0.25, 0.35, 0.20, 0.20) but, as in Scenario 2.2,
θFC,T = (0.26, 0.45, 0.20, 0.09) versus θF,T = (0.67, 0.25, 0.05, 0.03). The BB-EO design has power
0.82 of concluding that FC is superior to F , whereas the CAT-BUB design recognizes both the much
better efficacy and much worse toxicity with FC compared to F , and based on the assumed utilities
does not recommend either treatment over the other with probability 1 − (0.041 + 0.015) = 0.94.
Scenario 4.2 shows that the BB-TE design can have a similar undesirable behavior as the BB-EO
design. If the efficacy advantage of FC is very large, because the efficacy test will detect a difference
with high probability, the BB-TE design effectively ignores toxicity, since the toxicity test is unlikely
to be applied. In Scenarios 2.1 and 3.2, which have less extreme tradeoffs than Scenario 4.2, the
BB-TE design is likely to recommend a particular treatment, despite that neither treatment may
be strongly preferred under the assumed utilities. For example, in Scenario 3.2, the BB-TE design
recommends FC and F with probabilities 0.72 and 0.28, respectively, and thus recommends either
treatment with probability 0.99. Lastly, the BB-TE design has lower power than the CAT-BUB
design for the targeted alternative in the CLL trial, i.e., Scenario 3.0.

There are several key points in these comparisons. First, basing a test on the probability of
CR is equivalent to using a degenerate utility-based test that assigns utilities 100 to CR and 0
to its complement, while completely ignoring toxicity. An elaboration of this that accounts for
the ordinal categories of efficacy is the two-sample test of Whitehead (1993), although this test
still suffers from the fact that it ignores toxicity. Considering Scenarios 3.0, 3.1, and 3.2 together
shows how the CAT-BUB design adjusts its conclusions depending on the varying θFC,T vectors,
essentially agreeing with the BB-EO design when toxicity is equivalent but very likely reaching
the opposite conclusion when FC has much higher toxicity than F . The same pattern can be
seen when considering Scenarios 4.0, 4.1, and 4.2 together. This also illustrates the benefits from
considering the ordinal level of each outcome rather than dichotomizing it, since the probabilities
of concluding that FC is superior to F vary from 1 to 0.20 as the probabilities of the levels of each
outcome change across scenarios. In practice, if a conventional design based on efficacy alone is
used one might hope that, in such cases, at some point during actual trial conduct someone would
notice an excessively higher toxicity rate in one arm compared to the other, and ask the Principal
Investigator or Institutional Review Board to halt accrual to the trial. Hope is not a strategy,
however. Moreover, if in fact a trial designed based on efficacy alone will be stopped due to such
a toxicity difference, then the nominal size and power of the design are incorrect, and in fact they
are conditional on the assumption that there will be no difference in toxicity sufficiently large that
it would cause the trial to be stopped early. All of these concerns are taken care of automatically
by the group sequential CAT-BUB test’s structure. For the group sequential design of the CLL
trial (see Web Supplement), its interim decision rules will stop the trial early with high probability
when there is a large difference in terms of either efficacy or toxicity, as quantified by the joint
utilities of the elementary (efficacy, toxicity) outcomes.

The utilities in Table 1 used for the CAT-BUB re-design of the CLL trial emphasize both
avoiding severe toxicity or death and achieving good clinical response by specifying the relative
utility parameters (Section 2) to be ζ1 = 0.1 and ζ2 = 0.2 near zero, respectively. To assess
the CAT-BUB design’s sensitivity to the utilities, we also considered the two alternative utilities
given in Table 6. One alternative places greater importance on achieving better efficacy, and the
other places greater importance on achieving lower toxicity. We obtained the first (second) set of
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Table 6: Three alternative utilities for the CLL trial’s outcomes.

Level of Worst
Adverse Event Clinical Response Death

Original Utilities from Table 1
CR PR SD PD

Minimal 100 84 35 19
Moderate 93 77 29 14 0
Severe 28 24 14 10

Utilities Giving Better Efficacy Higher Value

Minimal 100 84 35 19
Moderate 98 81 31 14 0
Severe 82 68 24 10

Utilities Giving Lower Toxicity Higher Value

Minimal 100 93 71 64
Moderate 93 81 44 32 0
Severe 28 24 14 10

Table 7: Power figures for the CLL trial based on a fixed sample CAT-BUB design using two
alternative sets of numerical utilities that place greater importance on either improving efficacy or
reducing toxicity, compared to the original utilities.

Alternative Utility Giving Alternative Utility Giving
Scenario Efficacy Higher Value Lower Toxicity Higher Value

Efficacy Toxicity δU ,FC−F FC > F F > FC δU ,FC−F FC > F F > FC

1.0: = = 0.0 0.025 0.025 0.0 0.024 0.026
1.1: = > -3.2 0.003 0.100 -8.4 0.000 0.931
1.2: = >> -6.7 0.000 0.287 -18.3 0.000 1.000

2.0: > = 7.1 0.349 0.000 3.6 0.365 0.000
2.1: > > 3.7 0.122 0.003 -4.6 0.000 0.470
2.2: > >> -0.1 0.026 0.025 -14.6 0.000 1.000

3.0: >> = 14.2 0.897 0.000 7.3 0.902 0.000
3.1: >> > 10.6 0.647 0.000 -0.8 0.011 0.049
3.2: >> >> 6.5 0.288 0.007 -11.0 0.000 0.986

4.0: >>> = 22.1 0.999 0.000 11.3 0.999 0.000
4.1: >>> > 18.2 0.985 0.000 3.4 0.290 0.000
4.2: >>> >> 13.8 0.859 0.000 -7.0 0.000 0.748
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alternative utilities by changing ζ2 from 0.20 to 0.80 (ζ1 from 0.10 to 0.60), while retaining all other
indirect elicitation parameter values as detailed in Section 2. For the first alternative, the utilities
of moderate or severe toxicity for CR or PR levels of efficacy are substantially increased from the
original utility, for example, U(CR,Sev) is increased from 28 to 82. For the second alternative, the
utilities of minimal or moderate toxicity for SD or PD levels of efficacy are substantially increased
from the original utility, for example, U(SD,Min) is increased from 35 to 71. The required sample
sizes for the two alternative utilities are nF = nFC = 110 and 271, respectively, which is in contrast
to nF = nFC = 127 for the elicited numerical utilities. The CAT-BUB design based on the utilities
that place greater importance on higher efficacy thus requires a smaller sample size to achieve
90% power for detecting the targeted alternative compared with the beta-binomial design that was
used for the actual trial. The numerical utilities that place greater importance on higher efficacy
(lower toxicity) provide more (less) power for detecting the targeted alternative, which has a large
treatment difference for the marginal probabilities of clinical response and zero difference for AE
probabilities.

Table 7 reports the power figures for the same scenarios as in Table 5 for the CAT-BUB design
based on the two alternative utilities with the above sample sizes. These power figures illustrate that
the numerical utilities affect the power of detecting specific treatment differences and determine
which therapy is preferred for tradeoff scenarios. Scenario 4.2 is an extreme tradeoff example,
wherein FC has very high efficacy and high toxicity compared to F . As shown by the mean utility
difference and power figures, this tradeoff slightly favors FC under the original utility function,
whereas FC is strongly favored under the alternative utilities that place greater importance on
efficacy, and conversely, under the alternative utilities that place greater importance on lower
toxicity. The dependence of the proposed CAT-BUB design on the numerical utilities underscores
the importance of eliciting values that actually reflect the clinical desirabilities of each patient
response.

6.3 Additional Illustrations

In Section 1, we introduced several categorical outcome structures, including trinary, bivariate
binary, bivariate binary plus death, ordinal, and bivariate ordinal. The computational algorithms
given previously readily accommodate all of these cases. In Web Appendix D, we provide detailed
illustrations of both fixed sample and group sequential CAT-BUB designs for a bivariate binary
outcome, and for a bivariate ordinal outcome having 16 = 4×4 elementary events. We also include
a group sequential CAT-BUB re-design of the CLL trial.

7 Discussion

Because clinical trial conduct must accommodate medical practice, a trial design should account
formally for risk-benefit tradeoffs between all clinically relevant outcomes. The utility-based tests
that we have proposed provide a practical approach for comparing treatments based on categorical
outcomes in a RCT. We have provided both fixed sample and group sequential procedures, com-
putational algorithms to derive design parameters, and freely-available user-friendly software. The
CAT-BUB test directly addresses the problem of comparing treatments for all clinically relevant
differences. The method deals with the problem of deciding whether one therapy is clinically su-
perior to another based on its outcome probability vector by exploiting the elicited utilities of the
elementary outcomes to reduce the multidimensional outcome to a one dimensional mean utility.
This is used to construct comparative tests. The elicited utilities provide a rigorous framework for
treatment comparison that makes explicit any subjective tradeoffs between outcomes.
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We have demonstrated that designs based on a single binary outcome for efficacy often are
unsafe, and do not reflect medical practice. Because safety is never a secondary concern in any
clinical trial, conventional designs only based on an efficacy test presumably rely on informal stop-
ping criteria for safety, which makes it difficult to determine operating characteristics. We also
have demonstrated that designs based on a hierarchical testing procedure may be unsafe in sce-
narios where one treatment is more efficacious but also is more toxic than the other drug. These
designs also do not reflect medical practice. If an efficacy difference is detected, it is naive to believe
that the toxicity profiles of the available treatment options will not be considered by physicians
when deciding which treatment is actually clinically preferable. In the proposed method, we have
provided a practical tool to explicitly account for the tradeoffs between disparate outcomes that
physicians routinely assess, and thus for designing RCTs that better reflect medical practice.

Supplementary Materials

The Web Appendices referenced in Sections 2, 4, 5, and 6 are available with this paper at the jour-
nal’s website. An example spreadsheet mentioned in Section 2 for utility elicitation in the context
of the CLL example, and a suite of R functions for implementing the computational algorithms in
Sections 5.2 and 5.3, along with annotated example R programs for replicating each illustration are
available at:

https://biostatistics.mdanderson.org/SoftwareDownload/
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Outline

In Web Appendix A, we provide the generalization of the indirect utility elicitation strategy de-
scribed in Section 2 for a K × L (plus death) bivariate ordinal outcome. In Web Appendix B,
we provide the derivation for the moment matching technique used in Section 4 to implement our
scaled-beta approximation of the PMU distribution, and we confirm the validity of this approxi-
mation using a numerical comparison with the usual MC approach and a normal approximation
in a variety of settings. In Web Appendix C, we provide guidelines for selecting the Monte Carlo
sample sizes used in the computational algorithms defined in Section 5. In Web Appendix D, we
present the detailed illustrations referenced in Section 6 for implementing the proposed CAT-BUB
procedures with bivariate binary and bivariate ordinal outcomes.

Web Appendix A: Generalization of the Indirect Utility Elicitation
Strategy

Suppose the clinically relevant outcome is bivariate ordinal (plus death), where there are K × L
(+ 1) possible elementary responses. Without loss of generality, we partially order the elementary
events such that U(1, 1) = 100, U(1, `) ≥ U(2, `) ≥ · · · ≥ U(K, `) ≥ U(D) = 0, and U(k, 1) ≥
· · · ≥ U(k, L) ≥ U(D) = 0, for k = 1, . . . ,K and ` = 1, . . . , L. To implement the indirect utility
elicitation strategy described in Section 2, the statistician would create a spreadsheet with the
following sub-tables for the physician(s) to fill in,
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(A)
(1, 1) (K,L) D

100 ν 0
(B)

1 L

1 100 100× ζ1

K 100× ζ2 0

(C1)
(1, 1) (1, 2) · · · (1, `) · · · (1, L− 1) (1, L)

100 100× φ1,1 · · · 100× φ1,`−1 · · · 100× φ1,L−2 0

(C2)
(K, 1) (K, 2) · · · (K, `) · · · (K,L− 1) (K,L)

100 100× φ2,1 · · · 100× φ2,`−1 · · · 100× φ2,L−2 0

(D1)
(1, 1) (2, 1) · · · (k, 1) · · · (K − 1, 1) (K, 1)

100 100× ξ1,1 · · · 100× ξk−1,1 · · · 100× ξK−2,1 0

(D2)
(1, L) (2, L) · · · (k, L) · · · (K − 1, L) (K,L)

100 100× ξ1,2 · · · 100× ξk−1,2 · · · 100× ξK−2,2 0

If death is not included as a potential patient response, sub-table (A) will be omitted. If L = 2,
sub-tables (C1) and (C2) will be omitted. Similarly, if K = 2, sub-tables (D1) and (D2) will be
omitted. The numerical utilities that are induced by the entries in the above sub-tables can be
determined sequentially as follows,

U(1, 1) = 100, If D, then U(D) = 0 and U(K,L) = ν, otherwise, U(K,L) = 0,

U(1, L) = ζ1[U(1, 1)− U(K,L)] + U(K,L),

U(K, 1) = ζ2[U(1, 1)− U(K,L)] + U(K,L),

U(1, `+ 1) = φ1,`[U(1, 1)− U(1, L)] + U(1, L) and

U(K, `+ 1) = φ2,`[U(K, 1)− U(K,L)] + U(K,L) for ` = 1, . . . , L− 2,

U(k + 1, 1) = ξk,1[U(1, 1)− U(K, 1)] + U(K, 1) and

U(k + 1, L) = ξk,2[U(1, L)− U(K,L)] + U(K,L) for k = 1, . . . ,K − 2, and

U(k + 1, `+ 1) =

[
ξk,2(φ1,` − φ2,`) + φ2,`

1− (ξk,1 − ξk,2)(φ1,` − φ2,`)

]
[U(k + 1, 1)− U(k + 1, L)] + U(k + 1, L),

for k = 1, . . . ,K − 2, and ` = 1, . . . , L− 2.

The above induced numerical utilities, aside from those in the final line, i.e., U(k + 1, `+ 1), arise
straightforwardly from the below identities,

ν = [U(1, 1)− U(K,L)]/[U(K,L)− U(D)],

ζ1 = [U(1, 1)− U(1, L)]/[U(1, L)− U(K,L)],

ζ2 = [U(1, 1)− U(K, 1)]/[U(K, 1)− U(K,L)],

φ1,` = [U(1, `+ 1)− U(1, L)]/[U(1, 1)− U(1, L)] and

φ2,` = [U(K, `+ 1)− U(K,L)]/[U(K, 1)− U(K,L)] for ` = 1, . . . , L− 2,

ξk,1 = [U(k + 1, 1)− U(K, 1)]/[U(1, 1)− U(K, 1)] and

ξk,2 = [U(k + 1, L)− U(K,L)]/[U(1, L)− U(K,L)] for k = 1, . . . ,K − 2.

Using linear interpolation, the remaining numerical utilities, i.e., U(k + 1, ` + 1), arise from the
identities,

U(k + 1, `+ 1) = ηk,`[U(k + 1, 1)− U(k + 1, L)] + U(k + 1, L),

ηk,` = η′k,`[φ1,` − φ2,`] + φ2,`, and

η′k,` = ηk,`[ξk,1 − ξk,2] + ξk,2.
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Therefore, as desired,

ηk,` = [ξk,2(φ1,` − φ2,`) + φ2,`]/[1− (ξk,1 − ξk,2)(φ1,` − φ2,`)],

for k = 1, . . . ,K − 2, and ` = 1, . . . , L− 2.

Web Appendix B: Moment Matching and Validation for the Scaled-
Beta Posterior Approximation

We derive the moment matching technique used for the scaled-beta approximation of the posterior
distribution for mean utility. If X ∼ Beta(λ, γ), where µ = E[X] = λ

λ+γ and σ2 = V ar[X] =
λγ

(λ+γ)2(λ+γ+1)
, then γ = λ(1−µ)

µ , λ + γ = λ
µ , and therefore σ2 = µ2(1−µ)

λ+µ . Solving the last identity

for λ, we have the first identity defined by equation (11) in the paper, i.e.

λ = µ

(
µ(1− µ)

σ2
− 1

)
.

Plugging this result into the identity γ = λ(1−µ)
µ , we have the second identity defined by equation

(11) in the paper, i.e.

γ = (1− µ)

(
µ(1− µ)

σ2
− 1

)
.

We address the validation of the scaled-beta posterior approximation with two inquiries. In the
first, we investigate how well the scaled-beta distribution approximates the actual PMU distribu-
tion, using the MC approach with M=1,000,000 as the gold standard, given various realizations of
X. In the second, we investigate the frequentist properties of the proposed CAT-BUB comparative
testing procedure using the posterior quantities defined by equations (7) and (8) in the paper based
on the scaled-beta approximation versus that based on the usual MC approach and the normal
approximation defined by equation (13).

For our first assessment, we consider a single treatment with a trinary outcome and utilities
U = (100, 50, 0)′. For Scenario A we assume the observed data are X = n × (0.50, 0.30 , 0.20);
whereas, for Scenario B we assume X = n × (0.10, 0.10, 0.80). For both scenarios, we fix n
equal to each of the values in the set {10, 25, 50, 100} and use the usual MC approach with
M=1,000,000 to estimate the actual PMU distribution. We then compare this precise estimate of
the PMU distribution with the proposed scaled-beta approximation. The results of this assessment
are displayed in Figure 1. As evidenced by Figure 1, the scaled-beta approximation is nearly
indistinguishable from MC estimate even in small sample sizes (e.g. n=10 and 25) and non-negligible
posterior density near the boundaries of the PMU distribution’s domain (i.e. Scenario B).

For our second assessment, we continue with the example involving clot dissolving agents for
rapid treatment of stroke with a trinary outcome and utility U = (100, 50, 0)′. We investigate
the power of the CAT-BUB approach for a variety of fixed response probability vectors. We
consider one CAT-BUB test based on the usual MC approach with M=100,000, one based on
the proposed scaled-beta approximation, and one based on a normal approximation matching the
PMU distribution’s mean and variance using the results from equation (10) in the paper. Using
simulation, we tuned the threshold pcut for each Bayesian test to control type I error at 0.05 under
point null hypothesis θA = θB = (0.50, 0.30, 0.20)′ with 100 observations in each therapy arm.

The results of this simulation are reported in Table 1, and they show that scaled-beta approxi-
mation is nearly indistinguishable from the MC approach, while the normal approximation differs

3



0 20 40 60 80 100

0.00

0.05

0.10

0.15

n = 10

U(θ)

p[
U

(θ
) |

 X
] Scenario A

Scenario B
Monte Carlo
Scaled Beta

0 20 40 60 80 100

0.00

0.05

0.10

0.15

n = 25

U(θ)

p[
U

(θ
) |

 X
]

0 20 40 60 80 100

0.00

0.05

0.10

0.15

n = 50

U(θ)

p[
U

(θ
) |

 X
]

0 20 40 60 80 100

0.00

0.05

0.10

0.15

n = 100

U(θ)

p[
U

(θ
) |

 X
]

Figure 1: Numerical assessment of the proposed beta approximation for the posterior distribution
of mean utility.

4



Table 1: Simulation-based power assessment under various fixed response probability vectors of the
proposed utility-based tests based on the usual MC approach, the proposed scaled-beta approxima-
tion, and a normal approximation. All scenarios use θA = (0.50, 0.30, 0.20)′, and nA = nB = 100.
All results are based on 2,500 simulation runs.

Scenario θB δU ,B−A MC Beta Normal

pcut 0.976 0.976 0.976
1.0: (0.50, 0.30, 0.20) 0 0.05 0.05 0.05

2.1: (0.60, 0.00, 0.40) -5 0.12 0.12 0.12
2.2: (0.60, 0.10, 0.30) 0 0.05 0.05 0.05
2.3: (0.60, 0.20, 0.20) 5 0.15 0.15 0.15
2.4: (0.60, 0.30, 0.10) 10 0.49 0.48 0.48
2.5: (0.60, 0.40, 0.00) 15 0.92 0.91 0.90

3.1: (0.65, 0.05, 0.30) 3 0.07 0.07 0.07
3.2: (0.65, 0.15, 0.20) 8 0.26 0.26 0.27
3.3: (0.65, 0.25, 0.10) 13 0.68 0.68 0.68
3.4: (0.65, 0.35, 0.00) 18 0.98 0.98 0.97

4.1: (0.70, 0.00, 0.30) 5 0.13 0.13 0.13
4.2: (0.70, 0.10, 0.20) 10 0.42 0.42 0.43
4.3: (0.70, 0.20, 0.10) 15 0.82 0.82 0.82
4.4: (0.70, 0.30, 0.00) 20 1.00 1.00 1.00

slightly for nA = nB = 100. The normal approximation works surprisingly well, providing a more
powerful procedure in some scenarios, and a less powerful procedure in others. Similar simulations
with smaller sample sizes also show good agreement between the MC and scaled-beta approach,
whereas the normal approximation can suffer a loss of power relative to these procedures.

Web Appendix C: Computational Algorithm Guidelines

In step 3 of the fixed sample and group sequential CAT-BUB design computational algorithms
defined in Section 5, we use G0 MC replications to estimate pcut, i.e. the (1 − α)%-tile of the
sampling distribution for T (X;n∗,θ∗) = max {TA>B(X;n∗,θ∗), TB>A(X;n∗,θ∗)} under the null.

p̂cut thus has standard error
√

α(1−α)
G0f(F−1(1−α))2

, where f(·) and F (·) denote the pdf and cdf for

the sampling distribution of T (X;n∗,θ∗) under the null. Using equation (15) in the paper, this
sampling distribution is approximately uniform between 0.5 and 1 when δ = 0 (i.e. under the
null), and thus f(F−1(1 − α)) ≈ 2. Therefore, the standard error for p̂cut when G0 = 50,000 is
approximately 0.0005, which we feel is sufficiently accurate for estimating pcut to three digits.

In contrast, G1 is used to calculate β̂, the power estimate for the alternative θ(Alt), which

has standard error
√

β(1−β)
G1

, where 1 − β is the true power. We use a default G1 = 25,000,

which ensures the standard error of β̂ for β = 0.20 is about 0.0025 ≈ ε
Φ−1(0.975)

for ε = 0.005.

Therefore, Pr[β̂ ∈ (β − ε, β + ε)|θ(Alt)] ≈ 0.95 when the true power for θ(Alt) is indeed 1− β, and
Pr[β̂ ∈ (β − ε, β + ε)|θ(Alt)] ≈ 0.05 or less when the true power for θ(Alt) is less than (1− β)− 2ε
or greater than (1− β) + 2ε. For general β and ε, G1 can be adjusted accordingly.
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Table 2: Power figures of a fixed sample CAT-BUB design for a bivariate binary outcome versus
a beta-binomial design based on the probability of “success” defined as [C, T ]. In each scenario,
θA = (0.15, 0.20, 0.25, 0.40)′ and nA = nB = 284.

CAT-BUB Test Beta-Bin Test
Scenario θB δU ,B−A B > A A > B B > A A > B

1: (0.15, 0.20, 0.25, 0.40) 0 0.025 0.025 0.025 0.025
2: (0.10, 0.40, 0.20, 0.30) 9 0.805 0.000 0.000 0.438
3: (0.15, 0.30, 0.20, 0.35) 6 0.445 0.000 0.025 0.025
4: (0.20, 0.30, 0.25, 0.25) 13 0.980 0.000 0.351 0.000

Table 3: Power figures of a group sequential CAT-BUB design for a bivariate binary outcome. In
each scenario, θA = (0.15, 0.20, 0.25, 0.40)′, n1 = 117, n2 = 176, n3 = 234, n4 = 292 and ρ = 3.

Scenario θB δU ,B−A Ave SS B > A A > B

1: (0.15, 0.20, 0.25, 0.40) 0 289.7 0.024 0.026
2: (0.10, 0.40, 0.20, 0.30) 9 228.8 0.802 0.000
3: (0.15, 0.30, 0.20, 0.35) 6 266.6 0.439 0.000
4: (0.20, 0.30, 0.25, 0.25) 13 175.9 0.982 0.000

Web Appendix D: Additional Illustrations

In this section we provide detailed illustrations for how to design a CAT-BUB comparative trial
with the general categorical outcome structures of most cases that are likely to be encountered
in practice, including a bivariate binary outcome. For each outcome structure, we discuss utility
elicitation prior to designing a fixed sample trial as well as a group sequential trial, and we report
the resulting design’s frequentist operating characteristics for a variety of alternative scenarios.

Bivariate Binary Outcome

Recall the acute myelogenous leukemia (AML) example that defines efficacy as complete remission,
C, achieved within 42 days, and toxicity, T , as severe (National Cancer Institute grade 3 or 4) non-
hematologic toxicity within 42 days. Denoting the complements by C and T , suppose U(C, T ) =
100, U(C, T ) = 80, U(C, T ) = 40 and U(C, T ) = 0, where targeted alternative has probabilities of

([C, T ], [C, T ] [C, T ], [C, T ]) for treatment A of θ
(Alt)
A = (0.15, 0.20, 0.25, 0.40)′, and for treatment

B of θ
(Alt)
B = (0.10, 0.40, 0.20, 0.30)′. Therefore, the targeted alternative we will use to design our

CAT-BUB trial is θ(Alt) =
(
θ

(Alt)
A , θ

(Alt)
B

)
with a utility difference of δ

(Alt)
U ,B−A = 9.

Fixed Sample CAT-BUB Design

Using the fixed sample CAT-BUB design computational algorithm, we require n=284 subjects as-
signed to each treatment to achieve 80% power at the targeted alternative, while using a probability
threshold of pcut = 0.975 to control type I error at the 0.05 level. Table 2 reports the operating char-
acteristics of this fixed sample CAT-BUB design for a few scenarios compared to the beta-binomial
design for probability of “success” defined as [C, T ].
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Table 4: Elicited Utilities for Bivariate Ordinal Outcome.
Disease Status

Toxicity CR/PR SD2 SD1 PD

Mild 100 80 55 25
Moderate 90 70 35 20
High 70 50 25 10
Severe 40 25 10 0

Group Sequential CAT-BUB Design

Suppose we instead want to design a group sequential test with three interim analyses planned at
sampling fractions t1 = 0.40, t2 = 0.60 and t3 = 0.80 of the maximum sample size. Using the group
sequential CAT-BUB design computational algorithm, a planned maximum sample size of nS =
292 subjects in each treatment group will provide 80% power at θ(Alt) while controlling type I error
at the 0.05 level. Table 3 reports the operating characteristics of this group sequential CAT-BUB
design for a few scenarios, assuming the planned analysis schedule is followed.

Bivariate Ordinal Outcome

Our motivating bivariate ordinal example involves a targeted agent plus chemotherapy for solid
tumors, measuring efficacy and toxicity each with four levels. Efficacy events are partial or complete
response (PR/CR) defined > 30% reduction in tumor size from baseline, stable disease levels 2
(SD2) and 1 (SD1) defined respectively by 0–30% reduction in tumor size and 0–20% increase in
tumor size, and progressive disease (PD) defined by >20% increase in tumor size. Toxicity events
are mild, moderate, high and severe. The elicited utilities are provided in Table 4. We illustrate
how to design both a fixed sample CAT-BUB test and a group sequential CAT-BUB test in this
context.

For each type of CAT-BUB test, we use the same single targeted alternative. To ease elicitation,
we consider marginal probabilities of efficacy and toxicity outcomes for each treatment, and assume
independence to obtain the probabilities of the 16 possible elementary outcomes. For treatment A,
we assume marginal efficacy probabilities of

θ
(Alt)
A,Eff =

(
θ

(Alt)
A,CR/PR = 0.10, θ

(Alt)
A,SD2 = 0.10, θ

(Alt)
A,SD1 = 0.10, θ

(Alt)
A,PD = 0.70

)′
,

and marginal toxicity probabilities of

θ
(Alt)
A,Tox =

(
θ

(Alt)
A,Mild = 0.70, θ

(Alt)
A,Mod = 0.20, θ

(Alt)
A,High = 0.05, θ

(Alt)
A,Severe = 0.05

)′
.

Therefore, θA,[CR/PR,Mild] = 0.10 × 0.70 = 0.07, and the probabilities for the remaining 15 ele-

mentary outcomes follow similarly, or more concisely as θ
(Alt)
A = θ

(Alt)
A,Eff

(
θ

(Alt)
A,Tox

)′
. For treatment

B, we use targeted marginal probabilities of θ
(Alt)
B,Eff = (0.30, 0.20, 0.20, 0.30)′ and θ

(Alt)
B,Tox =

(0.50, 0.20, 0.15, 0.15)′ that correspond to a targeted utility difference of δ
(Alt)
U ,B−A = 14.9.

Fixed Sample CAT-BUB Design

The fixed sample CAT-BUB test providing 80% power at the targeted alternative, while controlling
type I error at the 0.05 level requires 64 subjects in each treatment group, and has operating
characteristics reported in Table 5.
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Table 5: Power figures of a fixed sample CAT-BUB design with nA = nB = 64 for a bivariate
ordinal outcome.

Scenario θB = θB,Effθ
′
B,Tox δU ,B−A B > A A > B

1: θB,Eff = (0.10, 0.10, 0.10, 0.70)′ 0.0 0.026 0.024
θB,Tox = (0.70, 0.20, 0.05, 0.05)′

2: θB,Eff = (0.30, 0.20, 0.20, 0.30)′ 14.9 0.803 0.000
θB,Tox = (0.50, 0.20, 0.15, 0.15)′

3: θB,Eff = (0.50, 0.20, 0.20, 0.10)′ 32.3 1.000 0.000
θB,Tox = (0.60, 0.20, 0.10, 0.10)′

4: θB,Eff = (0.40, 0.20, 0.20, 0.20)′ 15.1 0.826 0.000
θB,Tox = (0.30, 0.20, 0.30, 0.20)′

5: θB,Eff = (0.50, 0.10, 0.20, 0.20)′ 12.0 0.633 0.000
θB,Tox = (0.20, 0.20, 0.30, 0.30)′

Table 6: Power figures of a group sequential CAT-BUB design with n1 = 22, n2 = 44, n4 = 65,
and ρ = 3 for a bivariate ordinal outcome.

Scenario θB = θB,Effθ
′
B,Tox δU ,B−A Ave SS B > A A > B

1: θB,Eff = (0.10, 0.10, 0.10, 0.70)′ 0.0 64.6 0.025 0.25
θB,Tox = (0.70, 0.20, 0.05, 0.05)′

2: θB,Eff = (0.30, 0.20, 0.20, 0.30)′ 14.9 53.9 0.800 0.000
θB,Tox = (0.50, 0.20, 0.15, 0.15)′

3: θB,Eff = (0.50, 0.20, 0.20, 0.10)′ 32.3 29.5 1.000 0.000
θB,Tox = (0.60, 0.20, 0.10, 0.10)′

4: θB,Eff = (0.40, 0.20, 0.20, 0.20)′ 15.1 52.7 0.825 0.000
θB,Tox = (0.30, 0.20, 0.30, 0.20)′

5: θB,Eff = (0.50, 0.10, 0.20, 0.20)′ 12.0 57.6 0.631 0.000
θB,Tox = (0.20, 0.20, 0.30, 0.30)′

Group Sequential CAT-BUB Design

Suppose we instead want to design a group sequential test with two interim analyses planned at
equally spaced sampling fractions t1 = 1/3 and t2 = 2/3 of the maximum sample size. In this case,
a planned maximum sample size of nS = 65 subjects in each treatment group will provide 80%
power at the targeted alternative while controlling type I error at the 0.05-level. Table 6 reports
the operating characteristics of this group sequential CAT-BUB design for a few of other scenarios,
assuming the planned analysis schedule is followed.

CLL Trial: Group Sequential CAT-BUB Re-design

We compare the operating characteristics a group sequential CAT-BUB design versus a group
sequential beta-binomial design with an efficacy test for the CLL trial discussed in the main paper,
each with two interim analyses planned at 40% and 70% accrual. We compare these designs across
the same scenarios considered in the main paper and using the utilities reported in Table 1. Using
our computational algorithm, the CAT-BUB design with interim looks when 53 and 92 patients are
enrolled in each treatment regimen and a planned maximum sample size of 131 patients assigned to
each regimen achieves 90% power for the targeted alternative. The operating characteristics of the
two designs using the above sample sizes are reported in Table 7. In general, the results show that
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Table 7: Power figures of the group sequential CAT-BUB design versus a beta-binomial design
based on CR probability for the CLL trial, with tests when 53, 92, and 131 patients are enrolled
in each regimen.

Scenario Probability of Final Conclusion
Efficacy Toxicity CAT-BUB Design Beta-Binomial Design
FC vs F FC vs F δU ,FC−F Ave SS FC > F F > FC Ave SS FC > F F > FC

1.0: = = 0.0 130.2 0.024 0.025 130.2 0.024 0.025
1.1: = > -5.2 129.2 0.001 0.219 130.2 0.018 0.036
1.2: = >> -11.9 100.9 0.000 0.788 130.2 0.012 0.045

2.0: > = 6.8 125.1 0.359 0.000 124.0 0.398 0.000
2.1: > > 1.1 129.1 0.043 0.013 125.6 0.334 0.000
2.2: > >> -6.5 121.0 0.000 0.316 126.7 0.267 0.000

3.0: >> = 13.5 99.2 0.902 0.000 101.0 0.910 0.000
3.1: >> > 7.3 123.4 0.400 0.000 104.8 0.872 0.000
3.2: >> >> -1.1 130.2 0.013 0.042 108.7 0.816 0.000

4.0: >>> = 21.0 67.9 0.999 0.000 68.5 1.000 0.000
4.1: >>> > 14.2 97.1 0.919 0.000 71.5 1.000 0.000
4.2: >>> >> 5.0 127.5 0.205 0.001 74.3 0.999 0.000

the CAT-BUB design is sensitive to toxicity differences between the two regimens whereas the beta-
binomial design is not. For example, the beta-binomial design has similar operating characteristics
across Scenarios 3.0-3.2, i.e., between 0.82 and 0.91 probability of concluding FC > F and between
101 and 109 average sample size. In contrast, the CAT-BUB design has similar power and average
sample size in Scenario 3.0, wherein FC and F have equivalent toxicity burden, but is unlikely to
conclude either regimen is superior in Scenario 3.2, wherein FC versus F has high toxicity that
cancels out its high efficacy, based on these utilities.
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