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Introduction

In many clinical trials the primary therapeutic out-
comes are events that occur at random times.

Examples of such events include a given amount of
tumor shrinkage, disease progression, or regimen-
related death in oncology; engraftment or graft-
versus-host disease in bone marrow transplantation;
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resolution of an infection with an antibiotic; and
lowering systolic blood pressure by a specified
amount when studying an anti-hypertension agent.
Many statistical designs for early phase trials are
based on the probability of a composite outcome,
defined in terms of one or more event times, occur-
ring within a specified time period from the start of
treatment. For example, in oncology “response”
may be defined as the event that the patient sur-
vives seven months without suffering disease pro-
gression. Denoting the times to progression and
death by TP and TD, response is R � {7 � min(TP,
TD)}. However, if one wishes to make interim deci-
sions based on the indicator X of R and the proba-
bility �R � Pr(R) � Pr(X � 1), then several logistical
problems arise. The most severe problem created by
this approach is that a failure (progression or death)
may be observed at any time up to seven months,
whereas a response can only be observed if the
patient is followed for seven months to ensure that
failure has not occurred. Consequently, for the first
seven months of the trial only values of X � 0 may
be observed, and this problem persists thereafter
since the observed proportion of patients for whom
X � 0 still over-represents the actual value of �R.
This renders any early stopping rule based on X very
unreliable. While in theory this bias could be
avoided by only scoring X for each patient at seven
months, such an approach is very impractical.
Another possible alternative might be to use a much
shorter interval for defining response, say R � {1
� min(TP, TD)}. This would have the undesirable
effect of declaring patients for whom 1 � T � 7 to
be responders, contrary to the actual goal of the
trial. In general, the use of an indicator such as X
is only feasible if it can be observed very quickly
and it provides a reasonable summary of patient
outcome. Another possible way to overcome this
problem might be to first apply the interim moni-
toring rule only after a sufficiently long time inter-
val has elapsed so that a reasonable number of
patients have been followed for seven months or
longer. However, this defeats the purpose of safety
monitoring since ignoring early failures that occur
before first applying the stopping rule fails to
protect against the case where the failure rate is
unacceptably high.

The loss of information resulting from discretiz-
ing the time-to-event (TTE) variables TP and TD by
using X to characterize the patient’s outcome is
illustrated by a patient who, at a given time during
the trial when an interim decision must be made, is
alive and has been progression-free for six months.
Although X is not yet known for this patient, the
observed event {6 � min(TP, TD)} clearly provides
useful information about �R. Similarly, if two
patients both survive 12 months with TP � 6.5 for
one and TP � 7.5 for the other, then X � 0 for the

first patient while X � 1 for the other, despite the
fact that their actual outcomes are very similar. The
usual motivation for using discretized outcomes
such as X to evaluate treatments in early phase
trials is that it is impractical or undesirable to wait
to observe the event times. The underlying scien-
tific rationale, which usually is not stated explicitly,
is that the early outcome is a reasonable surrogate
for a TTE variable of primary interest [1, 2].
However, surrogacy typically is difficult to verify in
practice [3–5].

Rather than basing clinical trial design on a
binary outcome that is a surrogate for one or more
TTE variables, a number of authors have advocated
the more direct approach of formulating the under-
lying statistical model and interim decision rules
in terms of the TTE variables themselves. Follman
and Albert [6] propose monitoring the rate of an
adverse event by using a Dirichlet process prior for
the probabilities of the event on a large set of
discretized event times. They compute an approxi-
mate posterior that is a mixture of Dirichlet
processes by using a data augmentation algorithm.
Rosner [7] takes a similar approach, but uses Gibbs
sampling to generate posteriors. Cheung and Thall
[8] propose a method, continuous monitoring
based on an approximate posterior (CMAP), for
constructing futility monitoring rules based on one
or more event times used to define a composite
event R in phase II. Thall et al. [9] use a hierarchical
Bayesian model to account for multiple disease
subtypes in a phase II trial based on event times. A
general discussion of Bayesian methods in clinical
trials is given by Spiegelhalter et al. [10].

In this paper, we present a series of Bayesian
designs for a phase II trial based on three TTE vari-
ables. The designs are developed in the context of a
trial to evaluate a new treatment for kidney cancer,
and are based on the times to death, a severe
adverse event (SAE) and disease progression. The
first design is based on the time to failure, defined
as any of these three events, assuming that failure
time is exponentially distributed with mean follow-
ing an inverse gamma prior. The performance of
this design is evaluated via simulation and com-
pared to the CMAP design. Once the initial TTE
design based on the exponential-inverse gamma
model is established, we successively refine the
model and design to incorporate additional elements
of complexity that may arise in practice. These
refinements account, in turn, for the complications
that disease progression is evaluated for each
patient at a sequence of times rather than
continuously, the hazard of death increases at the
time of disease progression, and one may wish to
randomize patients rather than conduct a single-
arm trial. In each case we derive a general likeli-
hood but, in order to focus on these particular
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issues, we deal with the simple case where each
event time is exponentially distributed with inverse
gamma prior on the mean. Next, to account for the
effect of progression on survival, we extend the sur-
vival time distribution to a piecewise exponential
with hazard changing at progression. Since the
assumption of exponentially distributed event
times may be inadequate in many settings, we
study the robustness of the initial design and of
CMAP to departures from exponentiality, and we
also include a more general version of the initial
design based on the assumption that failure time
follows a generalized gamma distribution. We close
with a brief discussion of some additional issues,
including patient heterogeneity and the use of
multiple stopping rules.

Xeloda �� Gemzar for kidney cancer

A single-arm phase II trial of the experimental (E)
combination Xeloda � Gemzar (X � G) was con-
ducted to obtain a preliminary evaluation of this
combination for treatment of advanced kidney
cancer. The trial was limited to patients who previ-
ously had received immunotherapy and either did
not respond or achieved at least a partial disease
remission but subsequently relapsed. For these
patients, disease progression or death occur on
average in about six to eight months with standard
therapy (S), which consists of 5-fluorouracil �
Gemzar (5-FU � G). While an improvement in
progression-free survival (PFS) time was desired,
another motivation for the trial was the fact that
Xeloda is chemically similar to 5-FU but Xeloda
is given orally, rather than intravenously as is
required with 5-FU. Each patient’s disease status
was evaluated at the time of trial entry (baseline),
and thereafter at eight week intervals until treat-
ment failure up to 48 weeks, defined as progressive
disease compared to the baseline evaluation, a
regimen-related SAE at a level of severity precluding
further treatment, or death. At this writing, the
trial has accrued the maximum of 84 patients, and
follow up currently is ongoing.

A simple design for the Xeloda ��
Gemzar trial

Our first design monitors the time to treatment
failure, T � min{TP, TD}, which we assume is expo-
nentially distributed with mean � following an
inverse gamma (IG) prior. Formally, T has pdf
f (t |�) � ��1e�t/� and � has prior p (�|a, b) � e�b/� ba

��(a�1)/�(a), where �(·) is the gamma function and
a, b � 0 are fixed hyperparameters. We will denote
this by T |� ~ Exp(�) and � |a, b ~ IG(a, b), and refer

to this as the exponential-inverse gamma (E-IG)
model. Since the IG(a, b) distribution has mean
b /(a � 1) and variance b2/{(a � 1)2(a � 2)}, we
require a � 2. Denoting the hazard by 	 � ��1,
assuming that � | a,b~IG(a, b) is equivalent to
assuming that 	 | a, b~Gam(a, b), a gamma distribu-
tion with pdf f(	) � e�b	ba	a�1/�(a), which has
mean a/b and variance a/b2. Since �̃ � median(T) �
log(2)�, and in general if X~IG(a, b) then cX~IG(a,
cb) for any c � 0, the above priors in terms of � and
	 are equivalent to specifying �̃~IG(a, log(2) b). It
will be convenient to use these three equivalent
forms of the distribution, and we will move freely
between them. This model is especially tractable
since the IG is a conjugate prior for the exponential.
Given the above structure, we will index the histor-
ical standard and experimental treatments by j � S, E,
so that �j, 	j, �̃j are the parameters and aj, bj are the
hyperparameters for treatment j. The time scale of
all event times and their corresponding parameters
will be in months. Whenever monitoring or obser-
vation intervals are given in terms of weeks this will
be stated explicitly. We will provide details of prior
elicitation later, in the context of a more complex
model containing the models considered in this
section and the next as special cases. 

The historical standard treatment median failure
time has prior �̃S ~ IG(53.477, 209.06), obtained
from the elicited mean 4.0 for �̃S and 95% credible
interval (CI) Pr(3.0 � �̃S � 5.2) � 0.95. Equivalently,
since �S � �̃S / log(2), the historical mean time to
failure has prior �S ~ IG(53.477, 301.61). On the
event rate domain, 	S has mean aS /bS � 0.177 and
variance aS /bS

2 � 0.00059. We calibrated the prior of
	E to have the same mean but var(	E ) � 10var(	S), to
reflect the much greater prior uncertainty about E.
Thus, aE /bE � 0.177 and aE/bE

2 � 0.0059, which
implies that �E ~ IG(5.348, 30.161).

With the exception of the randomized trial to be
discussed later, in each of the different cases that we
will consider the distributions of any parameters cor-
responding to S do not change during the single-arm
trial of E. Let n denote the number of patients who
have been enrolled at the time of any given interim
decision. For the ith patient, i � 1,. . ., n, let Ti

o be the
observed time of failure or administrative right cen-
soring, and let Yi � I(Ti

o
� Ti) indicate that Ti

o is a
failure time. Denote the survivor function (sf) by
F(t) � Pr(T � t), which takes the form F(t) � e�t/�

under the Exp(�) model. For datan � (T1
o, Y1, . . ., Tn

o,
Yn), denoting the number of failures by Nn � �n

i�1
Yi and the total observation time by T�

n � �n
i�1 Ti

o,
the likelihood is the well known expression

(1)
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Posterior computations are facilitated by conjugacy,
since �E ~ IG(aE, bE) implies that [�E | Nn, T

�
n] ~ IG(aE �

Nn, bE � T�
n).

The design specified that a maximum of 84
patients were to be accrued, subject to the futility
monitoring rule that the trial should be stopped
early if, based on the current data,

(2)

Thus, the trial is stopped early if, given the current
data, it is unlikely that the median failure time with
E is at least a three month improvement over the
historical median with S. This rule is similar to the
futility stopping rule given by Thall and Simon [11],
who deal with response probabilities �S � PrS(R)
and �E � PrE(R) for binary outcomes, rather than
median event times. Since �̃S and �̃E are independ-
ent parameters following IG distributions, (2) may
be computed by numerical integration using a
package such as S-PLUS, or software freely available
at http://biostatistics.mdanderson.org.

In our simulations, we will use the superscript
“true” to identify fixed parameter values that deter-
mine the probability distributions used to generate
patient outcomes, to distinguish them from the
random parameters in the Bayesian model. The cut-
off pL in (2) was calibrated to obtain probability of
early termination (PET) 0.10 if the true median
failure time with E is �̃E

true � 7 months, the prior
mean E(�̃S) � 4 plus the desired 3 month improve-
ment. This gave pL � 0.015. To obtain the numeri-
cal value of pL yielding a design with PET � 0.10 for
a given �̃E

true, we first evaluated the criterion proba-
bility Pr(�̃S � 3 � �̃E) under the prior and used this
as an upper limit p̄L for pL. Next, we evaluated the
rule for �̃E

true using cut-off p̄L/2. If the resulting
PET � 0.10 then p̄L/4 was used next; if PET � 0.10
then 3p̄L/4 was used next. This method of bisection
was iterated until PET � 0.10 was obtained within
three decimal places of accuracy. Additionally, after
the second bisection, the method was refined by
linearly interpolating or extrapolating. For each
cut-off studied, the trial was simulated 100 times,
with this increased to 2000 to ensure the desired

Pr( | ) .� �� �s E n Ldata p+ < <3

accuracy of the final value of pL. In most cases, this
required five to 10 iterations.

In the simulations, the rule (2) was applied
continuously. Each time a new patient became
available for enrollment, based on the most recent
data at that time the posterior stopping criterion
Pr(�̃S � 3 � �̃E | datan) was updated and applied. The
maximum sample size of 84 was chosen, assuming
an accrual rate of six patients per month, to ensure
a maximum trial duration of about 14 months, to
obtain desirable early stopping probabilities, and
to obtain a reliable posterior for �E. For example,
N84 � 70 failures and total observation time T�

n �
706.3 would give empirical mean failure time
706.3/70 � 10.10 months, which is what would be
expected if �̃E

true � seven months, and these data
would give a posterior 95% CI for �E of (8.12,
12.94). This design’s operating characteristics (OCs)
are summarized in the portion of Table 1 labeled
“exponential-inverse gamma”. For the simulation
results summarized in Tables 1, 3, 5, 6 and 7, each
case was simulated 2000 times, and the distributions
of the number of patients and trial duration are sum-
marized by their 25th, 50th and 75th percentiles.

As a basis for comparison, we simulated the trial
using CMAP, which also constructs stopping rules
using right-censored event times. In this case, CMAP
is based on a probability of the form �E � PE(t* � T)
for a fixed time t*, and it relies on the decomposition
PE{Ao(t)} � PE{Ao(t)|t* � T }�E � PE{Ao(t) | t* 
 T }
(1 � �E), where Ao(t) is the patient’s observed
data at time t in the trial. CMAP stops the trial
if Pr(�S � �� � �E|data) � pL,� , with this rule applied
continuously, using an approximate posterior for �E
obtained by treating PE{A

o(t) | t* � T} and PE{A
o(t) |

t* 
 T} as nuisance parameters and estimating them
empirically. Details are given in Cheung and Thall
[8]. To make the two methods comparable, we con-
structed priors and the monitoring rule for CMAP as
follows. We used t* � 7 to define � � Pr(7 � T), and
derived a beta(aS, bS) prior on �S by equating its mean
mS � aS/(aS � bS) and variance mS(1 � mS)/(aS �
bS � 1) to the mean 0.2934 and variance 0.0024 of
�S �exp(�7/�S) under the IG(53.477, 301.61) prior
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Table 1 Operating characteristics of the exponential-inverse gamma model-based design and
CMAP for the Xeloda � Gemzar trial, based on exponentially distributed failure times

Monitoring based on right-censored event times

Exponential-inverse gamma model Approximate posteriors (CMAP)

�̃E
true PET No. pats. Trial duration PET No. pats. Trial duration

4 0.96 21 33 48 3.4 5.4 7.9 0.87 42 53 69 6.9 8.4 11.1
5 0.66 33 60 84 5.6 10.1 13.3 0.50 54 83 84 8.8 12.2 14.0
6 0.28 73 84 84 11.0 13.2 14.5 0.23 84 84 84 11.7 13.3 14.5
7 0.10 84 84 84 12.4 13.7 14.7 0.10 84 84 84 12.4 13.6 14.7



on �S. This yielded a beta(25.084, 60.406) prior for
�S. We used a beta(0.587, 1.413) prior for �E, which
has the same mean as �S but effective sample size
aE � bE� 2. Since �̃E

true � 7 implies that �E
true � exp

[�7/{7/log(2)}] � 0.50, we used �� � 0.50 � 0.29 �
0.21 in the CMAP stopping rule. As with (2), we
calibrated the cut-off of the CMAP rule to obtain
PET � 0.10 at �̃E

true � 7, equivalently if �E
true � 0.50,

which yielded pL,� � 0.012.
The simulation results are summarized in 

Table 1. Since both methods have PET � 0.10 at
�̃E

true � seven months, differences can be seen as
�̃true decreases from 7 to less desirable values, with
the PET increasing much less rapidly for CMAP. In
the undesirable case where �̃E

true � 4, CMAP has
PET � 0.87 and median sample size 53, compared to
PET � 0.96 and median sample size 33 for the E-IG
model-based method. Thus, in this case, CMAP
has substantially less desirable OCs compared to
the model-based method. This comparison is not
entirely fair, however, since the E-IG model-based
method is being evaluated assuming that the under-
lying model is correct. In the section Robustness, we
will evaluate the robustness of these designs when
the failure times are not exponentially distributed.

It is useful to consider how a comparable design
based on the binary discretized outcome
X � I(7 � T), rather than T, would behave in this
case. Suppose one assumes the same priors on �E
and �S and applies the same stopping rule as used
for the CMAP design, but now assuming the like-
lihood ∏i �E

Xi (1 � �E)
1�Xi and scoring the Xi’s when

they are first observed, so that Xi � 1 at seven
months if Ti 
 7 and Xi � 0 at Ti if Ti � 7. The
posterior of �E would be �(0.587 � �iXi, 1.413 �
�i(1 � Xi)), so computing the early stopping crite-
rion probability Pr(�S � �� � �E|data) is straight-
forward. However, initially only values of Xi � 0
may be observed, so the data for estimating �E are
heavily biased. A consequence of this is that, if
�̃E

true � 7 so that �E
true � 0.50, a desirable value, then

the early stopping probability with this approach
exceeds 0.99. That is, the rule is virtually certain to
stop the trial in a desirable case where one would
not want to stop.

The targeted three-month improvement of �̃E
over �̃S in the stopping rule (2) is a subjective value
determined by the clinician. In the illustrative trial,
it is arguable that since Xeloda is given orally and
has a lower risk of adverse effects, it may be reason-
able to use the stopping criterion Pr(�̃S � �̃E | datan)
with no targeted improvement in median failure
time. This may be considered a phase II equivalence
trial, as defined by Thall and Sung for discrete
outcomes ([12], Section III). In this case, the histor-
ical mean of 4.0 months for �̃S is considered a desir-
able value of �̃E

true, and only very small values, such
as �̃E

true � 1.0 or 2.0 months, are undesirable.

Calibrating this version of the rule to have PET �
0.10 for �̃E

true � 4.0 yields a design with pL � 0.086.
For �̃E

true � 1, 2 and 3, the respective early stopping
probabilities are PET � 1.00, 1.00 and 0.64, with
median sample sizes 13, 23 and 59.

Since it may not be feasible to monitor the data
continuously in some trials, it is worthwhile to
examine the behavior of the design if the early
stopping rule is applied periodically. To do this, we
repeated the simulations, but with (2) applied every
k weeks, for k � 1, 2, 4, 6, 8, 12, 16, 20 or 24. The
results, summarized in Table 2, show that there is a
gradual decline in PET as the monitoring interval is
increased, but even monitoring every eight weeks
still maintains PET � 0.93 when �̃E

true � 4. It thus
appears that, if one accounts for the event times
in this way, then applying the stopping rule period-
ically still provides a safe design while imposing
less of a practical burden during trial conduct.
Moreover, if periodic monitoring is planned
initially then the value of pL in the stopping rule
(2) may be calibrated so that PET equals a given
small value when �̃E

true equals a desirable target.

Accounting for interval censored
progression times

Because each patient’s disease status is evaluated at
eight-week intervals, the actual time of any
patients’ disease progression is not available.
Rather, it is only known whether progression
occurred during each time interval between succes-
sive examinations. For example, if progression is
first discovered at the week 24 examination, then it
is only known that progression occurred between
weeks 16 and 24. This sort of interval censoring of
the time of transition between disease states is
common in medical settings where the patient’s
disease status is evaluated periodically by tests such
as magnetic resonance imaging or computed axial
tomography scan. The previous probability model
ignores this complication.

To account for interval censoring, first consider
a single patient and temporarily suppress both
the treatment and patient indices. Let TP denote
the time of disease progression, TDA � min{TD, TA}

Event times in early phase clinical trials 471

www.SCTjournal.com Clinical Trials 2005; 2: 467–478

Table 2 Effect of periodic rather than continuous monitoring.
The column labeled “0”corresponds to continuous monitoring.
Each entry is the probability of early termination

Monitoring period, in weeks

�̃E
true 0 1 2 4 6 8 12 16 20 24

4 0.96 0.96 0.95 0.94 0.94 0.93 0.91 0.89 0.84 0.85
7 0.10 0.10 0.08 0.08 0.07 0.06 0.05 0.04 0.03 0.03



the time to death or a SAE, and identify the
corresponding parameters and probability func-
tions by the subscripts P and DA. Thus, we now
account for two event times, rather than only one.
For now, we will assume that TP and TDA are
independent and exponentially distributed with
parameters �P and �DA. Let 
0 � 0 � 
1 � 
2 � . . .
denote the successive times when the patient’s
disease status is evaluated, allowing the possibility
that a patient’s actual evaluation times may deviate
from the scheduled times. We will assume that,
like death, an SAE is a terminating event in that
follow-up ends at the time of an SAE, but patients
may be followed for some period of time after
progression.

Each patient’s likelihood contribution may take
one of the following possible forms, which are a
consequence of the fact that, while the actual value
of TDA is observed, only the interval during which
TP occurs can be known. Let To denote the time
of the last observed event or follow up, with
YDA � I(TDA � To) the indicator that the patient’s
time of death or an SAE is observed. Denote the last
disease evaluation time by 
ko, let YP � I(
ko�1 �
TP � 
ko) indicate that progression is discovered at

ko, and denote the probability that progression
occurs between the k � 1st and kth disease
evaluation times by �k � Pr(
k�1 � TP � 
k) �
FP(
k�1)�FP(
k). If the patient dies or has an SAE
without previous observation of disease progression
then, in addition to observing TDA it is known that

ko � TP, so in this case the likelihood contribution
is fDA(TDA)FP (
ko). If the evaluation at 
k�1 is nega-
tive, the patient survives to 
k without an SAE, and
the evaluation at 
k shows progression, then 
k � 
ko

and it is known that 
ko�1 � TP � 
ko � TDA. Since
in any case 
ko � To, the likelihood contribution of
this patient is either �ko FDA(T o) if TDA is adminis-
tratively censored at To, or �ko fDA(TDA) if the
patient dies or has an SAE, i.e., if To � TDA. If TDA is
administratively censored at To and progression
was not observed at 
ko, then the likelihood contri-
bution is FDA(To)FP (
ko). Since it is only known
if a patient progresses during one of the intervals
(
k � 1, 
k] and also survives to 
k, it follows
that YP � 1 if either the last follow time is

ko � To � TDA, or if progression is discovered at 
ko

and the patient later dies or has an SAE, in which
case 
ko � To � TDA.

Accounting for all of this additional structure
due to considering P and DA as separate events and
accounting for the interval censoring of TP, and
now reintroducing the patient indices, the likeli-
hood is given generally by

(3)
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For the exponential case, denote the number of
deaths or SAEs by Nn,DA � �n

i�1 Yi,DA and T�
n,P � �n

i�1

i,ko (1 � Yi,P). The general likelihood (3) now takes
the specific form

(4)

Since L(datan | �DA, �P) � L(datan | �DA) L(datan | �P),
the posteriors of �DA and �P may be computed sep-
arately, and these two parameters also are inde-
pendent a posteriori.

For this extended model, priors on the four
parameters ��S � (�S,P, �S,DA) and ��E � (�E,P, �E, DA)
are required. We assume independent priors with
�j,r ~ IG(aj,r, bj,r) for each treatment j � S, E and
outcome r � P, DA. Some care must be taken when
specifying the four hyperparameters (aj,P, bj,P, aj,DA,
bj,DA) for each j, since the fact that the hazards of
independent exponentials are additive imposes
some constraints. Specifically, Tj � min(Tj,P, Tj,DA)
implies that 	j � 	j,P � 	j,DA for each j � E, S. This
in turn implies that E(	j) � E(	j,P) � E(	j,DA) and,
due to the independence of 	j,P and 	j,DA, var(	j) �
var(	j,P) � var(	j,D). Here, (aS,P, bS,P, aS,DA, bS,DA) �
(20.391, 195.826, 95.401, 1303.670), which implies
that E(�̃S,P) � 7 and E(�̃S,DA) � 9.57. As before, we
assumed that the means of the hazards for E were
the same as those seen historically but we inflated
the variances by multiplying by 10, so that E(	E,r) �
E(	S,r) and var(	E,r) � 10 var(	S,r) for r � P and DA.
This yielded (aE,P, bE,P, aE,DA, bE,DA) � (2.039, 19.583,
9.540, 130.367).

To account for interval censoring of TP, we write
(2) in the form

(5)

which accounts for all four elements of (��S, ��E)
under the extended model. The posterior probabil-
ity in (5) is based on the likelihood (4), with the
distribution of ��S established as described above
and fixed throughout the trial.

Posterior distributions under this model, and the
models discussed below in the following two
sections, were computed using iterative defensive
importance sampling [13], which requires one to
locate the mode of L(data | ��) prior(��) as a function
of �� and compute the gradient at the mode at each
iteration. We used the Nelder–Mead method [14] to
find the mode. All programming was done in C��,
which provides speed, reusability and flexibility.
This language also was chosen to take advantage
of the extensive in-house library of C�� computer
programs in the M.D. Anderson Department of
Biostatistics and Applied Mathematics, which are
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available from the second author on request. While
many of the Bayesian computations described here
could be carried out in WinBUGS, implementing
the simulations described here using this approach
would be highly complex.

To simulate the trial, we generated TP and TDA
independently for several pairs of (�̃ true

E,P , �̃ true
E,DA) values

such that 1/�̃ true
E,P � 1/�̃ true

E,DA � 1/�̃E
true, with either

�̃E
true � 4, the historical mean value, or �̃E

true � 7, the
desired target. For each patient, TDA was observed
continuously and TP was observed at eight-week
intervals up to a maximum of 48 weeks (six evalua-
tions). The cut-off pL was calibrated to obtain PET �
0.10 in the desirable case (�̃E,P

true, �̃E,DA
true ) �(12.0, 16.8),

for which �̃E
true � 7. This yielded pL �0.019. The

stopping rule (5) was applied continuously. The
simulations are summarized in the portion of
Table 3 labeled “Modeling Interval Censored TP”.

To quantify what is gained by modeling TP and
TDA as separate events and accounting for the fact
that TP is interval censored, we evaluated the OCs
of the first design based on the simpler formulation
with stopping rule (2) given previously, when in
fact each patient’s progression times are interval
censored. That is, we simulated the observed event
process for (TP, TDA) with TP interval censored
but used the rule (2) under the simple E-IG model
for T � min (TP, TDA). The results are summarized
in the portion of Table 3 labeled “Ignoring Interval
Censoring”. These simulations show that ignoring
the fact that TP is interval censored greatly reduces
the design’s PET values. Thus, the OCs of a design that
ignores interval censoring may be very misleading,
and accounting for the fact that progression is only
observed periodically provides a much safer design.

Accounting for the effect of disease
progression on survival

A piecewise likelihood

Thus far, we have assumed that the three events
occur independently. In kidney cancer and many

other solid tumors, however, the hazard of death
increases with disease progression. This additional
complication, which is very important clinically
and also may impact the way that a given monitor-
ing rule behaves, may be modeled in a number of
ways. Here, temporarily suppressing S and E for sim-
plicity, we will use a piecewise distribution under
which the pdf of TD changes at TP from f1(x) to
F1(TP)f2(x � TP), where f1(x) and f2(x) are pdfs
defined for x � 0. The joint distribution of TD and
TP is given generally by

(6)

Under this piecewise model, still accounting for the
interval censoring of TP, the likelihood takes one of
four possible forms, summarized in Table 4. To
express things more compactly, we combine the first
two rows of Table 4, which correspond to the two
cases where YP � 1. Under the piecewise model (6),
the probability that progression is discovered at 
ko

and is followed by either death or censoring at To is 

(7)

Similarly, we combine the last two rows of Table 4,
which correspond to the two cases where where
YP � 0. The probability that the last disease evalua-
tion at 
k

o shows no progression and this is followed
by death or censoring at To is

(8)

The second summand in (8) is needed to include
the event TP � To, that the patient has not pro-
gressed by the last follow up time. Denote
TA

o � min(TA, To) and YA � I(TA
o � TA). Assuming

that TA and (TP, TD) are independent, the general
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Table 3 Operating characteristics of the Xeloda � Gemzar trial with TP interval censored due to progression
being evaluated at eight-week intervals for each patient

Modelling interval censored Tp Ignoring interval censoring

�̃E
true �̃E,P

true �̃E,DA
true PET No. pats. Trial duration PET No. pats. Trial duration

4 6.0 12.0 0.98 24 34 47 4.1 5.6 7.9 0.70 42 63 84 7.0 10.5 13.1
4 7.0 9.33 0.97 26 36 49 4.5 6.0 8.1 0.79 36 56 78 6.0 9.1 12.3
4 8.0 8.0 0.98 27 38 52 4.6 6.3 8.6 0.84 35 50 72 5.6 8.4 11.8
7 10.0 23.33 0.14 84 84 84 12.2 13.5 14.6 0.01 84 84 84 12.8 13.8 14.8
7 12.0 16.8 0.10 84 84 84 12.4 13.6 14.8 0.01 84 84 84 12.8 13.8 15.0
7 14.0 14.0 0.07 84 84 84 12.6 13.8 14.8 0.01 84 84 84 12.8 13.9 14.9



likelihood for all of the possible observations of the
three types of events now may be expressed as

(9)

Under the piecewise exponential model where
the hazard of death changes from 	1 to 	2 at TP,
denoting � � 	P � 	1 � 	2, the general likelihood
(6) takes the specific form

(10)

the marginal pdf of TD is

(11)

and the probabilities (7) and (8) take the forms

(12)

and

(13)

Combining these expressions with the fact that
fA(TA)YAFA(TA)1�YA � 	A

YAe�TA
o
	A exponential case, the

likelihood (9) may be written as

(14)

where Nn,A � �n
i�1 Yi,A and Tn,A � �n

i�1{Ti,AYi,A � Ti
o

(1 � Yi,A)}.
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The hazard of death under the piecewise 
model is

(15)

This expression reduces to 	 under the simple
exponential model where 	1 � 	2 � 	, and it
converges to 	1 � 	P as 	2 → ∞. The PFS time 
min{TP, TD} ~ Exp(	1

�1 � 	P
�1), which is the same

distribution as under the model where TP and TD
are independent with TD ~ f1. Intuitively, this is the
case because the hazard of death after progression
has no effect on min{TP, TD}. Consequently, the
median PFS time equals (�̃1

�1 � �̃P
�1)�1. Since TA is

independent of (TP, TD), it follows that the overall
failure time T~Exp(	1

�1 �	P
�1 � 	A

�1) so, in terms of
the medians, the early stopping rule is

(16)

In particular, the post-progression death rate 	2
plays no role in (16). However, if one wishes to
monitor the death rate under the piecewise model,
although median(TD) cannot be computed in
closed form, one may formulate an early stopping
rule in terms of either the mean survival time,
E(TD) � {	1	2 � 	P(	1 � 	P � 	2)}/{	2(	1 � 	P)2}, or
the hazard function hD(x*) evaluated at some
fixed time x � x*, since both quantities involve all
three parameters (	1, 	2, 	P) characterizing fD,P(x, y)
and fD(x).

Establishing priors

In order to establish priors on 		S � (	S,1, 	S,2, 	S,A,
	S,P) under the piecewise model (14), we proceeded
in two stages. Recall that the priors on �̃ j,r, �j,r
and 	j,r determine each other. We first established
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Table 4 Possible outcomes and likelihood contributions for the times to progression, TP, and
death, TD, under the model with TP interval censored and the hazard of death changing from
from f1/F1 before TP to f2/F2 after TP

YP YD Outcome Likelihood contribution

1 1 
ko � 1 � TP � 
k
o � To � TD

1 0 
ko � 1 � TP � 
k
o � To � TD

0 1 
ko � TP and 
ko � To � TD

0 0 
ko � TP and 
ko � To � TD f y y T y dy T TP
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priors on (	S,D, 	S,A, 	S,P) under the simpler model
that assumes TD, TP and TA are mutually independ-
ent, and we then extended this prior to account for
the effect of progression on the hazard of death
under the piecewise model. We proceeded in this
way because, from a clinician’s viewpoint, the
piecewise model is rather complex. The simpler
model thus serves as a conceptual bridge to check
that the priors on 	S,1, 	S,2 and 	S,P yield a prior on
	S,D that makes sense.

For convenience, again temporarily suppress S
and E. The possible outcomes described previously
for P and DA now pertain to P and D. Allowing the
possibility that a patient’s follow-up may be contin-
ued beyond TA, we define TA

o � min{TA, To} and the
indicator YA � I(TA � To) that an SAE is observed.
Accounting for three separate events and interval
censoring of TP, still assuming independence, the
general likelihood is

(17)

Under the exponential model where each Tr | �r ~
Exp(�r) with �r ~ IG(ar, br), the above likelihood
takes the specific form

(18)

Re-introducing S and E, the six hyperparameters
(aS,P, bS,P, aS,D, bS,D, aS,A, bS,A) characterizing the three
independent priors on (	S,D, 	S,A, 	S,P) may be
elicited in many ways. See, for example, Chaloner
et al. [15], or Kadane and Wolfson [16]. A straight-
forward approach is to elicit the mean and a 95%
credible interval for each �̃S,r, which together
determine (aS,r, bS,r). However, one must proceed
with caution when eliciting priors on �̃S,P, �̃S,D
and �̃S,A so that, when combined, they yield a
reasonable prior on the overall failure time
median, �̃S. Since the hazards of independent
exponentials are additive, 	j � 	j,P � 	j,D � 	j,A for
j � E, S, and taking means and variances gives the
two equations

(19)

and
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Thus, given (aS,P, bS,P, aS,D, bS,D, aS,A, bS,A), it is
important to check that the values (aS, bS) resulting
from (19) and (20) give a prior on the overall failure
time parameter that makes sense. Algebraically, one
must determine eight hyperparameters subject to
the two constraints (19) and (20), so there are really
six pieces of information. In practice, instead of
determining the six hyperparameters (aS,P, bS,P, aS,D,
bS,D, aS,A, bS,A) on the right-hand sides of (19) and
(20) and then hoping that the resulting (aS, bS) gives
a reasonable prior on �̃S, one may elicit the six
pieces of information while taking advantage of the
physician’s familiarity with the overall failure rate.
To do this, one may first elicit the mean and 95% CI
of �̃S to determine (aS, bS), and then elicit four of the
six event-specific hyperparameters. Substituting
these values into (19) and (20), one may then check
that the resulting prior of the remaining compo-
nent event time is reasonable. This process may be
iterated if needed to calibrate some of the hyperpa-
rameters. We took this approach, which produced
prior means and 95% CI’s E(�̃S) � 4 (3, 5.2) for the
overall failure time median, and E(�̃S,P) � 7 (2, 10)
and E(�̃S,D) � 12 (9, 15) for the medians of TP
and TD. The resulting hyperparameters were 
(aS,P, bS,P, aS,D, bS,D, aS,A, bS,A) � (20.391, 195.826, 
61.827, 1053.050, 552.371, 38182.100) and (aS,
bS) � (53.477, 301.61), as given earlier. This issue is
still present when using a nonexponential event
time distribution, such as a Weibull, lognormal or
gamma, since in general the hazard of overall
failure is determined by the hazards of the compo-
nent events.

To extend this prior to accommodate the piece-
wise model, we next elicited priors on �̃S,1 and �̃S,2,
subject to the constraint that the resulting prior on
�S,D has the above mean and 95% CI. This required
an iterative process of repeatedly specifying priors
on �̃S,1 and �̃S,2 and evaluating the resulting prior
of �̃S,D until this had mean 12 and 95% CI (9, 15).
This gave prior mean and 95% CI of 14 (12, 16) for
�̃S,1 and 5.75 (2.75, 8.75) for �̃S,2, which imply that
(aS,1, bS,1, aS,2, bS,2) � (188.521, 3787.490, 14.939,
115.627). As before, we assumed that the means of
the hazards for E were the same as for S, but we
inflated the variances by multiplying by 10, so that
E(	E,r) � E(	S,r) and var(	E,r) � 10 var(	S,r) for r � P,
1, and A. For the post-progression death rate,
we used the smaller multiplier var(	E,2) � 2.5
var(	S,2) to stabilize the computations. This
gives the var(�E,2) � 10.4, which is very close to
var(�E,1) � 12.8. These values yielded the hyper-
parameters (aE,P, bE,P, aE,1, bE,1, aE,2, bE,2, aE,A,
bE,A) � (2.039, 13.574, 18.852, 262.529, 5.974,
32.053, 55.237, 2646.580).

To simulate the design under the piecewise
model, each scenario is determined by the four
parameters 		E

true � (	E,1, 	E,2, 	E,P, 	E,A)true. We chose
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numerical values of 		E
true to correspond to the

simpler cases studied previously, with overall
median failure time �̃E

true either 4.0 or 7.0. As
before, we calibrated the cut-off in the stopping rule
to obtain PET � 0.10 in the desirable case, which
gave pL � 0.006. To assess the effect of accounting
for the changing hazard of death, in each case we
also simulated the trial using the rule (5) based on
the previous model that assumes the hazard of
death is not affected by progression. The simula-
tions, summarized in Table 5, show that the
design has very desirable properties, and that
ignoring the fact that progression increases the
subsequent hazard of death inflates the PET, with
the PET increasing 50%, from 0.10 to 0.15, when 
�̃E

true � 7.0.

A randomized phase II trial

Each of the early stopping rules (2), (5) and (16) is
based on an E-versus-S comparison of event time
parameters. An intrinsic problem with comparing
data from a single-arm trial of E to an historical
standard S, using either frequentist or Bayesian
methods, is that any treatment effect is confounded
by between-study effects [17]. This problem, which
can be severe when trial effects are large relative to
treatment effects, arises either when applying early
stopping rules or when using the final data from
the trial of E to estimate the E-versus-S treatment
difference.

These concerns may motivate a randomized
phase II trial of E versus S. The machinery used in

each of the previous sections to conduct a single-
arm trial of E may be used, with some simple
modifications, to construct a randomized trial. To
illustrate this in the general case considered in the
previous section, we assume priors on ��S and ��E
that are both identical to the noninformative prior
on ��E specified in the Establishing priors section,
randomize the 84 patients fairly between E and S,
use the early stopping rule (16) for futility, and also
use the additional rule that the trial will be stopped
early with E declared promising if

(21)

The three possible outcomes are that the trial is
stopped early due to futility, the trial is stopped
early with E declared promising, or the trial runs
to completion without either decision. In the third
case, the investigators may or may not decide to
proceed with a phase III trial of E versus S. The
simulation results are summarized in Table 6. As
might be expected, since now a noninformative
prior is assumed on ��S and there are on average
42 patients per arm, in the null case the PET for
futility is smaller and the trial duration is longer
than the comparable values for the single-arm
trial in Table 5 assuming an informative prior on
��S. However, a great advantage of randomizing in
phase II is that the phase II data may be incorpo-
rated into subsequent phase III comparisons,
provided that the patient entry criteria are the
same [18, 19].
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Table 5 Operating characteristics of the Xeloda � Gemzar trial based on a model accounting for the effect of pro-
gression on the hazard of death. The design is identical that summarized in Table 3, but here the hazard of death
changes at TP under the underlying piecewise hazard model. In the null case (�̃E,1, �̃E,2, �̃E,P)

true � (14, 5.75, 7) with
overall �̃E

true � 4.0. In the alternative case (�̃E,1, �̃E,2, �̃E ,P)
true � (32, 12, 12.25) with overall �̃E

true � 7.0. In both cases,
�̃E,A

true � 48

Piecewise hazard model Ignoring effect of P on 	D

�̃E
true PET No. pats. Trial dur. PET No. pats. Trial dur.

4.0 0.96 31 42 56 5.2 7.0 9.3 0.99 25 34 46 4.2 5.7 7.6
7.0 0.10 84 84 84 12.4 13.6 14.7 0.15 84 84 84 12.3 13.6 14.6

Table 6 Operating characteristics of a randomized trial of Xeloda � Gemzar (X � G) versus 5-FU � Gemzar 
(5-FU � G), accounting for interval censored progression time and the effect of progression on the hazard of death.
The null parameter vector is �̃�0

true � (�̃E,1, �̃E,2, �̃E,P, �̃E,A)
true � (14, 5.75, 7, 48). The alternative parameter vector is

�̃�1
true � (32, 12, 12.25, 48). These give overall median failure times ˜̃�0

true � 4.0 and �̃1
true � 7.0

Early stopping probabilities No. patients

5-FU � G X � G Futility Select X � G 5-FU � G X � G Trial duration

�̃�0
true �̃�0

true 0.86 0.02 23 30 37 23 30 37 7.5 9.8 12.0
�̃�0

true �̃�1
true 0.10 0.38 33 39 43 33 39 42 11.0 12.7 14.0



Robustness

Thus far, we have assumed exponential or piecewise
exponential distributions in order to deal with the
complications addressed in the previous three sec-
tions. If the event rates are not constant, however,
a more complex distribution may be required. In
this section, we examine the robustness of the E-IG
model based method and CMAP, and also illustrate
how a more complex event time model may be
implemented. To do this, we first construct a new
design for monitoring the overall failure rate, as
before, but now assuming that T follows a genera-
lized gamma (GG) distribution. Formally, we assume
that T has pdf

(22)

where �, � and � are all positive-valued parameters
following independent lognormal priors. Thus, six
hyperparameters are required to determine the
priors. Setting � � 1 yields a gamma distribution,
and setting � � 1 yields a Weibull distribution.
We shall refer to this as the generalized gamma-
lognormal (GG-LN) model.

To establish lognormal priors under S, we used
the same elicited mean 4 and 95% CI (3.0, 5.2) for
�̃S as before, and also the elicited values 0.125 for
the mean and 95% CI (0.05, 0.25) of F(12) and the
elicited mean 0.30 and 95% CI (0.15, 0.60) for F(6).
We solved for the six lognormal hyperparameters
using the penalized least squares method of Thall
and Cook [20]. This yielded log(�S) distributed

f t
t
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�
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normal with mean 1.340 and variance 0.0912,
denoted �S ~ LN(1.340, 0.0912), and �S ~ LN(�0.127,
0.1892), �S ~ LN(0.292, 0.1142). We assumed lognor-
mal priors on �E, �E and �E having the same means
but much larger variances. Specifically, we multi-
plied each prior variance under S by the smallest
value so that the historical varS(T) � 2.1 was
inflated at least 10-fold, which yielded the multi-
plication factor 2.6 since the resulting varE(T) �
25.6. Thus, we assumed �E ~ LN(1.340, 2.6 � 0.0912) �
LN(1.340, 0.1462), and so on. We did not use an
arbitrarily large multipier since this yields priors for
which T is likely to take on unrealistically large
values, in turn producing a design with poor prop-
erties. We used an early stopping rule of the same
form as (2), with pL calibrated to give PET � 0.10
when �̃true � 7.0 for T ~ GG with variance equal
to that under the corresponding exponential distri-
bution. This yielded pL � 0.03. Posteriors were
computed using the importance sampling method
described earlier.

To study the robustness of the E-IG and GG-LN
model based rules and CMAP, we simulated data
from a Weibull distribution having �̃true � 4.0 or 7.0
and shape parameter �true � 0.8, 1.0, or 1.2, and
also from a lognormal distribution having the given
�̃true and variance equal to that of the correspon-
ding exponential distribution. The results are sum-
marized in Table 7. For Weibull data with shape
parameter �true � 0.8, all three methods have
inflated PET values, in the range 0.23–0.26, when
�̃true � 7.0. This case is difficult because the hazard
is initially high but monotone decreasing, so early
in the trial a method must  recognize that �̃true � 7.0
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Table 7 Robustness. Operating characteristics of the exponential-inverse gamma (E-IG) model-based design, the
generalized gamma-lognormal (GG-LN) model-based design, and CMAP for the Xeloda � Gemzar trial, when failure times
follow a Weibull distribution with shape parameter 0.80 � � � 1.2, or a lognormal distribution

�̃true � 4.0 �̃true � 7.0

Design PET No. pats. Trial duration PET No. pats. Trial duration

T ~ Weibull, � � 0.8
E-IG 0.94 17 25 41 2.7 4.3 7.0 0.25 84 84 84 10.7 13.2 14.6
GG-LN 0.94 12 24 45 2.1 4.0 7.6 0.26 55 84 84 9.2 13.1 14.5
CMAP 0.82 40 52 73 6.5 8.3 11.7 0.23 84 84 84 11.6 13.3 14.6

T ~ Weibull, � � 1.0
E-IG 0.97 20 32 47 3.4 5.3 7.9 0.10 84 84 84 12.2 13.5 14.7
GG-LN 0.98 16 30 46 2.7 5.0 7.6 0.13 84 84 84 12.4 13.6 14.7
CMAP 0.87 42 53 70 6.9 8.5 11.2 0.10 84 84 84 12.4 13.6 14.7

T ~ Weibull, � � 1.2
E-IG 0.99 26 37 51 4.3 6.3 8.5 0.04 84 84 84 12.6 13.7 14.8
GG-LN 0.99 21 33 46 3.6 5.6 7.7 0.08 84 84 84 12.4 13.6 14.8
CMAP 0.91 42 54 67 7.1 8.5 10.8 0.06 84 84 84 12.5 13.6 14.8

T ~ Lognormal
E-IG 0.94 36 49 63 6.1 7.9 10.3 0.00 84 84 84 12.8 13.7 14.9
GG-LN 0.98 28 38 50 4.8 6.3 8.1 0.02 84 84 84 12.7 13.7 14.8
CMAP 0.79 50 62 80 7.9 10.1 12.3 0.03 84 84 84 12.7 13.7 14.8



despite the relatively large number of early failures
that indicate an unacceptably high event rate. The
case �true � 1.0 is the exponential, studied in
Table 1. Here the GG-LN model has a slightly
inflated PET � 0.13 when �̃true � 7.0. When
�true � 1.2, which produces more later events, all
three methods have PET values smaller than the
nominal 0.10 when �̃true � 7.0. For lognormal data,
this effect is more pronounced. In all cases, when
�̃true � 4.0 CMAP is less safe, with a substantially
smaller PET, larger sample size and longer trial
duration, compared to the other two methods.
Despite the much greater flexibility of the GG-LN
model, the original E-IG model based method
performs very similarly and is remarkably robust in
most of the cases studied.

Since the Xeloda trial data are available, it is of
interest to assess the distribution of T. Of the 84
patients, as of 26 July 2005 there were 81 treatment
failures (46 disease progressions and 35 SAEs), with
sample median 15.7 weeks, virtually identical to the
historical median with 5-FU � G. Goodness-of-fit
analyses under each of the event time models
discussed above showed that the lognormal gave an
excellent fit. Denoting the Kaplan–Meier estimate
by ŜKM(t) and the normal pdf by �, under the log-
normal ��1{1 � ŜKM(Ti

o)} should be approximately
linear in log(Ti

o). The plot showed good linearity,
with R2 � 0.962. For a Bayesian analysis of these
data, assuming that T ~ LN(�, �2) with independent
LN(0,10) priors for � and log(�2), the posterior
mean and 95% CI were 15.9 (13.2–19.3) weeks
for the median �̃ � e� and 23.9 (19.3–30.9) weeks for
the mean �̃ � e��� 2/2.

Discussion

The examples discussed here were chosen to illus-
trate how one may deal with particular compli-
cations that commonly occur when monitoring
event times in clinical trials. There are a several
important issues that we have not addressed. A very
important problem is patient heterogeneity. While
in principle this may be dealt with by including prog-
nostic covariates in the model and monitoring
procedure, it raises the practical issues of dealing
with possible treatment-covariate interactions [21]
and specifying priors. This may be difficult for
covariate parameters, and raises the additional issue
of using empirical versus elicited priors. Finally, it
may be desirable to use multiple stopping rules,
e.g., by specifying a separate rule for the SAE rate.
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