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Abstract
Background: Randomized controlled trials are considered the gold standard for evaluating experimental treatments
but often require large sample sizes. Single-arm trials require smaller sample sizes but are subject to bias when using his-
torical control data for comparative inferences. This article presents a Bayesian adaptive synthetic-control design that
exploits historical control data to create a hybrid of a single-arm trial and a randomized controlled trial.
Methods: The Bayesian adaptive synthetic control design has two stages. In stage 1, a prespecified number of patients
are enrolled in a single arm given the experimental treatment. Based on the stage 1 data, applying propensity score
matching and Bayesian posterior prediction methods, the usefulness of the historical control data for identifying a pseudo
sample of matched synthetic-control patients for making comparative inferences is evaluated. If a sufficient number of
synthetic controls can be identified, the single-arm trial is continued. If not, the trial is switched to a randomized con-
trolled trial. The performance of The Bayesian adaptive synthetic control design is evaluated by computer simulation.
Results: The Bayesian adaptive synthetic control design achieves power and unbiasedness similar to a randomized con-
trolled trial but on average requires a much smaller sample size, provided that the historical control data patients are suf-
ficiently comparable to the trial patients so that a good number of matched controls can be identified in the historical
control data. Compared to a single-arm trial, The Bayesian adaptive synthetic control design yields much higher power
and much smaller bias.
Conclusion: The Bayesian adaptive synthetic-control design provides a useful tool for exploiting historical control data
to improve the efficiency of single-arm phase II clinical trials, while addressing the problem of bias when comparing trial
results to historical control data. The proposed design achieves power similar to a randomized controlled trial but may
require a substantially smaller sample size.
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Background

The randomized controlled trial (RCT) is considered the
gold standard for testing whether an experimental treat-
ment, E, provides a therapeutic improvement over a
standard control therapy, C.1–3 Randomization balances
the E and C treatment arms with respect to both known
and unknown patient characteristics and provides
unbiased estimators of causal E-versus-C treatment
effects on clinical outcomes such as response or survival
time.4 An RCT may be challenging, however, due to the
requirement of a large sample size. Consequently, many
phase II oncology trials use single-arm designs and rely
on historical control data (HCD) to compare the
response rates of E and C and make go/no-go decisions

for conducting a future phase III study.5–7 Single-arm
phase II trials require smaller sample sizes, but they may
produce biased estimators of E-versus-C effects due to
patient selection and systematic changes over time in
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patient prognosis or supportive care. The pervasive use
of single-arm phase II trials has been cited as a major
factor contributing to the high failure rate of phase III
trials.8–11 A comprehensive discussion of single-arm and
randomized designs for phase II oncology trials is pro-
vided by Grayling et al.12

There has been increasing interest in using HCD to
bridge RCTs and single-arm trials, particularly for rare
diseases or cancer subtypes. The US Food and Drug
Administration (FDA)13 has released draft guidance on
using HCD to support drug approval submission in
2019. HCD may be obtained from one or more non-
randomized trials of C, randomized studies, including
C, electronic health records, medical claims and billing
data, product and disease registration, or mobile health
devices.

A well-established method for utilizing HCD to con-
struct bias-corrected estimators of E-versus-C effects
from non-randomized, observational data, including
single-arm trials, is based on propensity score match-
ing.14,15 Using their covariates, a patient from the
HCD is selected to match each patient in the trial to
have numerically similar propensity scores, which are
estimated probabilities of receiving E. An attractive
property of propensity scores is that, assuming no
unobserved confounders, conditional on the propensity
scores, the potential outcomes are independent of the
actual treatments received, and the observed outcomes
can be used to estimate the causal E-versus-C effect of
interest.14 A matched pairs comparison addresses the
problem that, without randomization, patients who
received C may be systematically different from those
who received E. For a large HCD sample, it may be
possible to find several C patients who match each E

patient, so 2:1 or 3:1 matching may be done to improve
reliability.16,17 The data set consisting of the matched
control patients is referred to as synthetic controls,
because they did not arise from randomization between
E and C (Figure 1(a)).

Lin et al.18 used propensity score matching methods
to select additional patients from HCD to augment the
active controls. Schmidli et al.19 suggested using pro-
pensity score methods to utilize the HCD, rather than
naive direct use of the HCD, in a single-arm trial. Li
et al.20 provided a detailed discussion and practical
considerations when using propensity score methods to
incorporate HCD in clinical trials. Thorlund et al.21

provided a set of key questions to help researchers
assess the validity and quality of trials utilizing
synthetic-control methodologies.

Recently, propensity score matching has led to sev-
eral new drug approvals by the FDA. For example,
Brineura (cerliponase alfa) was approved for treating a
specific form of Batten disease based on a 22-patient
single-arm trial compared to a control group with 42
patients.22 Blinatumomab (Blincyto) was approved to
treat Philadelphia chromosome-negative relapsed or

refractory precursor B-cell acute lymphoblastic leuke-
mia, based on a single-arm trial compared with a
synthetic-control sample constructed from 13 historical
studies.23 Ibrance (palbociclib) was approved by the
FDA for treating men with HR+, HER22 metastatic
breast cancer using synthetic-control data.24 Other
methods also have been proposed for using HCD to
design single-arm phase II trials.25,26 A review is given
by Viele et al.27

A limitation of propensity score matching is that the
characteristics of patients treated with E may be so differ-
ent from those of the HCD patients that very few matched
pairs can be identified. The likelihood of this problem can-
not be determined when designing a trial because the
patient data for E are not yet available. In many cases,
only when the trial is completed is it recognized that there
are too few synthetic controls identified from HCD to
provide an adequately powered comparison of E to C.
This was the case for several early single-arm studies of
the combination E = vemurafenib + irinotecan +
cetuximab for BRAFV600E mutated colorectal cancer.
The studies all enrolled patients with better prognosis,
more indolent disease, better performance status, and lon-
ger prior survival, compared to HCD patients treated with
C = irinotecan + cetuximab.28 Consequently, it was
not possible to obtain a sufficient number of matched
pairs to do a bias-corrected comparison.

In this article, rather than performing matched pairs
estimation after the trial of E is completed, we propose
a new Bayesian adaptive synthetic control (BASIC)
phase II design that exploits HCD by doing pair match-
ing during the trial. The BASIC design starts as a
single-arm trial of E. During the trial, based on the
HCD and interim data on E, the design predicts the
number of HCD patients that can be matched to
patients treated with E at the end of the trial. If this
number is large enough to compare E to C with a pre-
specified power, the single-arm trial is continued. If
not, the trial is switched to an RCT, with the randomi-
zation proportion chosen so that, at the end of the trial,
the E and C sample sizes will be balanced. The BASIC
design is illustrated in Figure 1(b).

Gotte et al.29 proposed an adaptive two-stage design,
including an interim decision to switch from a single-
arm trial to a fixed-ratio RCT if a preference score that
measures the comparability of covariates between
patients receiving S and the HCD is lower than a fixed
threshold. There are two main differences between
BASIC and this adaptive two-stage design. First, unlike
the adaptive two-stage design, BASIC makes the
interim decision by predicting the number of matched
historical controls that will be obtained at the end of
the trial. BASIC switches to an RCT if there are an
insufficient number of predicted matched historical
controls, which is a more direct approach than using a
preference score. Moreover, because a preference score
does not have an intuitive interpretation, choosing a
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numerical switching threshold is challenging. Gotte et al.
used a threshold of 0.5, switching to an RCT if the prefer-
ence score \0.5. This may be problematic, for example, if
the preference score \0.5, but a sufficient number of
matched controls can be found in the HCD, so there is no
need to switch to an RCT. Second, when interim data
satisfy the switching criterion, the adaptive two-stage
design switches to a fixed-ratio RCT. In contrast, BASIC
chooses the randomization ratio adaptively based on the
effective sample size of the HCD, and thus is more flexible
and more efficient, in that it only randomizes the number
of patients needed to the control.

Methods

Propensity score matching

A patient’s propensity score14 is the probability of that
patient receiving E, that is, e(X )= Pr (Treatment=EjX ),
estimated based on the patient’s baseline covariates X

using a regression model, such as a logistic model,30,31 fit
to the data on E and C. The model includes all available
patient baseline covariates that may be related to either
the outcome or treatment, that is, all potential confoun-
ders. A key property of propensity scores is that, if their
distribution is balanced between the E and C samples, then

(a)

(b)

Figure 1. (a) Single-arm trial with synthetic controls obtained by matching from historical control data, used in a final comparative
analysis (synthetic-control design) to emulate an RCT; (b) schema of the BASIC design emulating an RCTwith 2N patients
randomized equally between the E and C arms. In stage 1, n (e.g. N=2) patients are enrolled to a single arm E. At the interim decision,
the number of controls Ns that can be synthesized from the HCD by the completion of the trial is predicted. If Ns.0:9N (a sufficient
number of controls can be synthesized), the trial is continued as a single-arm trial of E using synthetic controls; otherwise, the trial is
switched to an RCT, resulting in a hybrid control sample consisting of both concurrent randomized controls and synthetic controls.
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all covariates used in the model also are balanced between
the samples.14

Propensity scores can be used to identify synthetic
controls by doing C-to-E patient matching, as fol-
lows.32 A patient treated with E is randomly selected,
and a matched (synthetic) C patient then is chosen so
that their covariates give similar estimated propensity
scores. The two patients’ outcomes are recorded, the
synthetic matched control is removed from the sample
of C patients, and this is repeated until each E patient
has a matched control. Using the sample of matched
pairs, standard statistical methods can be used to esti-
mate the mean E-versus-C effect and test whether it dif-
fers significantly from 0. Several propensity score
matching algorithms are available.30,31 We use nearest
neighbor caliper propensity score matching with a cali-
per of 0.2 standard deviations, recommended by
Rosenbaum and Rubin,33 Austin,30 Stuart,31 and
Caliendo and Kopeinig,34 which can be implemented
using the R packages MatchIt35 or matching.36

BASIC design

If only a small number of matched controls can be iden-
tified due to large differences between covariates of the
HCD and E trial patients, then the synthetic matched
control approach is not feasible, and it is better to con-
duct an RCT to obtain an unbiased comparison of E to
C. The proposed BASIC design addresses this problem.
Its key property is that, if interim data from a single-
arm trial of E predict that an insufficient number of
matched controls will be synthesized from the HCD,
the design switches to an RCT between E and C.

A BASIC design allows multiple interim decisions
and can target an RCT with any randomization ratio
such as 2:1. For simplicity, we focus on a two-stage
BASIC design with one interim look when half of the
planned maximum of N patients have been accrued to
the single-arm trial of E, and an RCT with a 1:1 rando-
mization. The goal of this BASIC design is to emulate
an RCT with 2N patients randomized fairly between E

and C, with N selected based on a standard power cal-
culation for the RCT (Figure 1(b)).

Predicting the number of matched controls Ns . The BASIC
design starts as a single-arm trial of E. At the interim
decision, the trial data and the HCD are used to predict
the number of matched controls, Ns, that can be identi-
fied after completing the single-arm trial. For patient i,
let Yi denote the binary or continuous outcome,
Xi =(1, xi1, . . . , xir) denote the vector of r observed
baseline patient covariates, and Ti = 1 if the patient is
from the experimental treatment (E) arm and 0 if the
patient is either a synthetic control from the HCD or a
randomized control. Let Nh denote the sample size of
the HCD.

Suppose that n patients are enrolled in the E arm at
the interim decision. Based on the current observed
data, Dn = f(Yi,Xi, Ti), i= 1, . . . , n+Nhg, we fit the
logistic regression model

logit Pr Ti = 1jXið Þf g=Xih

where h=(h0,h1, . . . ,hr)
T is a vector of model para-

meters. The estimated propensity score is

ê Xið Þ=
1

1+ exp �Xiĥð Þ ð1Þ

where ĥ denotes the estimator of h.
We next apply Bayesian posterior prediction37 to

predict the propensity scores of N � n future patients
to be enrolled in the E arm, and thereby the number of
matched controls Ns, based on the observed interim
data. The process for predicting Ns is as follows:

1. Under the following Bayesian model, compute the
posterior distributions of the propensity scores.

(a) Assume that the logit transformation of
propensity score Zi =logit(ê(Xi))=Xiĥ ;

Normal(m,s2), which is generally reasonable
by the central limit theorem;

(b) Assume a noninformative prior for u=
(m,s2), for example, (m,s2);(s2)�1;

(c) Compute the posterior p(ujZn), given the
interim data Zn = fZ1, . . . , Zn+Nh

g, resulting
in m;t n� 1, m̂,

ffiffiffiffiffiffiffiffiffiffi
ŝ2=n

q� �
and s2;Scale� inv�

x2(n� 1, ŝ2), where m̂ and ŝ2 are the sample
mean and sample variance of Z in the E arm.

2. Simulate L propensity score data sets ee 1ð Þ, . . . , ee Lð Þ,
each corresponding to N � n future patients, from
the posterior predictive propensity score distribu-
tion, as follows. For each ‘= 1, . . . , L,

(a) Simulate u ‘ð Þ from p(ujZn).
(b) Simulate eZ ‘ð Þ=(ez ‘ð Þ

1 , . . . ,ez ‘ð Þ
N�n) from f (Zju ‘ð Þ),

and compute the N � n propensity scoresee ‘ð Þ= expitfeZ ‘ð Þg.

3. Predict Ns based on propensity score matching, as
follows. For each ‘= 1, � � � , L, given the predicted
propensity score data set ee ‘ð Þ for N � n future
patients, and the estimated propensity scores of n

enrolled patients and Nh historical patients, use the
propensity score matching algorithm to identify
historical patients matched to the N patients in the
E arm. Let N ‘ð Þ

s denote the total number of matched
historical control patients. Predict Ns using the q th
percentile of fN 1ð Þ

s , . . . ,N Lð Þ
s g. We recommend

using the 50th percentile, that is, the median
(q= 0:5).
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Interim decision. The usefulness of the HCD is quanti-
fied by the synthesis efficiency, SynEff =Ns=N , the
predicted proportion of controls that can be synthe-
sized from the HCD. SynEff = 1 if N matched con-
trols can be synthesized from the HCD, whereas
SynEff = 0 if no matched controls can be synthesized.
Given a specified fixed threshold p between 0 and 1, if
SynEff\p then it is considered unlikely that the HCD
will provide N synthetic controls, so the BASIC design
switches to an RCT. If SynEff .p then the single-arm
trial of E with N patients is continued, at the end up to
N matched controls are identified, and a pair-matched
estimator of the E-versus-C effect is computed.

The interim decision rule of BASIC is as follows:

(i) If SynEff \p, switch to an RCT in which
2N � n� Ns future patients are enrolled during
stage 2 and randomized between E and C in the
ratio (N � n) : (N � Ns).

(ii) If SynEff øp, continue the single-arm trial of E

during stage 2 and enroll N � n additional patients.

The randomization ratio is chosen to obtain approx-
imately N patients in each of the E and C arms at the
end of the trial. The stage 2 randomization produces a
hybrid control arm, consisting of Ns synthetic non-
randomized control patients and N � Ns concurrent
randomized control patients.

The threshold p that controls whether the trial is
switched to an RCT may be chosen by conducting pre-
liminary computer simulations of the trial using several
different values, based on the design’s operating char-
acteristics, including power and type I error rate. A
practical approach is to choose p to give power within
a prespecified margin (e.g. 5%) of a targeted power
(e.g. 80%). A value of p between 0.8 and 0.9 typically
yields good operating characteristics. If switching to an
RCT is not logistically feasible, setting p= 0 gives a
conventional single-arm trial with synthetic controls
constructed from the HCD at the end of the trial. If
desired, one can also add a ‘‘discard’’ rule: if SynEff
\pl, discard the HCD and switch to an RCT with the
randomization ratio (N � n) : N , where pl is a small
value (e.g. 0.05). The rationale for this rule is that if the
HCD differs substantially from the trial population in
that at most a few patients can be matched, one may
completely discard the HCD and take the simpler and
cleaner approach of only using the trial data to com-
pare E to C.

After completing stage 2 of the BASIC design, the
logistic propensity score model is updated by fitting it
to the final trial data and the HCD, and propensity
score matching is used to construct a final set of syn-
thetic controls. Depending on the interim decision, this
can be either a fully synthetic-control arm or a hybrid
control arm as described above. A standard frequentist
test (e.g. a t-test or chi-square test) or statistical

estimates (e.g. means, proportions, or regression
model-based estimates, with confidence intervals) can
be used to evaluate the E-versus-C treatment
effect.30,31,34 Alternatively, Bayesian posterior probabil-
ities and credible intervals can be used for final infer-
ences. While the randomization and adaptive interim
decisions may give final sample sizes of synthetic or
hybrid controls not exactly equal to N , this deviation
typically is small and has a negligible impact on the
operating characteristics of the design, as shown in the
simulation study given below.

Interim futility stopping

If desired, the following Bayesian interim futility stop-
ping rule may be added: if Pr(treatment effect of E .

treatment effect of C + targeted improvement j data)
\ l, then stop the trial for futility, where l is a fixed
cutoff chosen by preliminary simulations (e.g. l= 0:1).
This futility stopping rule is evaluated based on the
interim observed E data and matched HCD. The results
are reported in Appendices I and II in the Supplemental
Material. Other than the futility stopping rule, if appro-
priate, any other type of interim rules (e.g. sample size
re-calculation) also can be added to BASIC to fit trial
objectives.

Results

Simulation settings

We evaluated the operating characteristics of the
BASIC design by computer simulation, including com-
parisons to three alternative designs: an RCT with 1:1
randomization to E and C, a conventional single-arm
design with HCD used as a comparator without match-
ing, and a single-arm design with synthetic controls
generated at the end of the trial using propensity score
matching. The synthetic-control design is a special case
of BASIC with p= 0. We considered both a binary
endpoint (e.g. response) and a continuous endpoint
(e.g. biomarker level), with four covariates, including
two binary confounders X1,X2 and two continuous con-
founders X3,X4. We assumed that the HCD includes
160 patients, and simulated their baseline covariates
from a mixed population, including patients both simi-
lar and dissimilar to the E patients. This was done as
follows:

1. The covariate data of nh comparable historical
patients were generated from a joint distribution.
Specifically, we first simulated (X1,X2,X3,X4) from
a multivariate normal distribution MVN(m1,S1)
with m1 =(0, 0, 0, 0), the diagonal of S1 being
(1, 1, 0:252, 0:252) and the off-diagonal elements
being 0.1. We then converted X1 and X2 to binary
covariates using the cut point 0, such that mean
values of X1 and X2 were 0.5.
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2. The covariate data of Nh � nh non-comparable
patients were generated from a different joint
distribution. Specifically, we first simulated
(X1,X2,X3,X4) from a multivariate normal distri-
bution MVN(m0,S0) with m0 =(0, 0, 0:8, 1:5), the
diagonal of S0 being (1, 1, 0:252, 0:52) and the off-
diagonal elements being 0.1. We then converted X1

and X2 to binary covariates using cut points
F�1(0:2) and F�1(0:8) such that mean values of X1

and X2 were 0.2 and 0.8, respectively, where
F�1( � ) is the quantile function of a standard
normal random variable.

In each simulated trial, we controlled the synthesis
efficiency: SynEff =Ns=N at a fixed value by setting
the value of nh. For the binary endpoint, the outcomes
Yi were generated from the logit model

logit Pr Yi = 1jTi,Xið Þf g=bTi +
X4

k = 1

akXik ð2Þ

For the continuous endpoint, the outcomes were
generated from the normal linear model

Yi =bTi +
X4

k = 1

akXik + Ei ð3Þ

where Ei;iid N (0, 1). We assumed confounder effects
a1 = 0:12,a2 = � 2:6,a3 = � 0:96,a4 = 2 for binary
endpoints and a1 = 0:9,a2 = 0:4,a3 = 1:2,a4 = � 0:2
for continuous endpoints. We simulated trials with a
planned sample size of N = 80 per arm for the RCT,
and 80% power to detect an improvement (treatment
effect size) d of 0.19 (i.e. b= 1:21) for the response
probabilities of E-versus-C, or 0.41 (i.e. b= 0:45) for
the standardized difference between the means of a
continuous endpoint. For the conventional single-arm
design, we used design parameters estimated from the
HCD, for example, historical response rate, and an
improvement d, to estimate the sample size, obtain
80% power, and control type I error at 5%.

We considered the values SynEff = 1:0, 0:8, 0:5,
0:3, 0:1, and 0 to represent a wide range of degrees of
usefulness of the HCD to allow matched controls to be
synthesized. We considered BASIC designs with one
interim decision based on p= 0:9 after n= 40 of the
N = 80 patients per arm were enrolled. For all designs,
at the end of the trial a one-sided Z-test for binomial
proportions or t-test for continuous endpoints was used
to test the null hypothesis of no E-versus-C effect ver-
sus the alternative that E provides an improvement,
with a significance level 0.05. We simulated 5000 trials
using each design in each simulation scenario and cal-
culated the type I error rate, power, average total sam-
ple size, and relative bias jd̂� dj=d, where d̂ is the
estimate of the effect size. Figures 2 and 3 show the

simulation results for binary and continuous endpoints,
respectively. Detailed simulation results are shown in
Tables A1 and A2 of Appendix II in the Supplemental
Material.

Simulation results

Figure 2 illustrates the simulation results for binary
endpoints. As expected, the RCT yields high power,
low bias, and a type I error rate near 0.05, but it
requires the largest sample size. The single-arm design
requires the smallest sample size but has by far the low-
est power (Figure 2(b)) and largest bias (Figure 2(c)) of
all four designs, especially when patients in the HCD
differ substantially from those in the trial (i.e. SynEff
= 0, 0:1 or 0.3). The single-arm design also fails to
control the type I error rate at the nominal level, with
values substantially lower than 0.05 (Figure 2(a)). the
synthetic-control design has much higher power and
much lower bias than the single-arm design. In the case
where an insufficient number of controls can be
synthesized due to large differences between HCD
patients and trial patients, the synthetic-control design
has lower power and higher bias than the RCT.

BASIC has the best overall performance among all
four designs. Compared to the RCT, BASIC has similar
power, bias, and type I error but requires a substan-
tially smaller sample size (Figure 2(d)). For example,
when matched controls for all E patients can be synthe-
sized from the HCD (i.e. SynEff = 1 in Figure 2(d)),
the sample size of BASIC is about half that of the RCT.
BASIC has much higher power and much smaller bias
than the conventional single-arm design. As BASIC
adaptively determines whether there is a need to rando-
mize patients to C, depending on the usefulness of the
HCD, BASIC avoids the loss of power seen with the
synthetic-control design when an inadequate number of
controls can be synthesized from the historical data (i.e.
SynEff= 0:1, 0:3 in Figure 2(b)). When synthesis effi-
ciency = 1, BASIC has slightly higher power than a
RCT. This is because, in this case, each patient in the
trial has a matched control and the propensity score
matching often results in better covariate balance than
complete randomization, thus leading to higher power
than an RCT. This phenomenon also was reported by
Joffe and Rosenbaum38 and Ali et al.39 For the same
reason, the type I error of BASIC is slightly lower than
the nominal value.

In summary, BASIC solves the problem of bias with
the single-arm design and solves the problem of low
power with the synthetic-control design when the HCD
patients have characteristics different from those of trial
patients.

Figure 3 shows the simulation results of the four
designs with a continuous endpoint. These results are
qualitatively very similar to those seen for a binary
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endpoint. BASIC again has the best overall perfor-
mance, with power and bias similar to the RCT but
substantially smaller sample size.

Sensitivity analysis

We also studied the sensitivity of the BASIC design to
(1) the time point used for the interim analysis, (2) sam-
ple size of 40 per arm, (3) effects of unmeasured con-
founders not included in the patients’ covariates, and
(4) patient drift. Figures A1–A6 of Appendix I in
Supplemental Material show the simulation results,
and detailed results are shown in Tables A3–A8 of
Appendix II in Supplemental Material.

We also considered cases with the interim analysis at
an earlier time point, when t = 20% patients are
enrolled, and a later time point when t= 90% patients
are enrolled. As shown in Figures A1 and A2, type I

error, power, and bias are generally similar to the case
with t = 50%, suggesting that BASIC is robust to the
choice of interim time. Of note, the sample size is
slightly sensitive to the interim time. For example, if
SynEff = 0:8, when more data are used to estimate
propensity scores (e.g. t= 90%), BASIC requires a
smaller sample size than cases where fewer data values
are used (e.g. t = 20% or 50%). This probably is
because BASIC can estimate propensity scores more
accurately by using more data. In general, we recom-
mend t= 50%, which provides enough data for an
interim decision but also is early enough to allow the
adaptation to be effective.

Figures A3 and A4 show simulation results for binary
and continuous endpoints, respectively, when the sample
size is 40 for the treatment arm and 80 for the historical
data. The sample size of the single-arm design is estimated
based on HCD, as described before. The treatment effect

(a) (b)

(c) (d)

Figure 2. Simulation results, including (a) type I error rate, (b) power, (c) relative bias, and (d) average total sample size, of the
RCT, single-arm design (SA), single-arm design with synthetic controls (SC), and BASIC design, for a binary endpoint under different
synthesis efficiencies from the historical control data. If SynEff = 0, that is, no historical controls are chosen, SC becomes infeasible,
and thus its results are null values.
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size is adjusted to ensure that the RCT yields 80% power.
The results are generally similar to what was reported
previously, showing that BASIC still has the comparative
advantages seen with larger sample sizes.

To assess how the four methods behave when some
covariates that affect treatment or outcome are not
observed, that is, unmeasured confounders, we consid-
ered the case of a binary endpoint with sample sizes
N = 80 per arm for the RCT, 80 for the E arm of the
synthetic-control design and BASIC, and Nh = 160 for
the HCD. For the single-arm design, we estimated the
sample size based on the HCD. The methods for
generating covariates were similar to those in the earlier
simulations. For patients in the trial of E, we
considered m1 =(0, 0, 0, 0, 0), the diagonal of S1 as
(1, 1, 0:252, 0:252, 0:252) and the off-diagonal elements
0.1, and a cut point 0 used to convert X1 and X2 to
binary covariates, to simulate the covariates. For the
historical C patients, we generated covariates from a

mixture distribution: (1) covariates of nh comparable
historical C patients were generated from the same
distributions used for E patients and (2) covariates of
Nh � nh non-comparable patients were generated from
different distributions, with m0 =(0, 0, 0:8, 1:5, 1), the
diagonal of S0 as (1, 1, 0:252, 0:52, 0:252) and the off-
diagonal elements all 0.1, and cut points F�1(0:2) and
F�1(0:8) used to convert X1 and X2 to binary
covariates, respectively. We considered BASIC deigns
with the values SynEff= 1, 0:8, 0:5, 0:3, 0:1 and 0,
obtained by setting the value of nh. The outcomes were
generated from the logit model

logit Pr Yi = 1jTi,Xið Þf g=bTi +
X5

k = 1

akXik ð4Þ

with a1 = � 0:5, a2 = � 1:5, a3 = � 2, a4 = � 0:5,
a5 = 4 and b= 1:02 (under which RCT detects an
effect size d= 0:2 with the power of 80%). We assumed

(a) (b)

(c) (d)

Figure 3. Simulation results, including (a) type I error rate, (b) power, (c) relative bias, and (d) average total sample size, of the
RCT, single-arm design (SA), single-arm design with synthetic control (SC), and BASIC design, for a continuous endpoint under
different synthesis efficiencies from the historical control data. If SynEff = 0, that is, no historical controls are chosen, SC becomes
infeasible, and thus its results are null values.
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that the covariate X5 was not observed and not included
in the propensity model. Figure A5 shows the simula-
tion results. In the presence of unmeasured confoun-
ders, BASIC yields satisfactory performance similar to
RCT, but with smaller sample size, and higher power
and lower bias than the single-arm and synthetic-
control designs. Compared to the ideal case where all
confounders are included in the propensity model, the
power of BASIC is slightly lower with slightly higher
bias. This highlights the importance of including all
potential confounders in the propensity model,14,15 if
they are available.

In some trials, the baseline patient covariate distribu-
tion may drift over time and become different between
stages I and II. To evaluate the performance of BASIC
in the presence of drift, we considered the case of a bin-
ary endpoint with four covariates, X1,X2,X3,X4, and an
interim analysis when t = 50% patients are enrolled.
The covariate distribution and data generation proce-
dure of the E patients before the interim analysis were
the same as those in the simulations. For patients after
the interim analysis, the mean value of X4 drifted higher
by 0.2 standard deviation. The treatment effect size was
adjusted accordingly, so that the RCT has 80% power.
Figure A6 shows the simulation results. In the presence
of this population shift, BASIC still had the best overall
performance, with power and bias similar to the RCT,
but smaller sample size; and higher power and lower
bias than the single-arm and synthetic-control designs.
BASIC is robust to patient drift because matching with
the HCD largely eliminates the impact of patient drift.

BASIC with interim futility stopping

We also investigated the performance of BASIC with
the Bayesian interim futility stopping rule Pr(treatment
effect of E . treatment effect of C j data) \ l, where
the cutoff l was calibrated to control the probability of
early stopping in the case where E provides an improve-
ment d over C at 10%. We considered binary and con-
tinuous endpoints, and treatment effect size d = 0.20
(i.e. b= 1:25) for the response probabilities of E-ver-
sus-C, or 0.41 (i.e. b= 0:46) for the standardized differ-
ence between the means of a continuous endpoint. The
remaining settings and data generation procedure were
the same as those described in the simulations. Figures
A7 and A8 of Appendix I and Tables A9 and A10 of
Appendix II in Supplemental Material show the simula-
tion results. In general, BASIC yields power and bias
similar to an RCT, but with smaller sample size; higher
power and lower bias than the single-arm design; and
higher power than the synthetic-control design. If
desired, a standard frequentist-based approach could
be used for interim futility stopping.

Discussion

We have proposed a new hybrid phase II design,
BASIC, that exploits HCD to do approximately
unbiased estimation of E-versus-C effects similarly to
an RCT. The key property of BASIC is that, depending
on the usefulness of the HCD to allow synthetic con-
trols to be identified, it may adaptively switch from a
single-arm trial to an RCT. Our simulations show that
BASIC (1) avoids the problem of biased estimation
when single-arm trial results are compared to HCD, (2)
is superior to the common approach of doing a com-
parison based on synthetic matched controls identified
at the end of a single-arm trial, and (3) performs simi-
larly to an RCT in terms of power and bias, but with a
much smaller sample size.

We have focused on the case that starts with a single-
arm trial and then may adaptively switch to an RCT.
The BASIC design can be modified to start as an RCT
and then adaptively adjust the randomization ratio or
switch to a single-arm trial (the extreme case with rando-
mization probability 0 to the control) based on the pre-
dicted number of controls that can be synthesized from
the HCD. While we estimated propensity scores using a
logistic regression model, a nonparametric approach can
be used to improve robustness of the propensity score
estmation. For example, one may use generalized
boosted models,40 which can estimate a nonlinear rela-
tionship between covariates and propensity scores.
BASIC relies on estimated propensity scores to predict
the expected number of matched patients at the end of
the trial, and uses this to decide whether to switch to an
RCT. The interim decision time should be chosen appro-
priately, so that there are a reasonable number of interim
data values to reliably fit and estimate the propensity
model. The interim decision time should be chosen and
calibrated by simulation, while accounting for other
clinical and logistic considerations.

As with all propensity score-based methods, the
validity of BASIC relies on the assumption that there
are no unmeasured confounders. Consequently, when
building the propensity model, it is critical to include as
many key prognostic factors as feasible in the model,
based on clinical judgment and historical data. Ali
et al.39 summarized methods for dealing with unmea-
sured confounders. Because the assumption of no
unmeasured confounders cannot be tested, a sensitivity
analysis provides a useful tool to assess the potential
impact if this assumption is violated.41

The interim adaptation by BASIC makes it challen-
ging to implement blinding if the trial is switched to an
RCT. This might be done by establishing an indepen-
dent data safety monitoring committee and a coordi-
nating center to perform the interim analysis and
decisions, and the possible randomization in stage 2.
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More generally, FDA guidance provides useful recom-
mendations to maintain the integrity of trials that use
adaptive designs.42
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