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ABSTRACT 

Identifying optimal doses in early-phase clinical trials is critically important. Therapies 

administered at doses that are either unsafe or biologically ineffective are unlikely to be 

successful in subsequent clinical trials or to obtain regulatory approval. Identifying 

appropriate doses for new agents is a complex process that involves balancing the risks 

and benefits of outcomes such as biological efficacy, toxicity, and patient quality of life. 

While conventional phase I trials rely solely on toxicity to determine doses, phase I-II trials 

explicitly account for both efficacy and toxicity, which enables them to identify doses that 

provide the most favorable risk-benefit trade-offs. It is also important to account for patient 

covariates, since one-size-fits-all treatment decisions are likely to be suboptimal within 

subgroups determined by prognostic variables or biomarkers. Notably, the selection of 

estimands can influence our conclusions based on the prognostic subgroup studied. For 

example, assuming monotonicity of the probability of response, higher treatment doses 

may yield more pronounced efficacy in favorable prognosis compared to poor prognosis 

subgroups when the estimand is mean or median survival. Conversely, when the 

estimand is the three-month survival probability, higher treatment doses produce more 

pronounced efficacy in poor prognosis compared to favorable prognosis subgroups. 

Herein, we first describe why it is essential to consider clinical practice when designing a 

clinical trial and outline a stepwise process for doing this. We then review a precision 

phase I-II design based on utilities tailored to prognostic subgroups that characterize 

efficacy-toxicity risk-benefit trade-offs. The design chooses each patient’s dose to 

optimize their expected utility and allows patients in different prognostic subgroups to 

have different optimal doses. We illustrate the design with a dose-finding trial of a new 

therapeutic agent for metastatic clear cell renal cell carcinoma.  
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Introduction 

Only 10% of new agents that enter phase I clinical testing will be successful in reaching 

the market, while 68% and 40% of agents will fail during phases II and III, respectively.1 

Finding the right dose in an early-phase trial is crucial because therapies administered at 

doses that are unsafe or biologically ineffective are unlikely to be successful in 

subsequent phases or to achieve regulatory approval. Choosing the right dose or doses 

for a new therapy requires evaluation of risk-benefit trade-offs for outcomes such as 

biological efficacy, toxicity, and quality of life.2-4 In contrast with traditional phase I trials 

that determine a dose based solely on toxicity, phase I-II trials explicitly account for both 

efficacy and toxicity and use these to identify doses that provide the most desirable risk-

benefit trade-offs.5, 6 In recent years, it has become increasingly evident that one-size-

fits-all dose optimization methods may be inadequate because a patient’s covariates, 

such as a laboratory or clinical biomarker, often play important roles in determining what 

dose is most appropriate. Consequently, dose-finding designs should account for patient 

heterogeneity in the outcomes and risk-benefit trade-offs they wish to prioritize.  

To establish a context for the phase I-II design that we will review, we first describe a 

multistep process that provides a coherent basis for designing a dose-finding trial with 

personalized treatment decisions. We consider the way in which a physician may choose 

an individual patient’s treatment in clinical practice and outline corresponding procedures 

to construct and implement a dose-finding design. We demonstrate that a precision phase 

I-II design integrates not only individual patient covariates for modeling dose-outcome 

relationships, but also subjective risk-benefit trade-offs between desired and adverse 

outcomes through a utility function for improved dose selection. We also illustrate how a 
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utility function may be constructed to vary among patients based on their specific 

covariates. We then review a precision phase I-II dose-finding design that uses utility 

functions tailored to prognostic subgroups, where a utility function quantifies risk-benefit 

trade-offs between toxicity and efficacy for each subgroup. We illustrate this design with 

a phase I-II trial for a new agent to treat metastatic clear cell renal cell carcinoma 

(mccRCC).4   

 

Connecting Clinical Trial Design to Clinical Practice 

While it is a truism that a clinical trial design should reflect real-world clinical practice, it 

may not be obvious how to construct such a design. To provide a coherent structure, we 

will describe steps for informed decision-making in medical practice, with corresponding 

steps for the design and conduct of a dose-finding trial. These are given in Table 1, 

including a column for clinical practice and a corresponding column for designing and 

conducting a phase I-II dose-finding trial. For a Bayesian model-based phase I-II design, 

model specification typically involves selecting a noninformative or weakly informative 

prior distribution, and model fitting involves iteratively updating the posterior distribution 

based on the most recently available data. Estimation consists of computing posteriors of 

quantities of interest, such as probabilities of response and toxicity, and decision criteria 

may be based on posterior quantities or predicted values as functions of treatment or 

doses and patient covariates. 

The International Council for Harmonisation (ICH) of Technical Requirements for 

Registration of Pharmaceuticals for Human Use recently released the ICH E9(R1) 
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guidance that defines “estimands,” i.e., a quantity to be estimated in a statistical analysis, 

to be used when optimizing risk-benefit assessments, depending on the clinical context.7-

9 A recent review highlights the need to use estimands that incorporate treatment effects 

on efficacy, toxicity, and patient-reported quality of life (QOL).7 Ideally, estimands should 

be readily interpretable by practicing physicians and defined as functions of treatment or 

dose and subgroup as determined by patient covariates. Examples of commonly used 

estimands include the probability of toxicity or response within a specified time from 

treatment initiation, probability of survival beyond a specified time, mean or median 

survival time, and hazard ratio for survival time.3 Importantly, the choice of an estimand 

may have a profound effect on treatment selection, with different estimands giving 

different treatment effect evaluations across patient subgroups. This will be illustrated 

below, where we will see that when the estimand is mean or median survival, higher 

treatment doses can yield much higher efficacy in patient subgroups with favorable 

prognosis compared with poor prognosis, whereas when the estimand is three-month 

survival probability, efficacy is more pronounced in poor-prognosis subgroups. 

To choose an optimal treatment, we assign a numerical utility to each outcome, allowing 

these to vary by patient subgroup. Risk-benefit tradeoffs for a specific subgroup are 

reflected in the values assigned to combinations of outcomes and subgroups. Examples 

include U(response, toxicity, subgroup) in a dose-finding trial4 or U(PFS, QOL, subgroup) 

in a randomized comparative trial,10 where PFS denotes progression-free survival and 

QOL denotes quality of life. For example, Lee et al.11 provided a decision analysis based 

on the preference of older patients with advanced breast cancer for treatments associated 

with lower toxicity and thus better QOL at the cost of lower biological efficacy for extending 
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PFS time. While long PFS time with no toxicity typically has high utility for patients of all 

ages, the utility assigned to low toxicity but shorter PFS time is greater for older patients 

compared to younger patients. Consequently, a treatment with high efficacy for extending 

PFS time but accompanied by high toxicity is less likely to be chosen as optimal for older 

patients. Such trade-offs are inherently subjective, as reviewed in detail elsewhere,3, 12, 13 

but this subjectivity is an important advantage of utility functions, rather than a drawback. 

If several utility functions corresponding to different risk-benefit trade-offs are under 

consideration, calculations that identify optimal treatments or doses can be performed 

using each utility function as a sensitivity analysis that provides physicians and patients 

with insight into how different utility assignments impact treatment decisions.  

 

Prognostic and Predictive Covariates 

The magnitude and direction of estimated treatment effects on clinical outcomes are often 

influenced by baseline patient covariates, also referred to as “moderator variables.”14, 15 

As reviewed extensively,15 causal diagrams can be used to distinguish between two 

different types of moderator effects based on underlying data-generating processes 

(Figure 1). The first type of moderator effect (Figure 1A) is commonly known as a 

“prognostic effect,” a term we adopt here. It has also been described in the literature as 

“main effect,” "additive effect," “risk magnification," “risk modeling,” or "effect measure 

modification."3, 14-19 As an example in mccRCC, the International Metastatic Renal Cell 

Carcinoma Database Consortium (IMDC) prognostic score is used by organizations such 

as the National Comprehensive Cancer Network to guide therapeutic decisions. This 

score is calculated by combining laboratory and clinical variables such as anemia, 
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thrombocytosis, neutrophilia, hypercalcemia, performance status, and time from 

diagnosis to treatment.20, 21 Based on their IMDC scores, patients with mccRCC can be 

categorized into favorable-, intermediate-, or poor-risk prognostic subgroups.20, 22, 23 

IMDC score is an established prognostic factor influencing survival outcomes for drugs 

such as axitinib that target the vascular endothelial growth factor (VEGF) pathway.20 

Patients in the poor-risk IMDC subgroup are at higher risk of experiencing adverse events 

such as fatigue and weight loss compared to patients with favorable risk. These adverse 

events can contribute to a shorter survival time for patients with poor-risk IMDC disease 

regardless of the treatment they receive (Figure 1B).  

 

The second type of moderator effect, which we call a “predictive effect,” occurs due to a 

biological interaction between a covariate and a particular treatment via a mediating 

pathway (Figure 1C). A covariate that is predictive for one agent may not be predictive 

for another. Other names used in the literature include “treatment interaction,” 

“multiplicative effect,” “biologic interaction,” “effect modeling,” and “biological treatment 

effect modification.”3, 14-19 A clinical example in mccRCC is the use of baseline soluble 

vascular endothelial growth factor receptor 3 (sVEGFR-3) level as a predictive variable 

that influences the mediating VEGF pathway targeted by axitinib and thus modifies the 

effect of axitinib on clinical outcomes such as survival time and adverse events (Figure 

1D).24 In clinical data, predictive effects are typically weaker and more challenging to 

identify than prognostic effects.3, 15, 18, 25, 26 Due to the challenges in modeling predictive 

effects, many statistical models used in drug development do not include predictive 

covariate effects. On the other hand, prognostic covariates, which are more likely to have 
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consistent and additive effects on outcomes, are often included in regression models to 

improve the precision of statistical estimates and outcome predictions.14, 16, 27-31 While we 

focus here on dose-finding based on risk-benefit trade-offs that account for prognostic 

covariates, our framework can easily be extended to include predictive covariates.  

 

Prognostic Influence on Dose Finding with Time-to-Event Outcomes 

Although, for practical reasons, most phase I-II designs use early efficacy endpoints such 

as objective response evaluated within 30 days, modern dose-finding designs are 

beginning to incorporate more long-term clinical outcomes, such as overall survival or 

PFS time.32, 33 Toxicity can also be defined as a time-to-event variable monitored 

continuously over a prespecified follow-up period.2, 4, 6, 33 The effect of patient prognosis 

on a time-to-event outcome may manifest differently based on the estimand employed to 

characterize a treatment or dose effect, leading to potentially conflicting treatment 

evaluations.3, 13, 34  

 As a simple illustration, we assume a proportional hazards model with an exponential 

distribution for the baseline hazard function in the numerical example below.35-37 

However, the same phenomenon is observed for models such as a Weibull, gamma, or 

other distribution with a hazard function that may increase or decrease over time.34 Under 

the assumed model, the hazard (rate), h is constant over time and changes with dose 

and patient prognostic subgroup. The following examples consider two doses, d = 1 and 

d = 2, and two prognostic subgroups, s = fav (favorable) and s = poor, resulting in four 

hazards, h(1,fav), h(2,fav), h(1,poor), and h(2,poor), and two hazard ratios (HR) 
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comparing dose 2 to dose 1 for each subgroup: HR(fav) = h(2,fav) / h(1,fav) for favorable 

risk scores and HR(poor) = h(2,poor) / h(1,poor) for poor risk scores. 

Suppose that a phase I-II dose-finding trial of a new investigational drug as salvage 

therapy for mccRCC has been completed, and one wishes to choose between doses 1 

and 2. Denote the hazard of death by hD(d,s) for dose d and subgroup s, so the HR 

comparing the two doses in each subgroup is 

 HRD(s) = hD(2,s) / hD(1,s)        (1) 

Suppose that dose 2 yields greater benefit than dose 1 in overall survival (OS) time, with 

estimated HRD(fav) = HRD(poor) = 0.5 in both IMDC risk groups. For time to toxicity, 

suppose that dose 2 is more likely to produce dose-limiting toxicities (DLTs) than dose 1, 

with an estimated dose 2 to dose 1 HRT(fav) = HRT(poor) = 1 / 0.75 = 1.33 that is stable 

across IMDC risk groups. Figure 2 shows the time-to-event curves for efficacy and toxicity 

stratified by IMDC favorable- or poor-risk prognostic subgroups. Under the exponential 

distribution, HRD = 0.5 implies that the median survival of patients treated with dose 2 is 

double that of patients treated with dose 1. Accordingly, if patients with favorable-risk 

IMDC prognosis have a median OS of 17.3 months when treated with dose 1, then the 

median OS with dose 2 is 34.6 months for a median OS difference of 34.6 – 17.3 = 17.3 

months. Under an exponential distribution, mean = median / loge(2), and therefore the 

difference in mean OS between dose 2 and dose 1 is 49.92 – 24.96 = 24.96 months for 

favorable-risk patients. Patients with poor-risk IMDC prognosis have a median OS of 4 

months with dose 2 and 2 months with dose 1 for a dose 2 versus dose 1 median OS 

difference of 4 – 2 = 2 months and mean OS difference of 5.77 – 2.89 = 2.88 months. 

Therefore, in terms of mean or median survival time, the benefit of dose 2 over dose 1 is 
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far greater for patients with IMDC favorable risk than for patients with poor risk (Figure 

2A-B).  

A different conclusion is reached, however, if one focuses on a different estimand, namely 

survival probabilities beyond a given milestone time point, defined by the survival 

probability difference (SPD) of dose 2 versus dose 1 in subgroup s at 3 months,  

SPD(3, s) = P(TD > 3 | d = 2, s) – P(TD > 3 | d = 1, s),                                        (2) 

where TD denotes survival time (Figure 2A-B). For each dose (d = 1 or 2) and IMDC 

subgroup (s = fav or poor), let hD(d,s) denote the hazard of death for that dose and 

subgroup. Under an exponential distribution, the survival probability of patients treated 

with dose d in IMDC subgroup s is P(TD > t | d, s) = exp{−hD(d,s) t}, where t is a milestone 

time point of interest, such as t = 3 months. The exponential distribution has h = 1 / mean, 

and the 3-month SPD for patients with IMDC favorable risk is  

SPD(3, fav) = P(T > 3 | d = 2, fav) – P(T > 3 | d = 1, fav) = .942 – .887 = .055. 

For patients with IMDC poor risk, the SPD is  

SPD(3, poor) = P(T > 3 | d = 2, poor) – P(T > 3 | d = 1, poor) = .595 – .354 = .241. 

Thus, in terms of 3-month survival probabilities, the benefit of dose 2 over dose 1 is much 

larger for patients with IMDC poor risk than for patients with favorable risk (Figure 2A-B).   

This numerical example shows that, if one wishes to account for a patient’s subgroup 

when comparing doses in order to choose a best personalized dose, how “best” is defined 

depends on the estimand used to evaluate the doses. Different estimands can give very 

different answers, even for a specific endpoint such as survival time. Thus, one must 
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decide, for example, whether mean survival time or survival probability beyond 3 months 

is what matters most in evaluating treatments. 

Time to toxicity, YT, also depends on the particular shapes of the survival distribution 

curves being compared, which may change with patient prognosis (Figure 2C-D). 

Suppose that dose 2 has a higher DLT hazard at any time compared to dose 1 with 

HRT(fav) = HRT(poor) = 1 / 0.75 = 1.33 that is stable across IMDC risk groups. Because 

many modern phase I-II trials in oncology, including mccRCC trials, use 3 months from 

treatment initiation as the evaluation window for DLTs, we will focus on the toxicity 

probability difference (TPD) of dose 2 versus dose 1 in subgroup s at 3 months,  

TPD(3, s) = P(YT < 3 | dose = 2, s) – P(YT < 3 | dose = 1, s),                             (3) 

where YT denotes time to DLT (Figure 2C-D). Assuming monotonicity, higher doses 

increase both efficacy and toxicity. For each dose (d = 1 or 2) and IMDC subgroup (s = 

favorable or poor), let hT(d,s) denote the hazard of DLT for that dose and subgroup. Under 

an exponential distribution, the toxicity probability of patients treated with dose d in IMDC 

subgroup s is P(YT < t | d, s) = 1 – exp{−hT(d,s) t}, where t is a milestone time point of 

interest, such as t = 3 months. If the toxicity probability at 3 months for dose 2 in the 

favorable-risk group is P(YT < 3 | dose = 2, fav) = .086, then hT(2, fav) = .03. Assuming 

HRT(fav) = hT(2, fav) / hT(1, fav) = 1 / 0.75 = 1.33, we obtain hT(1, fav) = 0.0225, which 

gives P(YT < 3 | dose = 1, fav) = .065. Therefore, the 3-month TPD for patients with IMDC 

favorable risk is 

TPD(3, fav) = P(YT < 3 | d = 2, fav) – P(YT < 3 | d = 1, fav) = .086 – .065 = .021.  



 
 

13 
 

For IMDC poor risk, if the toxicity probability at 3 months for dose 2 is P(YT < 3 | d = 2, 

fav) = .201, then we can use the same approach to estimate hT(2, poor) = .075 and 

hT(1, poor) = .05625 because HRT(poor) = hT(2, poor) / hT(1, poor) = 1 / 0.75 = 1.33. This 

allows us to estimate P(YT < 3 | dose = 1, poor) = .155. Accordingly, the 3-month TPD for 

patients with IMDC poor risk is 

TPD(3, poor) = P( YT < 3 | d = 2, poor) – P( YT < 3 | d = 1, poor) = .201 – .155 = .046.  

This shows that, in terms of 3-month DLT probabilities, the benefit of dose 1 over dose 2 

is larger for patients with IMDC poor-risk mccRCC (Figure 2C-D).  

Another key point is that the prioritization of the two quantities, 3-month SPD and 3-month 

TPD, over more long-term efficacy and toxicity outcomes is itself a decision often done 

for convenience in phase I-II designs that will impact dose finding. In such cases, patients 

with poor prognosis may be more likely to obtain early efficacy benefit (Figure 2A-B), and 

thus the design will tend to prioritize doses with higher efficacy in the poor-risk population, 

at the cost of potentially higher toxicity. Researchers should be aware of this implicit 

assumption to ensure that risk-benefit trade-offs are properly accounted for during phase 

I-II dose-finding tailored to prognostic subgroups. This provides a conceptual framework 

for constructing utility functions that will quantify the risk-benefit trade-offs based on 

efficacy and toxicity differences between prognostic subgroups (Table 2). A simple view 

of a utility is that it reduces two outcomes, such as response and toxicity, to one number 

U(response, toxicity) that quantifies the desirability of each pair of values. The use of 

different utility functions to prioritize mean/median survival differences or milestone SPD 

values in the context of mccRCC has been reviewed elsewhere.3 Figure 3A uses a causal 

diagram to illustrate a utility function that is influenced by a toxicity and efficacy outcome 
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of interest. Let UT(toxicity) and UE(efficacy) represent numerical utilities assigned to each 

toxicity and efficacy outcome. The final dose decision is based on a total utility, which 

may be defined as the sum: 

U(toxicity, efficacy) = UT(toxicity) + UE(efficacy)                                                (4) 

if UT(toxicity) and UE(efficacy) are scaled to the same domain. Depending on the setting, 

U(toxicity, efficacy) may instead be a product of UT ⋅ UE, if UT is scaled to the interval [0, 

1], with greater toxicity given smaller UT. Patient prognostic factors affect 3-month DLT 

probabilities and 3-month survival probabilities. Consequently, the distribution and 

estimates of U(toxicity, efficacy) vary with subgroups and doses, which enables one to 

optimize treatment selection based on patient characteristics and tailor treatment 

selections for individual patients. This framework can be generalized to include additional 

outcome variables, such as patient-reported QOL, which also may be assigned numerical 

utilities to include when making dose decisions.  

 

Covariate-Specific Utility Functions 

Prognostic variables not only influence the estimation of unknown parameters and 

prediction of clinical outcomes (Figure 3A), but also can change how numerical utilities 

are assigned to each outcome (Figure 3B). In the mccRCC example, patients with IMDC 

poor risk typically are more willing to accept a higher risk of toxicity to curtail their highly 

aggressive disease. Conversely, the relatively indolent disease status in patients with 

IMDC favorable risk makes toxicity less acceptable, particularly since these patients are 

expected to live much longer. Thus, prognostic subgroups, s, can directly influence the 
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assigned numerical utilities for toxicity UT,s and efficacy UE,s. A total utility Us(toxicity, 

efficacy) = UT,s (toxicity) + UE,s(efficacy) is tailored to each patient’s prognostic subgroup, 

e.g., IMDC score in mccRCC. Such covariate-specific utility functions have recently been 

used in phase I-II dose-finding and in randomized phase II trials that have superior 

properties compared to simpler designs that do not tailor decisions for each prognostic 

subgroup.4, 10  

In contrast with the mccRCC setting, for other diseases such as certain metastatic breast 

cancer subtypes, clinicians and patients may prefer treatments with lower toxicity risk for 

poorer prognostic subgroups, e.g., older patients who typically have more comorbidities 

and shorter expected survival than younger patients. Such covariate-specific utility 

functions were integrated with data from a phase 3 randomized controlled trial (RCT) 

using a flexible multivariate Bayesian nonparametric regression model to inform the 

selection of letrozole alone versus the combination of letrozole plus bevacizumab as first-

line therapy for hormone receptor–positive advanced breast cancer.11 The utility functions 

were defined to vary with age because older patients with this type of breast cancer 

typically are less willing to accept more intensive therapies that can prolong survival 

outcomes at the cost of severe toxicities. The practical requirements of these approaches 

include eliciting covariate-specific utilities to quantify risk-benefit trade-offs.   

 

Eliciting Covariate-Specific Utilities in a Phase I-II Trial  

The first phase I-II design incorporating covariate-specific utility functions was developed 

to determine the optimal doses, tailored to IMDC risk, among five levels of the novel anti-
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VEGF tyrosine kinase inhibitor sitravatinib as first-line therapy in patients with mccRCC.4 

Toxicity was defined as YT = time to DLT within 3 months, whereas efficacy, YE, was 

evaluated by measuring objective response by imaging studies performed at 3 months 

from treatment initiation. Based on the Response Evaluation Criteria in Solid Tumors 

(RECIST) version 1.1, YE was defined as an ordinal variable with four levels, progressive 

disease (PD), stable disease (SD), partial response (PR), or complete response (CR). 

Prognostic risk was also an ordinal variable representing three subgroups with increasing 

disease severity: favorable, intermediate, and poor IMDC risk. The utility functions were 

tailored to each IMDC subgroup because patients with favorable IMDC risk are less willing 

to accept excess toxicity risk, whereas those with poor IMDC risk are more likely to 

tolerate a higher risk of toxicity for a higher chance of efficacy.4 

The subgroup-specific toxicity utility was defined as UT,s = (YT / C)(s) with (s) > 0, where 

YT
 is the time to toxicity, up to a maximum follow-up time of C = 84 days (3 months). The 

exponent (s) controls how quickly UT,s increases as YT increases for IMDC subgroup s. 

To obtain (s) for each s, clinical experts in mccRCC were asked to answer the following 

practical questions: 1) what is the maximum utility, UT,max, a patient in each IMDC 

subgroup can obtain if there is no DLT within 84 days? 2) How many days should patients 

in each IMDC subgroup remain without DLT to obtain half of the maximum utility, UT,max 

? The smaller this time is, the more toxicity patients in this subgroup will be willing to 

accept. For the first question, the answer was UT,max = 140 for all subgroups. Note that 

the numerical value 140 has no special meaning and is simply an artifact of the process 

of specifying the utility function. If desired, the numerical utilities may subsequently be 

divided by 140 to give a utility range of 0 to 1. Such transformations will not change the 
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results of the decision making. For the second question, the answers were 79, 42, and 

28 days for IMDC favorable-, intermediate-, and poor-risk disease, respectively. Using 

these values, solving the equation UT,max ⋅ 0.5 = (YT / 84)(s) with UT,max = 140 and YT = 42, 

gives  = 3.80, 1.00, and 0.63 for IMDC favorable-, intermediate-, and poor-risk disease.4  

To obtain IMDC subgroup-specific utilities, UE,s, for the ordinal efficacy outcome, the 

following questions were asked: 1) How much do we penalize for the occurrence of PD? 

2) How much reward do we assign for SD, PR, and CR? For the first question, the answer 

was to reduce UT,s by half when there was a PD event. The rationale was that PD would 

offset the benefit obtained by the time without DLT, but patients with PD who experienced 

DLT later would obtain more benefit than those who quickly developed severe adverse 

events. For the second question, a CR would give UE,s = 140 and SD would give UE,s = 

20 regardless of IMDC subgroup. This is because CR is highly valuable to patients 

regardless of IMDC subgroup, whereas SD adds a small utility. For PR, UE,s was deemed 

to be 60, 90, and 120 for IMDC favorable-, intermediate-, and poor-risk disease. This 

reflects the higher importance of achieving PR in aggressive poor-risk mccRCC. The total 

utility of (YT, YE) was defined as follows: let Us = UT,s / 2 if YE is PD. Otherwise, let Us = 

UT,s + UE,s. The derived utility functions are shown in Figure 4.4 While the Us for an 

outcome with CR and no DLT during the follow-up period is 280 for all subgroups, how 

the utilities of intermediate outcomes vary is different for each subgroup, as shown in the 

figure.   

The phase I-II design was based on a Bayesian hierarchical model for regression of YT 

and YE on dose d and subgroup s. A joint regression model for [YT, YE | d, s] was assumed 

with additive dose and subgroup effects for each outcome (Figure 1A), using the IMDC 
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prognostic subgroups identified in earlier research20, 22, 23 and thus avoiding the problem 

of determining new prognostic subgroups from baseline covariates. Such a task would 

have been very difficult to accomplish dependably due to the limited sample size and 

sequentially adaptive decision-making used in phase I-II trials. The design efficiently 

borrowed information across subgroups and sitravatinib doses through the hierarchical 

structure and also adaptively clustered adjacent ordinal subgroups having similar effects 

for improved subgroup-specific treatment decision-making. For detailed mathematical 

construction, refer to equations (1), (2), (3), and (5) in Lee et al., 2021.4 

As a safety constraint, the design specified that an untried dose may not be skipped in 

any of the subgroups. In order for a dose to be selected and used to treat the next patient 

in each subgroup, it also had to satisfy two acceptability criteria based on a specified fixed 

upper limit π*PD,s for the probability πPD(d,s) of PD at 3 months and a specified fixed 

subgroup-specific upper limit π*DLT,s for the probability πDLT(d,s) of DLT within 3 months. 

These safety and efficacy acceptability rules were applied after at least 20 patients in total 

were fully followed for up to 3 months. A dose d was unacceptable for subgroup s if 

Pr[πPD(d,s) > π*PD, s | data] > .85    or    Pr[πDLT(d,s) > π*DLT, s | data] > .85.       (5) 

Based on historical data,38 π*PD,s values .20, .35, and .35 were used for the favorable-, 

intermediate-, and poor-risk subgroups, respectively. Furthermore, πDLT(d,s) >.40 was 

considered unacceptable for any subgroup, so π*DLT,s = .40 for all s. Patients in each 

subgroup were adaptively randomized in a way that tends to select acceptable but less 

explored doses. In each subgroup, the dose chosen for a given patient could be above, 

below, or the same as that of the previous patient in that subgroup because the design 

does dose-finding and not dose escalation. Simulations showed that the design compared 
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very favorably to a one-size-fits-all phase I-II design that ignored prognostic subgroups 

and a design that ran a separate phase I-II trial for each subgroup. The use of subgroup-

specific utility functions tailored to the IMDC covariate informed more accurate dose-

finding decisions.4 Future designs may be developed to allow for more complex 

outcomes, such as time-to-event survival endpoints.  

Conclusions 

Because contradictory conclusions can arise depending on which outcome scale is used, 

it is necessary to use an estimand that reflects the goals and values of individual patients 

and other stakeholders in dose-finding studies. The use of utilities allows the explicit 

incorporation of risk-benefit trade-offs in phase I-II clinical trials. Utilities also may be 

tailored to specific patient covariates, such as prognostic risk subgroups, to facilitate 

better informed patient-specific decisions. Rigorous utility elicitation can be facilitated by 

advances in psychometry, visual aids, and interactive software tools.   
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TABLES  

 

Table 1. Connecting clinical practice to phase I-II clinical trial design and conduct. 

Task Physician Actions Phase I-II Clinical Trial 

  Trial Design 

Determine the 
disease  
 

Diagnose the patient’s disease 
 

Specify the disease and trial entry criteria 
 

Determine  
key elements  
 

Specify clinical outcomes, patient covariates, 
and identify possible treatments 
 

Define response, toxicity, and other key outcomes; 
identify patient prognostic subgroups; and 
determine doses to be studied 
 

Establish a 
statistical 
model  
 

Specify statistical models for outcomes as 
functions of treatment, dose or schedule, and 
patient covariates 
 

Specify statistical models for the probabilities of 

response and toxicity as functions of dose or 

schedule and patient subgroup 

Establish utility 
functions 

Determine utilities as functions of outcomes and 

patient covariates 

Determine utilities as functions of response, 

toxicity, and subgroup 

Identify key 
estimands 

Identify key estimands as clinically interpretable 

functions of model parameters, including mean 

utilities 

Identify subgroup-specific probabilities of toxicity, 

response, and subgroup-specific mean utilities as 

criteria for clinical decision-making during the trial 

   

Trial Conduct 

Obtain data Obtain data from clinical practice databases or 
published studies 

Obtain the most recently updated data from 
patients treated previously in the trial 
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Analyze the 
data 

Fit the statistical model to the data Fit the statistical model to the most recent trial data 

Compute 
estimates 

Compute estimates of all relevant estimands, 
including mean utilities and predicted outcomes, 
as functions of the patient’s covariates for each 
potential treatment 

Compute estimates of the probabilities of response 
and toxicity, the acceptable dose set as functions 
of patient covariates and dose and mean utility for 
the doses in the set 

Make a 
decision and 
take action 

Make a clinical decision based on the estimates 
and treat the patient with the chosen treatment 

Choose an optimal acceptable dose, or do not 
treat the patient if no dose is acceptable 
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Table 2. Patient-specific survival outcomes for two doses of a hypothetical experimental therapy for mccRCC with an OS 
(efficacy time-to-event outcome) HR 0.5 favoring dose 2 over dose 1 and dose-limiting toxicity (time-to-toxicity outcome) 
HR 1 / 0.75 = 1.33 favoring dose 1 over dose 2 for IMDC prognostic subgroups. 

 Scenario A Scenario B Remarks 

IMDC prognostic 
subgroup 

Favorable risk Poor risk Scenarios A and B differ only in IMDC 
prognostic status 

 
 
Median OS 
(months) 
 

Dose 1 
 

17.3 

Dose 2 
 

34.6 

Dose 1 
 

2.0  

Dose 2 
 

4.0  

 
Median and mean survival differences 
are larger for IMDC favorable risk 
compared with IMDC poor risk. 
 Mean OS 

(months) 
 

24.95 
 

49.92  
 

2.89 
 

5.77  
 
Survival 
probability at 3 
months 
 

 
 

88.7% 

 
 

94.2% 

 
 

35.4% 

 
 

59.5% 

The survival probability difference at 3 
months is larger for IMDC poor risk 
compared with IMDC favorable risk. 
 

Toxicity probability 
at 3 months 

6.5% 8.6% 15.5% 20.1% The toxicity probability difference at 3 
months is larger for IMDC poor risk 
compared with IMDC favorable risk. 
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Figure Legends: 

 

Figure 1. Causal diagrams representing the data-generating processes of prognostic and predictive effects in dose-finding 

trials. The putative dose effect under investigation is denoted by gray arrows. (A) Prognostic biomarkers are baseline patient 

variables that directly influence the outcome and not the estimated dose effect. Thus, the estimated dose effect parameters 

such as loge odds are assumed to be stable for all patients. (B) Corresponding clinical scenario whereby the International 

Metastatic Renal Cell Carcinoma Database Consortium (IMDC) score is an established prognostic score that directly 

influences survival time and adverse events in mccRCC. The assigned dose of the drug axitinib may also impact overall 

survival. (C) Predictive biomarkers are baseline patient variables that influence the estimated dose effect through their effect 

on the mediating pathway that transmits the effect of the assigned dose on the outcomes of interest. (D) Corresponding 

clinical scenario whereby baseline levels of soluble vascular endothelial growth factor receptor 3 (sVEGFR-3) influence the 

vascular endothelial growth factor (VEGF) pathway that mediates the dose effect of the VEGF inhibitor axitinib on survival 

time and adverse events.  
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Figure 2. Time-to-event curves assuming an exponential distribution for patients with mccRCC treated with two different 

dose levels of an investigational therapy in a phase I-II trial. The black dotted lines correspond to median survival difference, 

whereas the purple dotted lines correspond to the survival probability difference at 3 months. The HR for the efficacy 

outcome is assumed to be 0.5 favoring dose level 2, and 0.75 for the DLT outcome favoring dose level 1, irrespective of 

IMDC prognostic risk classification. (A) For the efficacy outcome of OS in patients with favorable-risk IMDC, the survival 

probability difference at 3 months is 5.5% favoring dose level 2, whereas the median survival difference is 17.3 months 
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favoring dose level 2. (B) For the efficacy outcome of OS in patients with IMDC poor risk, the survival probability difference 

at 3 months is 24.1% favoring dose level 2, whereas the median survival difference is 2 months favoring dose level 2. (C) 

For the DLT outcome in patients with IMDC favorable risk, the toxicity probability difference at 3 months is 2.1% favoring 

dose level 1. (D) For the DLT outcome in patients with IMDC poor risk, the toxicity probability difference at 3 months is 4.6% 

favoring dose level 1. 
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Figure 3. Causal diagrams representing the data-generating processes and corresponding utility 

nodes (diamonds) in phase I-II dose-finding trials. The putative dose effect under investigation is 

denoted by gray arrows. (A) Standard utility-based phase I-II trials assign numerical utilities UT 

to toxicity outcomes and UE to efficacy outcomes. Dose decisions are obtained by calculating the 

total utility U = UT + UE. (B) Phase I-II trials may also use covariate-specific utility functions that 

are modified based on each patient’s prognostic subgroup, g, to obtain subgroup-specific 

numerical utilities UT,s for toxicity outcomes and UE,s for efficacy outcomes. Dose decisions are 

obtained for each prognostic subgroup g by calculating the total subgroup-specific utility Us = UT,s 

+ UE,s.  
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Figure 4. Prognostic covariate-specific utility functions tailored to each of the three IMDC prognostic risk groups of patients with 

mccRCC. These utility functions quantify the risk-benefit trade-offs to inform dose selection in a phase I-II trial design testing five 

doses of the targeted agent sitravatinib as first-line therapy in patients with mccRCC. (A) IMDC subgroup-specific toxicity utility 

functions UT,s encoding that patients with favorable-risk IMDC prognosis are less willing to accept being exposed to DLTs at any 

time point within 3 months than those with intermediate- or poor-risk disease. (B-D) Total utility Us based on time to DLT and the 

ordinal efficacy outcome of either progressive disease (PD), stable disease (SD), partial response (PR), or complete response (CR) 

by imaging at 3 months (84 days) from treatment initiation in patients with IMDC favorable- (B), intermediate- (C), and poor-risk 

disease (D). Adapted from Figure 1 of Lee et al. 2021.4 


