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We present new statistical analyses of data arising from a clinical trial designed to compare two-stage dynamic treatment regimes (DTRs) for
advanced prostate cancer. The trial protocol mandated that patients be initially randomized among four chemotherapies, and that those who
responded poorly be re-randomized to one of the remaining candidate therapies. The primary aim was to compare the DTRs’ overall success
rates, with success defined by the occurrence of successful responses in each of two consecutive courses of the patient’s therapy. Of the 150
study participants, 47 did not complete their therapy as per the algorithm. However, 35 of them did so for reasons that precluded further
chemotherapy, that is, toxicity and/or progressive disease. Consequently, rather than comparing the overall success rates of the DTRs in the
unrealistic event that these patients had remained on their assigned chemotherapies, we conducted an analysis that compared viable switch
rules defined by the per-protocol rules but with the additional provision that patients who developed toxicity or progressive disease switch
to a non-prespecified therapeutic or palliative strategy. This modification involved consideration of bivariate per-course outcomes encoding
both efficacy and toxicity. We used numerical scores elicited from the trial’s principal investigator to quantify the clinical desirability of each
bivariate per-course outcome, and defined one endpoint as their average over all courses of treatment. Two other simpler sets of scores as
well as log survival time were also used as endpoints. Estimation of each DTR-specific mean score was conducted using inverse probability
weighted methods that assumed that missingness in the 12 remaining dropouts was informative but explainable in that it only depended on
past recorded data. We conducted additional worst- and best-case analyses to evaluate sensitivity of our findings to extreme departures from
the explainable dropout assumption.

KEY WORDS: Causal inference; Efficiency; Informative dropout; Inverse probability weighting; Marginal structural models; Optimal
regime; Simultaneous confidence intervals.

1. INTRODUCTION

Therapy of cancer, cardiovascular disease, behavioral disor-
ders, infections and many other diseases typically is conducted
in multiple stages. A physician begins a therapeutic process by
obtaining baseline information diagnosing a patient’s disease
and quantifying its severity, as well as covariates that may be
related to therapeutic outcomes, and chooses the patient’s first
treatment on that basis. It is a common medical practice to re-
peat a treatment that has obtained a favorable response or to
switch to an alternative treatment if the current response is un-
favorable. The physician’s choice of the alternative treatment
is often guided by updated data on the patient’s disease status
and covariates. This decision-making process is often repeated
until either a response considered to be a definitive therapeu-
tic success is achieved or the therapy is discontinued. Common
reasons for discontinuation include dropout, the physician’s de-
cision that further therapy is futile, or regimen-related adverse
events that preclude further therapy.
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Multi-stage therapeutic strategies, in which dose or treatment
is modified at each stage according to a patient’s current history
and disease status, have been given a number of different
names in the statistical literature, including dynamic treat-
ment regimes (DTRs), treatment policies, adaptive treatment
strategies, multi-stage treatment strategies, and individualized
treatment rules. In recent years, there has been a great deal
of activity in the statistical community in design and analysis
of studies aimed at evaluating the effects of DTRs. A number of
recent articles discuss design of randomized trials that aim at
evaluating DTRs rather than individual treatments (Lavori and
Dawson 2000, 2004; Thall, Millikan, and Sung 2000; Thall,
Sung, and Estey 2002; Murphy 2005; Oetting et al. 2011). A
vast literature also exists on analytic tools to estimate the effects
of DTRs using longitudinal observational data or data from
randomized studies. Statistical methods include g-estimation
of structural nested models (Robins 1986, 1989, 1993, 1997),
some clever variations of g-estimation for optimal treatment
regime estimation (Murphy 2003; Robins 2004) and inverse
probability weighted estimation of marginal structural models
(Murphy, van der Laan, Robins, and CPPRG 2001; van der
Laan 2006; van der Laan and Petersen 2007; Robins, Orellana,
and Rotnitzky 2008; Orellana, Rotnitzky, and Robin 2010). In
observational studies, specific versions of these methods have
been developed to control for high-dimensional time-dependent
confounders (i.e., time-varying risk factors that affect future
treatments) that are themselves predicted by past treatments.
In controlled studies, these methods can be used to analyze
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sequentially randomized (SR) designs with randomization
probabilities that possibly can depend on past health status and
covariates (Lunceford, Davidian, and Tsiatis 2002; Wahed and
Tsiatis 2004, 2006; Bembom and van der Laan 2007, 2008).

The purpose of this article is to present new statistical anal-
yses of data arising from a clinical trial of advanced prostate
cancer conducted at M.D. Anderson Cancer Center from De-
cember 1998 to January 2006. The study was a groundbreaking
early example of a sequential multiple assignment randomized
trial (SMART) (Murphy 2005) specifically designed to evaluate
well-defined DTRs. Its goal was to compare rules resembling
those that oncologists often use when treating cancer patients,
namely repeating a previous treatment if it has proved to be
favorable or otherwise administering a different treatment (“re-
peat a winner and switch away from a loser”). The primary goal
of the trial was to evaluate and compare 12 different sequen-
tial decision rules in which patients could be switched from
an initial combination chemotherapy (hereafter, “chemo”) cho-
sen from the set A = {CVD,KA/VE,TEC,TEE} to a second,
different chemo from the same set. This goal is different than
the conventional goal of evaluating and comparing the four in-
dividual chemos given initially. The ultimate goal was to use
the results of the trial as a basis for generating hypotheses and
planning a future, confirmatory trial.

One hundred and fifty patients were randomized at enrollment
to receive one of the four chemos. According to the protocol,
depending on the per-course responses, patients could receive
2–4 courses of chemotherapy: the first at baseline, the second
at week 8, and possibly additional courses at weeks 16 and 24.
Specifically, the patient’s per-protocol treatment assignments
would end and he would be switched to a nonrandomized ther-
apeutic or palliative option immediately after the occurrence
of a second nonfavorable course, or two consecutive favorable
courses, whichever occurred first. The protocol mandated ran-
domization to a second, different chemo immediately after the
patient’s first nonfavorable course if such an event occurred.
Per-course favorable response was defined on the basis of a
compound score involving lack of tumor growth and change in
prostate-specific antigen (PSA) (see Section 3.1). The protocol
stipulated the recording of baseline PSA and disease volume,
and per-course toxicity level and tumor status while receiving
one of the chemos being studied. It also stipulated the recording
of PSA values every eight weeks until week 32, regardless of
patient discontinuation or not of study chemos. As of March 1,
2011, one patient was still alive, one had been lost to follow-
up, and all others had died. Only nine patients died during the
course of the trial. All death times but one were recorded and
are available for data analysis. Additional study design details
are given in Thall et al. (2000) and Thall et al. (2007).

The seven possible response sequences were sasa, sasa∗sa∗ ,
sasasa∗sa∗ , sasa∗ , sasa∗sa∗ , sasasa∗ and sasasa∗sa∗ ,where s and s
stand for the per-course favorable and nonfavorable responses,
respectively, and we subscript the response in each course by the
treatment given in that course, a and a∗ in the set A (a �= a∗).
The protocol stipulated the primary endpoint to be an overall
success/failure outcome with success defined as the occurrence
of any of the first three sequences, and failure as the occurrence
of any of the four remaining ones. That is, overall success was
defined as two consecutive favorable courses. Figure 1 illus-

trates the possible multi-stage outcomes as per the protocol’s
treatment assignment algorithm and the number of patients for
each outcome history at each course, including those with miss-
ing per-course response data.

Analyses of data arising from this trial reported by Thall et al.
(2007) generated some controversy regarding both statistical
methods (Bembom and van der Laan 2007) and comparison
of the regimens used in the trial to a particular combination
chemotherapy reported in the medical literature while the
trial was still ongoing (Tannock et al. 2004; Armstrong and
Eisenberger 2006; Armstrong et al. 2007; Millikan, Logothetis,
and Thall 2008). Using logistic regression to estimate the
per-course probabilities of favorable response, Thall et al.
(2007) concluded that TEC was the best and CVD the worst
treatment in course 1, while KA/VE was the best and TEE the
worst salvage therapy. Bembom and van der Laan (2007) noted
that the estimation strategy of Thall et al. (2007) was useful for
identifying the chemotherapy that would give the best success
rate in each course, but cannot identify the regime that gives
the best overall success rate. These authors used an inverse
probability of treatment weighted (IPTW) analysis to estimate
the overall success rates of the 12 two-stage strategies and
found that (CVD, KA/VE) was the best, with (TEC, CVD) and
(TEE, CVD) ranked second and third but all three estimated
mean overall success rates were very similar. Both Bembom
and van der Laan (2007) and Thall et al. (2007) assumed that
dropouts were noninformative and carried out a complete case
analysis, that is, ignoring all data of the dropout subjects.

In the analyses that we will describe here, unlike Thall et al.
(2007) and as recommended in Bembom and van der Laan
(2007, 2008), we apply IPTW methods to estimate the endpoint
means under different DTRs. Our analyses differ from those in
Thall et al. (2007) and Bembom and van der Laan 2007 in three
important ways: (1) following the recommendation of Robins
(1986, 2004), van der Laan and Petersen (2007), and Bembom
and van der Laan (2008), we modify the definition of the
candidate DTRs; (2) we study different endpoints, defined on
the basis of data compiled subsequent to these earlier analyses,
that identify specific reasons for discontinuing an assigned
strategy; and (3) based on this new information, we define and
analyze dropouts differently. Specifically:

(1) Viable DTRs. As shown in Figure 1, 47 (31%) of the
150 patients in the trial who received initial treatment did not
complete their therapy as per the algorithm. During the pro-
cess of inspecting the reasons for study chemo discontinuation,
we determined that the switch rules prescribed by the proto-
col were, in fact, not feasible for patients who developed either
severe toxicity or progressive disease (PD). Such events ordi-
narily preclude further chemotherapy, and in the prostate cancer
trial, they necessarily superseded the protocol’s treatment as-
signment. Consequently, the DTRs that our analysis compares,
throughout referred to as viable DTRs, differ from the two-stage
switch rules prescribed by the trial protocol in that they man-
date discontinuation of study chemos after the occurrence of
severe toxicity or PD. This modification involves the consider-
ation of course-specific responses that encode information not
only on efficacy but also on toxicity and PD, as the DTR now
is defined in terms of treatment decision rules that depend on
these three domains. Viable DTRs were discussed in Robins
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Figure 1. The possible courses of action prescribed by the per-protocol DTRs: first a, then a∗. The possible per-course responses are as
defined in the original protocol. In the parentheses are the numbers of patients (pooled across all DTRs) observed to have a given per-course
response sequence history at each given course, and the numbers of patients that have dropped out from the per-protocol DTR at each course
(pooled across all DTRs). For each course, s stands for per-protocol success, and s̄ stands for per-protocol failure. The online version of this
figure is in color.

(1986, 2004). Robins (2004) called them “feasible” regimes,
and van der Laan and Petersen (2007) called them “realistic”
regimes.

(2) Compound endpoints. Trial investigators adopted the
treatment assignment algorithm and primary endpoint defined
earlier because when designing the study, these were intended to
reflect how oncologists actually assign treatments and evaluate
overall response. The choice of endpoint led the trial investi-
gators to judge unnecessary the collection of tumor status and
toxicity data after treatment with the assigned chemo was dis-
continued. In Section 3.3, following Murphy (2005), we argue
that this should not take place in SMARTs designed to evaluate
DTRs because the primary endpoint in such trials should quan-
tify the health experience of the patient over a prespecified fixed
period, the same period for all patients, for example the period
spanning the maximum possible duration of treatment, which
in the prostate cancer trial was 32 weeks. In our analysis, we
exploit the available information on toxicity and tumor status
so as to compare the DTRs on the basis of endpoints that we
judge are better predictors of the health status of patients over
the entire 32-week maximum duration of therapy compared to
the overall success/failure endpoint originally defined in the
protocol. Specifically, we compare the regime-specific means
of a compound score which was constructed by eliciting from
the principal investigator (PI) of the trial subjective numerical
values to quantify the clinical desirability of each per-course ef-
ficacy/toxicity/PD response. Bembom and van der Laan (2008)
recommended analysis of endpoints based on utility functions
that integrate per-course responses, but they did not carry out

such analysis because at that time, the extended dataset consid-
ered here that includes toxicity and PD was not available. To
assess the sensitivity of the analytical conclusions to the chosen
scores, we also repeated the analyses using the overall suc-
cess/failure endpoint score as per the trial protocol and another
endpoint score that distinguishes therapies that provide transient
benefits from those that do not. These alternative scores repre-
sent different viewpoints about the clinical desirability of the
DTRs, in terms of their ability to diminish disease burden over
the duration of therapy, which could last up to eight months. Yet
another important dimension is the comparison of the effect of
the distinct DTRs on long-term survival time. Consequently, we
also have estimated the mean log survival time of the 12 viable
DTRs.

(3) Dropouts. Even after redefining the regimes of interest
as the viable DTRs, there still were 12 patients, 8% of the
total sample of 150, who did not comply with the redefined
rules. These patients discontinued their assigned chemo neither
because it was stipulated by protocol, nor because of severe tox-
icity or PD. We thus considered these patients to have dropped
out at the course where their therapy was discontinued. The
analyses that we report here account for possibly informative,
yet explainable, dropout. That is, we analyze the data under
the assumption that dropout can depend on the history of PSA
up to the time of withdrawal but is otherwise independent of
the outcomes that would have been measured in the absence
of dropout. In addition, we conduct additional worst- and
best-case analyses to evaluate the sensitivity of our findings to
extreme departures from the preceding assumption.
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The remainder of the article is organized as follows. In Sec-
tion 2, we elaborate on the need to focus on DTRs different from
those defined in the protocol’s algorithm in order to account for
the clinical decisions routinely made by oncologists when faced
with toxicity or PD. In Section 3, we establish formal nota-
tion for the more complex outcomes considered in our analysis
and define the DTRs that we compared. We define the subjec-
tive, PI-specified scoring function used to calculate one of the
endpoints of our analysis, and we describe the two additional
endpoints that we consider to evaluate effects over the duration
of the trial. In Section 4, we discuss the inverse probability of
treatment weighted methodology that we applied to estimate the
outcome means associated with each of the two-stage strategies.
We present the resulting data analyses in Section 5 and close
with a brief discussion in Section 6.

2. VIABLE SWITCH RULES

If all patients enrolled in the trial had received treatment
as stipulated by the study protocol, the data recorded in the
trial would have allowed the assessment of the effects of 12
different two-stage treatment regimes which, for later reference,
we call the per-protocol rules. Each such rule prescribes that
an initial treatment be given with a specific chemo in A, that
treatment decisions be made every eight weeks immediately
after the recording of the response to the prior treatment course,
and that a switch take place from the initial chemo to either a
second, specific chemo in A or to a non-prespecified therapeutic
or palliative strategy, with the latter given immediately after two
favorable courses of the initial treatment and the former after
one nonfavorable course with it. The rule also stipulates that in
the case of receiving a second chemo in A, a switch to a non-
prespecified therapeutic or palliative strategy would be made if
the first course with the second chemo was not favorable.

As indicated in the Introduction, not all study participants
received treatment as per the trial protocol’s algorithm. Thirty-
five patients did not, because their treating physicians switched
them to non-randomized therapeutic or palliative strategies be-
cause they developed either toxicity or PD. Eleven patients did
not adhere to their randomized treatments because their physi-
cians decided to remove them from the study for other unknown
reasons, and one patient left the study on his own.

Decisions about how to analyze the trial data in the presence
of subjects who did not receive treatment as specified in the
protocol necessarily depend on the treatment regimes that one
wishes to compare. An analysis that would disregard any data
collected after the patient left the study protocol and would use
missing data techniques, such as multiple imputation, model-
based likelihood analysis, or inverse probability weighted (IPW)
methods, would be aimed at comparing the per-protocol rules
in idealized worlds in which all patients would follow the per-
protocol rules that they were asked to follow. However, the pres-
ence of patients who left the study for reasons that precluded
further administration of study therapies raises serious concerns
about the reasonableness and usefulness of such analysis. If a
patient cannot continue on a given per-protocol rule due to ad-
verse events that preclude further chemo, then the given rule
is unrealistic for that patient, and it makes no sense to pretend
that the patient would have followed it. It is an ill-defined task

to attempt to compare per-protocol rules on the entire patient
population if any such rule is not a viable option for a subset
of the patients. An alternative, more reasonable approach, pro-
posed by Robins (1986, 2004) and van der Laan and Petersen
(2007) and recommended but not carried out by Bembom and
van der Laan (2007), is to change the target of the analysis to
viable switch rules that could actually be implemented in the
study population. This is how we proceeded in the analyses pre-
sented here. The switch rules compared in our analysis, referred
to throughout as “viable switch rules,” are defined just as the
per-protocol rules but have the important additional provision
that patients who develop either toxicity or PD are mandated to
switch to a non-prespecified therapeutic or palliative strategy,
left to the discretion of the physician. The viable rules that we
study simply state that the treatment strategy decision, whether
palliative or therapeutic, after the development of toxicity or PD
is left to the physician. Ideally, we would like to compare more
refined rules that specify whether the switch should be to a ther-
apeutic or to a palliative option according to whether the patient
develops toxicity or PD. However, we could not evaluate the
effects of these more detailed switch rules because the records
available for data analysis did not indicate the specific course of
action taken after the occurrence of toxicity or PD.

In our analysis, we regard as missing the outcome data subse-
quent to chemo discontinuation for subjects who went off study
for reasons other than toxicity or PD. Our rationale for doing
this is that we believe that for such patients, the protocol treat-
ment remained a viable option and, as such, it was conceivable
that these subjects could have followed the viable switch rule to
which they would have been assigned.

In the next section, we formally define the data compiled for
this analysis, the viable switch rules, and the target parameters
used in our analysis as a basis for comparing the distinct viable
rules.

3. SOME FORMAL NOTATION

3.1 The Data

When no meaning is lost, for simplicity, we will suppress the
subject index i. The trial recorded baseline covariates and per-
course variables measured at the end of each course of chemo
and just prior to assignment of the next chemo until just prior
to discontinuation of study chemos. The per-course variables
included PSA (a positive continuous variable) and a compound
binary favorable/unfavorable response indicator defined in terms
of PSA and an indicator of advance of disease (AD). AD was
defined as any of the following four events: (1) new spots of
bone involvement on bone scans, (2) increase in product of
cross-sectional diameters of soft tissue of visceral metastases
by 25% or more, (3) increase in cancer-related symptoms, or
(4) increase in PSA from baseline by 25% or more confirmed
by serial measurements one week apart. As per protocol, a fa-
vorable response in the course that a chemo was first given was
defined as a drop in PSA of at least 40% compared to baseline
without evidence of AD, and a favorable response in the second
consecutive course with the same chemo as per protocol was
defined as a drop in PSA of at least 80% compared to baseline
without evidence of AD (Thall et al. 2000).
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For subjects departing from the study protocol, there also
were records indicating the reasons for doing so. In particular,
it was recorded whether the decision to stop the study therapy
was due to the development of severe toxicity or severe PD,
or for other reasons. Note that PD was AD considered by the
attending physician to be so severe that it precluded further
therapy as per the protocol algorithm. The extended dataset
which incorporated new compound per-course variables that
recorded the development of toxicity or PD contained, for each
patient, entries for the following 19 variables:

P1, V1, A1, P2, T2, E2, A2, P3, T3, E3, A3, P4, T4, E4,

A4, P5, T5, E5, X.

Variable Aj , j = 1, . . . , 4, records the chemo in the set A re-
ceived at the start of course j if the patient actually received
one. If the patient had discontinued the study chemos at or prior
to the start of course j, Aj was coded either with OFF or with
N/A. It was coded with OFF if the patient was alive at the start
of course j and discontinuation was as mandated by protocol
(i.e., due to the occurrence of two consecutive per-course fa-
vorable responses, or two unfavorable responses, consecutive
or not) or due to either PD or severe toxicity. It was coded as
N/A if discontinuation was for other reasons, including death.
This data-coding convention is needed for our formal definition
of viable rules given in the next section. Note that a patient with
Aj = OFF in course j would still be adhering to the viable rule
during course j, whereas one alive and with Aj = N/A would
not.

Variables P1 and V1 are measured at baseline, prior to re-
ceiving the first chemo, P1 records PSA, and V1 is a binary
indicator of high (versus low) disease volume, defined as at
least four areas of presumed pathologic uptake or involvement
of the appendicular skeleton as shown by bone scan or visceral
involvement (Thall et al. 2007).

Variables Pj , Tj , andEj , j = 2, . . . , 5, record PSA, toxicity,
and our compound measure of efficacy, all computed at the end
of course j − 1 and just prior to Aj , provided the subject re-
ceived a study chemo in course j − 1; otherwise, they are coded
as N/A. Toxicity Tj was a three-level ordinal variable: TOX0
(no toxicity), TOX1 (toxicity occurring at a level of severity that
precludes further therapy but allows efficacy to be evaluated),
and TOX2 (toxicity so severe that therapy must be stopped and
efficacy cannot be evaluated). EfficacyEj was a four-level vari-
able: EFF0 (favorable response to a chemo in course j), EFF1
(non-favorable response but no PD), EFF2 (PD), and EFF3 (in-
evaluable response due to severe toxicity).

Although the protocol stipulated that PSA values should be
recorded even after study therapy discontinuation, these values
were recorded in a very small number of subjects and, for several
of them, only intermittently. We have chosen to disregard the few
available post-study therapy PSA values and code them as N/A,
since any analysis that used them would need to make untestable
assumptions about the mechanism leading to the missing PSA
values.

The variable X records the time to death measured in months
from the time the first chemo was administered. All but two
subjects were known to have died by March 1, 2011, and their
death times were all recorded. Of the remaining two, one was

last recorded to be alive 28.7 months after study enrollment.
The other was still alive as of March 1, 2011. The death times
of these two subjects were imputed as the last time they were
known to have been alive.

In the sequel, we denote L1 = (P1, V1) and let Lj denote the
entries for the covariates (Pj , Tj , Ej ) at the end of course j − 1
and the indicator that the person is alive at the start of course j,
that is, that X is greater than month 2 × (j − 1),

Lj = (
Pj , Tj , Ej , I(2(j−1),∞) (X)

)
, j = 2, . . . , 5.

Figure 2 illustrates the possible per-course trajectories for
(Ej , Tj ), with the numbers observed to have followed each tra-
jectory in parentheses. The figure also displays the courses of
action prescribed by the viable DTRs defined in the next section
and the number of subjects who dropped out from the viable
DTRs at each course. Comparison of Figures 1 and 2 shows
that only 12 of the 47 cases that dropped out of the per-protocol
DTRs remain dropouts of the viable DTRs.

3.2 The Viable Switch Rules

To define the viable switch rules, we first consider the hy-
pothetical world in which the only reasons for not adhering to
the trial protocol are discontinuation of treatment because of
PD and/or severe toxicity. In this hypothetical world,Aj will be
coded as N/A only if the person is dead at the start of course j.
In Section 4.3, we will extend our definition to the case in which
dropouts for other reasons are present.

We will use the notational convention V j = (V1, . . . , Vj ) to
represent the information accumulated on the variable Vl up to
course j, and we use an unsubscribed V to denote the entire
history. For any viable switch rule, described in Section 2, the
patient initially is treated with chemo a ∈ A and, if and when he
qualifies for a switch to a second prespecified chemo, he receives
chemo a∗ ∈ A−{a}, but otherwise is treated with therapy left
to the doctors’ discretion. This is defined by four functions,
ga,a∗,j (Lj ), for j = 1, 2, 3, 4. The function ga,a∗,j (Lj ) returns
the therapy prescribed by the rule for course j when a patient
has data Lj . To define ga,a∗,j (·), let:

Sj = I{(TOX0,EFF0)}[(Tj , Ej )] and Fj = I{( TOX0,EFF1)}[(Tj , Ej )]

where IB[B] is the indicator that B is in the set B. Thus, Sj is
the indicator of a favorable response without toxicity in course
j − 1 and Fj is the indicator of a nonfavorable response without
toxicity or PD. The functions ga,a∗,j , j = 1, 2, 3, 4 are defined
as follows:

ga,a∗,1 (L1) = a,

ga,a∗,2
(
L2

) =

⎧⎪⎨⎪⎩
a if S2 = 1

a∗ if F2 = 1

OFF if S2 �= 1, F2 �= 1 and X > 2

ga,a∗,3
(
L3

) =
{
a∗ if S2F3 = 1 or F2S3 = 1

OFF if S2F3 �= 1, F2S3 �= 1 and X > 4

ga,a∗,4
(
L4

) =
{
a∗ if S2F3S4 = 1

OFF if S2F3S4 �= 1 and X > 6
.
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Figure 2. The possible courses of action prescribed by the viable DTRs: first a, then a∗. The possible per-course efficacy and toxicity responses
are as defined in Section 3. The number of patients (pooled across all DTRs) observed to have a given per-course efficacy and toxicity response
sequence history at each given course and the number of patients who have dropped out from the viable DTR at each course (pooled across all
DTRs) are given in parentheses. “EFFkTOX1” stands for toxicity at level 1 and efficacy at any level. The online version of this figure is in color.

Although X is not a component of Lj , the indicator that X >

2(j − 1) is. Thus, ga,a∗,j (·) is a well-defined function of just the
components of Lj . Recall that an OFF in a course j indicates
that the patient is no longer receiving a chemotherapy from the
sequence (a, a∗) at the start of course j and has been switched to
a therapeutic/palliative action decided by the treating physician.
For example, at the start of course 2, a patient who had both
S2 = 0 and F2 = 0 must have T2 = TOX1 or TOX2 or E2 =
EFF2 or EFF3, that is, he must have experienced severe toxicity
and/or PD after the first course of chemo. As such, he should be
taken off study chemo and switched to a therapeutic/palliative
action, so ga,a∗,2(L2) = OFF. Of course, no treatment action at
the start of a given course needs to be specified if death has
occurred prior to that time.

3.3 Outcome Scores

In our analysis, we are interested in comparing DTRs on the
basis of their effects on both long-term survival and efficacy in
diminishing disease burden over 32 weeks. For the first goal,
we analyze U = logX, log survival time. For the second goal,
we analyze three endpoints of the form Y = y(L) for specific
scoring functions y(·) taking values in the interval [0, 1]. The
value taken by y(l) is a numerical score that quantifies the clin-
ical desirability of the response trajectory l. Each choice of y(·)
reflects a different viewpoint on what is desirable in a given re-
sponse trajectory while receiving study chemos. All three scores
are composites defined as functions of toxicity and efficacy

while on study chemo. The first two scores are functions of the
indicators

S̃j = I{(TOX0,EFF0),(TOX1,EFF0)}[(Tj , Ej )]

of evaluable (with or without toxicity) favorable response at
course j.
1. Binary Scores: This scoring system simply assigns the value
1 if there were two consecutive per-course favorable responses
or 0 otherwise. That is,

Y bin = ybin
(
L

) =
{

1 if S̃j S̃j+1 = 1 for j = 2, 3 or 4

0 otherwise
.

The score Y bin regards therapies that provide transient benefits,
in the sense of having a positive probability of either only one
successful course or two nonconsecutive courses that are suc-
cessful, to be equally undesirable as therapies that provide no
benefits at all. This score is not quite the same as the overall
success/failure endpoint stipulated by the trial protocol, since
Y bin takes the value 0 for a subject who drops out due to toxicity
or PD, whereas the trial endpoint would be missing for such a
subject.
2. Ordinal Scores: This scoring function differs from Y bin in
that the outcomes of patients for whom therapy achieved one
successful course, or two nonconsecutive successful courses,
were scored as 0.5. Thus, it distinguishes therapies that pro-
duce transient efficacy benefits from therapies that do not.
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Table 1. Expert score for the possible combinations of efficacy and
toxicity outcomes

Cj = c(Ej , Tj ) Ej = Efficacy outcome

EFF0 EFF1 EFF2 EFF3
Tj = TOX0 1.0 0.5 0.1 X
Toxicity TOX1 0.8 0.3 0 X
outcome TOX2 X X X 0

Specifically:

Y ord = yord(L)

=

⎧⎪⎨⎪⎩
1 if S̃j S̃j+1 = 1 for j=2, 3 or 4

0.5 if S̃2(1 − S̃3)(1 − S̃5)=1 or (1 − S̃2)S̃3(1 − S̃4)=1

0 otherwise

3. Expert Score: This score reflects the viewpoint of the PI of
the trial regarding the relative clinical desirability of each of the
possible per-course toxicity and efficacy outcomes while the
patient was on study therapies. It thus distinguishes therapies
on the basis of their benefits over the entire available trajectory
of efficacy and toxicity. To construct this score, we elicited
numerical values Cj = c(Ej , Tj ), j = 2, . . . , 5, between 0 and
1 for each of the possible combinations of values of (Ej , Tj ) for
every j such that the subject received a study chemo in course
j − 1. The seven possible numerical values of Cj are listed in
Table 1. They reflect the clinical viewpoint that a course success,
EFF0, is highly desirable, the absence of PD even if a success is
not achieved, EFF1, is desirable, and extreme toxicity, TOX2,
is highly undesirable. The symbol X in the table indicates that
the corresponding combination of (Ej , Tj ) is not feasible. The
overall outcome score, which we call the “expert score,” is
defined as the mean of the per-course scores while the patient
was on a study chemo, formally:

Y expert = yexpert(L) =
∑5

j=2{1 − I{OFF,N/A}[Aj−1]}Cj∑5
j=2{1 − I{OFF,N/A}[Aj−1]}

.

Note that 1 − I{OFF,N/A}[Aj−1] equals 1 if the subject is alive
and received a study chemo at the beginning of course j − 1,
or equals 0 otherwise. Recall that (Ej , Tj ) denotes the efficacy
and toxicity measured at the end of course j − 1.

The expert score is more informative than the ordinal score, as
it not only distinguishes regimes that provide transient efficacy
benefits from those that do not, but also quantifies the clinical
desirability of the different transient benefits. For example, con-
sider two subjects who had a favorable outcome with no toxicity
in the first course of chemotherapy (E2 = EFF0, T2 = TOX0)
but no more favorable outcomes afterward. Suppose the first
subject experienced PD and no toxicity to the second course
of chemo (E3 = EFF2, T3 = TOX0) so his chemotherapy was
discontinued, whereas the second subject experienced no PD
and no toxicity in the second and third courses of chemo
(E3 = E4 = EFF1, T3 = T4 = TOX0). The response trajectory
of the second patient, while not an overall success, is still
preferable to the response trajectory of the first patient. This
is reflected in the expert score but not in the ordinal score; for
both patients the ordinal score is 0.5 whereas the expert scores

for the first and second patients are 0.55 = (1 + 0.1)/2 and
0.67 = (1 + 0.5 + 0.5)/3, respectively.

For comparing the benefits of the different DTRs in reducing
disease burden over 32 weeks, we use scores computed using
only outcome data while the patient was on study chemo. We do
so because, by design, data on efficacy and toxicity were not col-
lected subsequent to discontinuation of the study chemos and,
as indicated earlier, even though PSA records were obtained
for some subjects even after they went off study chemo, these
records were very incomplete. The lack of off-study chemo out-
come data limits our ability to compare the effects of different
viable DTRs on disease burden, while alive, over the fixed pe-
riod of 32 weeks. Our choice to analyze expert score endpoints
is an attempt to remedy this problem insofar as we believe this
score is a good predictor of health trajectory over the 32 weeks.
The binary and categorical scores can be viewed as alternative,
possibly poorer, substitute endpoints. Of course, if data on ef-
ficacy and toxicity had been collected over the 32 weeks even
after chemotherapy discontinuation, this would have avoided
the need for substitute endpoints.

The three scores Y bin, Y ord, and Y expert are meant to quan-
tify the health trajectory over 32 weeks since the first course of
chemo. Yet, because they do not depend on survival, they rank
equally two individuals who have the same outcomes while on
study chemos, even if one dies soon after chemo discontinu-
ation and the other remains alive at the end of the 32 weeks.
A more reasonable utility function would score these two in-
dividuals differently, penalizing the former and rewarding the
latter. Nevertheless, for simplicity, we have chosen to analyze
scores that do not incorporate survival because only nine out of
the 150 patients died in the first 32 weeks, all but one did so
after study chemo discontinuation, and they were spread evenly
among the four initial treatment arms. Comparing treatments
on the basis of the log survival means E(U(a,a∗)) informs about
the long-term effects of the different DTRs but not about their
immediate effects, while comparisons based on the means of
the three scores informs about their more immediate effects.

3.4 Counterfactual Outcomes and the Target
of Inference

To compare the different switch rules used in the trial, we
apply the counterfactual framework for causal inference as
originally developed by Rubin (1978) for time-independent
treatments and later extended by Robins (1986, 1987) for
time-dependent treatments in longitudinal studies. Henceforth,
we define the vector La = (La,1, La,2, La,3, La,4, La,5) of
potential outcomes and the potential survival time Xa for each
possible value a = (a1, a2, a3, a4) that A can take. Each La,j
denotes the value of Lj that would have been recorded at the
end of course j − 1 in a given subject in the hypothetical world
in which his A would have been equal to a. Likewise, Xa
denotes the survival time if A had been equal to a. We then
define the collection P = {(La,Xa) : a is in the range of A}
comprised of the potential outcome vectors and survival
times under all possible treatment sequences a. The set P
includes potential outcome vectors La corresponding even
to values of a with some components equal to OFF. For
those, the corresponding entries of the vector La are set equal
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to N/A. For example, if a = (CVD, TEC, OFF, OFF), then
La = (La,1, La,2, La,3,N/A, N/A). We use this convention
because we want La,j to reflect the value that would have been
entered for Lj in the event that the person hadA equal to a, and
recall that, by convention, we code an outcome after discontin-
uation of study chemos as N/A. Given the complete collection
of potential outcomes P , we define for each switch rule ga,a∗ ,
the hypothetical outcome vector L(a,a∗), the potential survival
X(a,a∗), and the potential endpoint Y(a,a∗) = y(L(a,a∗)). These are
the values of L, survival time X, and score Y that would have
been recorded on a given patient if he had been randomized,
perhaps contrary to fact, to follow the switch rule ga,a∗ . Thus,
for example, L(a,a∗) = La , where a1 = a, a2 =ga,a∗,2(La1 ), etc.

In our analysis, we use the mean scores E[Y(a,a∗)] and mean
log survival times E[U(a,a∗)] where U(a,a∗) = logX(a,a∗), with
(a, a∗) ranging over all 12 possible pairs, as the target parameters
that form the basis for comparing the different switch rules in the
trial. In particular, we will estimate eachE[Y(a,a∗)] andE[U(a,a∗)]
and the optimal switch rules gaopt,a

∗
opt
, where

(aopt, a
∗
opt) = arg max

(a,a∗)
E[Y(a,a∗)] or

(aopt, a
∗
opt) = arg max

(a,a∗)
E[U(a,a∗)],

depending on whether our goal is to compare DTRs on the basis
of their benefits for transitory diminishing disease burden or for
prolonging survival.

SMART trials like the one considered here furnish data that
identifies the effects of the DTRs they were designed to compare
on the basis of a predetermined endpoint. This is so because at
each stage each subject is randomized to one of the treatment
options that would be available to him if he were to follow any of
the DTRs being compared. One immediate question is whether
the prostate cancer trial data could also identify the effects of
the viable DTRs that we consider in our analysis. In fact, our
modification of the definition of the switch rule does not impede
identification. This is because the viable DTRs differ from the
original DTRs only in that they prescribe a switch to a non-
prespecified therapy in the event of high toxicity or PD, and this
rule was followed by all participating physicians. Intuitively,
after a patient develops toxicity or PD, there is only one possible
treatment option—the non-prespecified therapy—so identifica-
tion is possible so long as everybody in the study complies to this
added mandate, which indeed happened in the prostate cancer
trial.

4. ESTIMATION METHODOLOGY

4.1 The Requirements for the Validity of the
Methodology

Our analysis of the trial data relies on estimation techniques
described in Murphy et al. (2001). Following an idea raised
by Robins (1993), these authors discussed the use of IPTW
methods to estimate the mean of a counterfactual outcome un-
der a given DTR, possibly conditional on baseline covariates.
Murphy et al. (2001) discussed their methods in the context of
analyzing follow-up observational data. However, their methods
also apply to analysis of SR trials because they are valid under

the following three requirements that, as we indicate next, are
satisfied by design in SR trials.

The first requirement is that the collection of potential out-
comes for the n study subjects Pi , i = 1, 2, . . . , n, be indepen-
dent and identically distributed random vectors. This represents
the idealization that the trial participants are a random sample
from a large target population. This assumption is made rou-
tinely in the analysis of clinical trials and is reasonable for the
prostate cancer trial.

The second requirement is unconfoundedness, which stipu-
lates that Aj is independent of the counterfactual data P given
the information (Lj ,Aj−1) recorded until just prior to assigning
Aj,

Pr
(
Aj = aj |Aj−1 = aj−1, Lj ,P

)
= Pr

(
Aj = aj |Aj−1 = aj−1, Lj

)
. (1)

This requirement obviously is fulfilled in SR trials such as the
prostate cancer trial, where the randomization probabilities to
the next treatment can depend at most on the information avail-
able to the investigator just prior to randomization, which is
composed of prior treatment assignments and recorded out-
comes.

In the prostate cancer trial, Pr(Aj = aj |Aj−1 = aj−1, Lj ) =
p(aj |aj−1, Lj ), aj ∈ A ∪{OFF}, j = 1, . . . , 4,where

p(a1|L1) = 1/4{1 − I{OFF}[a1]},

p(a2|a1, L2) =

⎧⎪⎪⎨⎪⎪⎩
I{a1}(a2) if S2 = 1

1/3{1 − I{a1}[a2]} if F2 = 1,

I{OFF}[a2] if S2 �= 1, F2 �= 1, X > 2

p(a3|a2, L3) =

⎧⎪⎪⎨⎪⎪⎩
1/3{1 − I{a2}[a3]} if S2F3 = 1

I{a2}[a3] if F2S3 = 1,

I{OFF}[a3] if S2F3 �= 1, F2S3 �= 1, X > 4

p(a4|a3, L4) =
{
I{a3}[a4] if S2F3S4 = 1

I{OFF}[a4] if S2F3S4 �= 1, X > 6.

The third requirement, often referred to as positivity, stipu-
lates that any given subject in the study population has a positive
probability of following any given DTR in the set of regimes
being studied. This assumption obviously holds for the 12 vi-
able switch rules. At the start of the trial any given patient has
a positive chance of being assigned to, following any of the
12 rules. This assumption would not have been true if we had
instead focused on the per-protocol rules, since subjects who
would develop severe toxicity or PD under any given switch
rule would have had probability zero of following it.

4.2 The Heuristics of the IPTW Estimators in Our Trial

The IPTW methodology is based on the key observation that,
under unconfoundedness and positivity, the means of the po-
tential outcomes Y(a,a∗) and U(a,a∗) under a given viable switch
rule ga,a∗ are equal to weighted means of the actual outcome
values Y and U, respectively, among subjects randomized to the
switch rule under consideration (Murphy et al. 2001). Specif-
ically, for subject i, let �a,a∗,i = 1 if subject i followed the
switch rule ga,a∗ or �a,a∗,i = 0 otherwise. Furthermore, for
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Table 2. Inverse probability of treatment weights for each possible
treatment sequence

Group A1 A2 A3 A4 ω1 ω2 ω3 ω4 ω

1 a OFF OFF OFF 4 1 1 1 4
2 a a OFF OFF 4 1 1 1 4
3 a a∗ OFF OFF 4 3 1 1 12
4 a a∗ a∗ OFF 4 3 1 1 12
5 a a a∗ OFF 4 1 3 1 12
6 a a a∗ a∗ 4 1 3 1 12

j = 1, . . . , 4, let

ωj,i = Pr(Aj = Aj,i |Aj−1 = Aj−1,i , Lj,i)
−1

and let

ωi = ω1,i × ω2,i × ω3,i × ω4,i .

Note that ωj,i is inverse of the probability that a hypothetical
patient having the same PSA, efficacy, toxicity, and treatment
history up to j as subject i receives, at time j, the same treatment
Aj that subject i actually received. It follows from Murphy et al.
(2001) that under unconfoundedness and positivity,

E[Y(a,a∗)] = E(�a,a∗ωY )

E(�a,a∗ω)
= E(�a,a∗ωY ). (2)

We focus on estimation of E[Y(a,a∗)] because the arguments
are identical for estimation of the mean of U(a,a∗) if survival is
uncensored, as is essentially the case in our study. To interpret
E(�a,a∗ωY ), it is helpful to regard a subject who did not fol-
low the switch rule ga,a∗ as being censored at the first course
that he departed from the rule. The product form of the weights
ω effectively produces a stratified redistribution to the right,
wherein those who are censored are redistributed, at the time of
censoring, among those who remain uncensored and with the
same outcomes and treatments in the past. This redistribution
produces the right estimand, because by unconfoundedness, a
subject who remained uncensored was chosen fairly from those
at risk of being censored with the same past. Consequently, the
future experience of a selected uncensored subject is represen-
tative of the experience that the censored subject would have
had if he had continued to follow the rule ga,a∗ .

Table 2 lists the possible values that A can take for the sub-
jects in the trial who followed regime ga,a∗ , together with the
corresponding values ofωj , j = 1, . . . , 4. To simplify the expo-
sition, we assume that no subject died during the 32 weeks since
first receiving chemo. Death induces only slight modifications
that we discuss subsequently.

In Table 2, all groups receive an initial weight ω1 = 4. This
is because the probability of initial randomization to chemo
a was 1/4. For any given a, three patients are expected to be
randomized to a chemo other than a for each patient randomized
to a. These three patients have �a,a∗ = 0. The factor ω1 =
1/(1/4) = 1 + 3 effectively makes each subject randomized to
a represent three other subjects expected to be randomized to
any of the alternative three chemos.

Subjects in groups 1 and 2 of Table 2 ended the study therapy
without being randomized to a second treatment option. Those
in group 1 ended the study therapies because they experienced

toxicity or PD after the first course with chemo a. Those in group
2 had a successful response to the first course with chemo a, so
they received a second course with the same chemo, and they
were then removed from the study therapies either because they
responded successfully to the second course or because they
developed adverse events. From the second course onward, all
patients in both groups followed what the rule ga,a∗ stipulated.
They receive no more weight from this course and onward, that
is, for them ω2 = ω3 = ω4 = 1, as they have nobody censored
to account for.

Next, consider subjects in groups 3 and 4. They had a non-
successful response to the first course but they qualified for
a second randomization at course 2 because they did not ex-
perience toxicity or PD, that is, F2 was 1. In course 2, these
subjects were randomized to receive one of the three remaining
chemo combinations in A− {a} with probability 1/3 each and
ended up being assigned to a∗. For every one of them, there
are two patients expected to be assigned to a chemo other than
a∗ and who will therefore stop following rule ga,a∗ , and hence
are censored at this course. The factor ω2 = 1/(1/3) = 1 + 2
effectively makes each patient in groups 3 and 4 represent two
expected censored patients. After course 2, all patients in groups
3 and 4 followed rule ga,a∗ regardless of whether or not they were
removed from chemo a∗ after course 2. They receive no addi-
tional weight, that is, for them, ω3 = ω4 = 1, because they have
nobody to account for other than themselves.

Finally, consider subjects in groups 5 and 6. They received
a second course of chemo a because they had a successful re-
sponse to the first course with chemo a. Since this is precisely
the action stipulated by rule ga,a∗ for such patients, all of them
obeyed the rule at this stage. Thus, they receive the weight
ω2 = 1 at this stage, as there is no censored subject they have
to account for. However, patients in these groups were ran-
domized to the second chemo at the third course because they
had a nonsuccessful response to the second course but they did
not experience toxicity or PD, that is, F3 was 1. The factor
ω3 = 1/(1/3) = 1 + 2 effectively makes each patient in these
groups represent the two expected patients with the same treat-
ment and response as those in courses 1 and 2 who will be
censored at course 3 because they will not be randomized to a∗.
At course 4, all patients in groups 5 and 6 followed rule ga,a∗

regardless of whether or not they were removed from chemo
a∗. They receive no additional weight, that is, for them, ω4 = 1,
because they have nobody to account for other than themselves.
The last factor ω4 = 1 in all groups due to the fact that at
the fourth (last possible) course, there is no opportunity for
re-randomization.

Suppose now that death could have occurred over the 32
weeks since first receiving chemo. In such a case, ωj = 1 at
every course j in which the subject is dead, as it should be,
since after dying, the dead person has nobody to account for.
The equality (2) implies that the weighted sample average of Y
among those who followed the switch rule, that is,

∑n
i=1�a,a∗,iωiYi∑n
i=1�a,a∗,iωi

(3)

is a consistent estimator of E[Y(a,a∗)].
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Subjects in each of the six groups in Table 2 contribute to the
sums in (3). For example, subjects who were initially random-
ized to chemo a and who developed toxicity or PD by the end of
the first course are in group 1 and contribute with total weight
ω = 4. Note that these subjects contribute to the estimation of
E[Y(a,a∗)] for all three viable DTRs that start with a and switch
one a∗ ∈ A − {a}.

It is interesting to contrast the weighted average (3)
with the unweighted sample average {∑n

i=1�a,a∗,iYi}/
{∑n

i=1�a,a∗,i} for those who followed regime ga,a∗. The weight
ωi is equal to 12 for a patient i who complied with the switch
rule ga,a∗ and was randomized twice, that is, a patient in groups
3–6, and is equal to 4 for a complier to the rule who did not
reach the chance of a second randomization, that is, someone
in groups 1 and 2. In contrast, subjects in all six groups are
given the same weight in the unweighted sample average. The
unweighted average is not a consistent estimator of the coun-
terfactual mean E[Y(a,a∗)]. Intuitively, the unweighted average
suffers from bias due to confounding by indication beca-
use those failing at a given course are under-represented since,
save chance variation, only one-third of them are assigned to the
chemo a∗.

4.3 Handling Dropouts

In the trial, one subject who qualified for randomization to a
second chemo in the second course and 11 subjects who quali-
fied to chemo in the third course did not receive a second chemo
for reasons other than toxicity or PD. As explained in Section 3,
these subjects, whom for ease of reference we call “dropouts,”
differ from those who did not adhere to the study protocol be-
cause they developed toxicity or PD, in that it is conceivable
that they could have continued on the chemo to which they
would have been assigned. This consideration leads us to keep
as our analytic target comparison of the viable rules defined
in Section 3.2 on the basis of the potential outcome means in
the hypothetical world in which we could prevent dropout from
occurring.

However, addressing properly this analytic target raises new
challenges because the 12 dropouts departed from the viable
rules they were being assigned to follow at the time of drop-
ping out and the decision to dropout was not driven by some
exogenous random mechanism. That is, the unconfoundedness
assumption on which the IPTW methodology relies is no longer
automatically satisfied, essentially because embedded in each
arm of the trial, there is an observational study with self-
selection to dropout.

Formally, let Rj = {1 − I{N/A}(Aj )} , j = 1, 2, 3, 4 be the
indicator of being neither dead nor a dropout at the start of
course j. The rules we wish to compare are composed of de-
cisions at each j for two courses of action (Rj ,Aj ): the first,
with regard to dropout, stipulates that Rj = 1 for all sub-
jects alive at the start of course j regardless of their past,
that is, dropout is not allowed; the second, with regard to
therapy, stipulates that a subject with past Lj should be as-
signed to Aj equal to ga,a∗ (Lj ) where ga,a∗ is as defined
in Section (3.2). The unconfoundedness requirement for this
modified viable DTR demands that the conditional “action”

probabilities

Pr(Rj = 1, Aj = aj |Rj−1 = 1, Aj−1 = aj−1, Lj ,

X > 2(j − 1),P) (4)

= Pr(Rj = 1|Rj−1 = 1, Aj−1 = aj−1, Lj ,

X > 2 (j − 1) ,P)

× Pr(Aj = aj |Rj = 1, Aj−1 = aj−1, Lj ,

X > 2 (j − 1) ,P),

j = 1, . . . , 4, be independent of the counterfactuals P . Un-
fortunately, this requirement is no longer satisfied by design.
Specifically, the second factor on the right-hand side is the prob-
ability that Aj = aj for a subject with treatment history aj−1,

response history Lj , and counterfactual data P who is alive
at the start of course j and who, during course j, either is still
on one of the study chemos or has been switched off the study
chemos earlier due to toxicity or PD. This probability equals
p(aj |aj−1, Lj ), defined in Section 4.1, and hence it is indeed
independent of P . The first probability, on the other hand, is the
conditional probability of not dropping out at the start of course
j. We cannot assert that by design this probability is indepen-
dent of P because, unlike the study chemotherapies, dropping
out is not an option that has been assigned by randomization.
Thus, in our randomized study, we cannot guarantee that

Pr(Rj = 1|Rj−1 = 1, Aj−1 = aj−1, Lj ,X > 2 (j − 1) ,P)

= Pr(Rj = 1|Rj−1 = 1, Aj−1 = aj−1, Lj ,X > 2 (j − 1)).

(5)

In our data analysis, we will adopt (5) as an assumption,
recognizing that its validity is not ensured by design. However,
because this assumption is not empirically verifiable, we will
explore the sensitivity of our findings to departures from
this assumption. Assumption (5) allows the possibility of
informative dropout as it permits dependence of the probability
of dropout on the (likely) correlates of prognosis Lj and Aj−1.

However, it stipulates that dropout is explained by the measured
outcome and treatment history, that is, that Lj and Aj−1 are the
only correlates of P (i.e., prognosis) that are associated with
stopping one of the study chemos at course j for reasons other
than toxicity or PD.

Even after adopting assumption (5),we cannot directly apply
the IPTW formula (3) to estimate E[Y(a,a∗)]. This is because,
for j = 2 and 3, the weights

ωj,i = Pr(Aj = Aj,i |Rj,i = 1, Aj−1 = Aj−1,i , Lj,i ,

Xi > 2(j − 1))

× Pr(Rj,i = 1|Rj−1,i = 1, Aj−1 = Aj−1,i , Lj,i ,

Xi > 2(j − 1))

are unknown functions of (Aj−1,i , Lj,i) since the non-dropout
probabilities,

πj,i = Pr(Rj,i = 1|Rj−1,i = 1, Aj−1 = Aj−1,i , Lj,i ,

Xi > 2(j − 1))

are unknown, whereas for j = 4, they are equal to 1 because
there was no dropout occurring at that course. Thus, we must
estimate the dropout probabilities, but to do so, we must make
some modeling assumptions. This is because with only 150
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patients and only 12 dropping out, we could not hope to estimate
the unknown dropout probabilities nonparametrically even ifLj
were a finitely valued variable, much less if it includes, as it
does, the continuous component PSA. In the analysis reported
in Section 5, we assume that the dropout probabilities depend
on (Aj−1, Lj ) only through the past treatments Aj−1 and on
the indicator that PSA dropped over course j − 1, that is, that
Pj−1 − Pj > 0. Our estimators π̂j,i of πj,i were computed as
the proportion of subjects not dropping out at course j among
subjects with treatment history Aj−1,i as subject i up to course
j − 1 and with PSA change Pj−1 − Pj of the same sign as that
of subject i.

The preceding discussion implies that if (5) holds and our
model for the dropout probabilities is correct, then

Ê[Y(a,a∗)] =
∑n

i=1�a,a∗,i ω̂iYi∑n
i=1�a,a∗,i ω̂i

is a consistent estimator ofE[Y(a,a∗)],where ω̂i = ω1,i × ω̂2,i ×
ω̂3,i , ω1,i = 1/4,

ω̂j,i = p(Aj,i |Aj−1,i , Lj,i)
−1π̂−1

j,i for j = 2, 3,

where p(Aj,i |Aj−1,i , Lj,i) is the function p(aj | aj−1, lj ) de-
fined in Section 4.1 and evaluated at aj = Aj,i, aj−1 = Aj−1,i ,
and lj = Lj,i . In the data analysis in Section 5, we do not
report the values of Ê[Y(a,a∗)], but rather the asymptotically
more efficient estimators Ẽ[Y(a,a∗)] that use estimated treatment
probabilities, as described in the next section. The preceding
discussion applies equally when the endpoint Y(a,a∗) is replaced
by the log survival endpoint U(a,a∗). Although we have records
of the death times of the 12 dropouts, these are not used in
the calculation of the estimators of the means E[U(a,a∗)]. The
estimator Ê[U(a,a∗)] essentially censors each dropout at the start
of the course at which the subject first fails to comply with his
assigned regimen and redistributes him among all non-dropouts
who share the same history of treatments, outcomes, and
covariates.

4.4 Estimating the Known Treatment Probabilities as a
Tool for Improving Efficiency

In IPTW estimation, efficiency can be improved by replacing
the known treatment probabilities that form the factors in the
weights ω by maximum likelihood estimates under correctly
specified models (e.g., Robins, Rotnitzky, and Zhao 1994).
While this may seem paradoxical, it can be understood by noting
that this replacement effectively corrects chance imbalances in
the covariates in each arm. For example, in the prostate cancer
trial, 50 subjects and 100 subjects had low and high disease vol-
ume at baseline, respectively, so the proportion with low disease
volume in the trial was 1/3. However, the respective numbers
with low and high disease volume in the patients who initially re-
ceived KA/VE were 10 and 26, which gives the slightly smaller
proportion 10/36 with low disease volume in this group. Suppose
that although we know that Pr(A1 = A1,i |L1 = L1,i) = 1/4 for
each subject i, we choose to replace this probability in the
computation of ω1,i by its estimated value P̂r(A1 = A1,i |L1 =
L1,i) = m1,i/n1,i , the observed proportion of trial participants
in the arm of subject i having the same value of disease volume

V1 as him, that is, withm1,i = ∑n
i=1 I{A1,i }[A1,j ]I{V1,i }[V1,j ] and

n1,i = ∑n
i=1 I{V1,i }[V1,j ]. Thus, in the group of patients who ini-

tially received KA/VE, all 10 subjects with low disease volume
receive a weight of 1/(10/50) = 5 and all 26 subjects with high
disease volume receive a weight of 1/(26/100) = 100/26 =
3.85. This effectively forms a pseudo-sample of 150 subjects,
50 with low and 100 with high disease volume, consequently
recovering the disease volume distribution in the entire trial. In
contrast, because ω1,i = 1/(1/4) = 4 is the same for all i, this
factor is inconsequential in the estimator Ê[Y(a,a∗)], that is, it
can be ignored without altering the value in (3). This implies
that no correction for chance imbalances on the distribution of
the baseline covariate disease volume takes place by the opera-
tion of multiplying by ω1,i if we compute the weights with the
known randomization probability.

The preceding argument suggests that it would be advanta-
geous to nonparametrically estimate the treatment probabilities
conditional on all recorded past information, that is, baseline dis-
ease volume and PSA and past per-course PSA and treatments.
However, in our trial, only 48 subjects qualified for random-
ization to a second chemo at month 2 (course 2) and only 39
qualified for randomization at month 4 (course 3). With these
sample sizes, we had to inevitably reduce dimensionality. We
thus chose to estimate the treatment probabilities under parsi-
monious parametric models. Specifically, our estimators of the
12 estimated DTR means were computed as:

Ẽ[Y(a,a∗)] =
∑n

i=1�a,a∗,i ω̃iYi∑n
i=1�a,a∗,i ω̃i

,

where ω̃i = ω̃1,i × ω̃2,i × ω̃3,i . The weight ω̃1,i was equal to
Pr(A1 = A1,i |L1,i ; γ̂ ), where γ̂ is the maximum likelihood of
the parameters γ = (γj,a)j∈{1,2,3},a∈{KA/VE,TEC, TEE} in the pro-
portional odds model

log
Pr(A1 = a|L1; γ )

Pr(A1 = CVD|L1; γ )
= γ1,a + γ2,aV1 + γ3,a log (P1) ,

(6)
for a = KA/VE, TEC and TEE.

For j = 2 and 3, we computed

ω̃j,i = λ̂−1
j,i × π̂−1

j,i , (7)

where π̂j,i are the estimated dropout probabilities computed as
indicated in the preceding section and λ̂j,i are estimators of
the treatment probabilities Pr(Aj = Aj,i |Aj−1 = Aj−1,i , Lj =
Lj,i, Xi > 2(j − 1)) and were computed as follows. We set λ̂j,i
to 1 unless subject i qualified for randomization to a second
chemo at the start of course j, that is, λ̂2,i = 1 unless F2,i = 1
and λ̂3,i = 1 unless S2,iF3,i = 1. We computed the remaining
values of λ̂j,i as follows. We postulated two models sharing the
same parameters, the first for the probability of assignment to a
second chemo in course 2 among those who had one course of
chemo, A1, equal to a∗ and who qualified to randomization at
course 2,

log
Pr(A2 = a|R2 = 1, A1 = a∗, L2, X > 2;α)

Pr(A2 = a0 (a∗) |R2 = 1, A1 = a∗, X > 2, L2;α)
= αa,a∗ log (P2) , a �= a∗ (8)

and the second for the probability of assignment to a second
chemo in course 3 among those who had two courses of chemo,
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A1 and A2, equal to a∗ and who qualified to randomization at
course 3,

log
Pr

(
A3 = a|R3 = 1, A1 = A2 = a∗, L3, X > 4;α

)
Pr

(
A3 = a0 (a∗) |R3 = 1, A1 = A2 = a∗, L3, X > 4;α

)
= αa,a∗ log (P3) , a �= a∗, (9)

where a0(CVD) = KA/VE, a0(KA/VE) = CVD, a0(TEC) =
CVD, and a0(TEE) = CVD. Thus, the two models assume that
the probability of assignment to a second chemo, say a, among
subjects who received a first chemo, say a∗, is the same function
of the last PSA value regardless of whether the assignment
is at course 2 or course 3. The functions, however, may be
different for subjects who received a different first chemo, as
αa,a∗ depends on a∗. We computed the maximum likelihood
estimator α̂a,a∗ of αa,a∗ and for subjects i who qualified for
randomization to a second chemo at course j, we computed λ̂j,i
as Pr(Aj = Aj,i |Aj−1 = Aj−1,i , Lj = Lj,i, Xi > 2(j − 1); α̂).
Models (6), (8), and (9) are correctly specified, because the true
assignment probabilities are 1/4 for the first randomization and
1/3 for the second randomization, and consequently, the models
hold with γj,a = 0, for a = KA/VE, TEC and TEE, j = 1, 2, 3,
and αa,a∗ = 0 for all a and a∗.

4.5 Inference About the Optimal Switch Rule

Nonparametric bootstrap standard error estimators can be
used to construct regime-specific Wald-type confidence inter-
vals centered at the regime-specific IPTW estimators Ẽ[Y(a,a∗)].
The bootstrap produces consistent estimators of the asymptotic
variance of regular asymptotically linear (RAL) estimators (Gill
1989) and Ẽ[Y(a,a∗)] is an RAL estimator since its computation
involves solving jointly smooth estimating equations for it and
for the parameters of the treatment and dropout models. How-
ever, these regime-specific confidence intervals cannot be used
to conduct inference about the optimal regime as they do not
account for the multiple comparisons involved in the calculation
of the optimal rule. Nevertheless, in the Appendix we show that
we can still use the bootstrap to construct simultaneous confi-
dence intervals using a procedure similar to the one described
in Bembom and van der Laan (2008). These intervals are com-
puted in such a way that given a nominal level τ, in at least τ
% of infinitely many hypothetical repetitions of the trial, each
of the 12 counterfactual means E[Y(a,a∗)] would be covered by
its corresponding interval. The data analyses in the next section
report these simultaneous confidence intervals.

The simultaneous confidence intervals serve for the construc-
tion of a confidence set C for the optimal DTR as follows. We
identify the 100 × τ % confidence interval corresponding to the
regime ga,a∗ with the largest estimated mean E[Y(a,a∗)] and then
construct the set C to be the one comprised by all the DTRs
whose confidence intervals overlap with this interval. This ran-
dom set C includes the optimal DTR with probability at least τ.
In spite of being conservative, the set C helps narrow down the
collection of switch rule candidates for being optimal, in that
DTRs that fall outside it are, with high confidence, DTRs that
do not yield the largest outcome mean.

In addition to computing the simultaneous confidence inter-
vals, we conducted a Wald-type test of the null hypothesis of no

overall treatment effect:

H0 : E(Y(a,a∗)) does not depend on (a, a∗). (10)

The test rejects if S = (µ̃− µ̃0)
′
W−1

boot(µ̃− µ̃0) is greater than
the 95th percentile of a chi-squared distribution with 11 de-
grees of freedom. Here, µ̃ denotes the 12 × 1 vector of
the 12 estimated means Ẽ[Y(a,a∗)], µ̃0 is the 12 × 1 vector
with all components equal to the consistent estimator of the
common outcome mean under H0, {∑(a,a∗)

∑
i �a,a∗,i ω̃iYi}/

{∑(a,a∗)

∑
i �a,a∗,i ω̃i}, and Wboot is the nonparametric boot-

strap estimator of the covariance matrix of µ̃− µ̃0.

5. DATA ANALYSES

Figure 3 displays plots of the 12 estimators Ẽ[Y(a,a∗)] and
their simultaneous 95% confidence intervals for each of the three
scores. Table 3 provides the numerical values of these means and
confidence intervals. The results reported in this table indicate
that the switch rule with the highest estimated mean expert
score is the one that starts with TEC and switches to CVD
(estimated mean expert score = 0.78). In fact, the other two
regimes that start with TEC, that is, (TEC, KA/VE) and (TEC,
TEE), also have high estimated mean expert scores compared
to the other regimes, 0.73 and 0.74, respectively. The lowest
estimated mean expert score is 0.56, corresponding to regime
(CVD, TEE). The uncertainty in the estimated mean scores is,
nevertheless, substantial. In fact, the confidence interval for the
mean expert score of (TEC, CVD) overlaps with the confidence
intervals for the mean expert scores of each of the remaining
11 regimes, thus resulting in a 95% confidence set C for the
optimal regime that does not exclude any of the 12 regimes.
Interestingly, the Wald-type test of the overall null hypothesis
H0 defined in (10) rejected at the 95% level (S = 33.00). Thus,
the data indeed provide evidence that not all DTR mean expert
scores are the same, but it is too noisy to allow the detection of
the ordering of the outcome means.

The estimated mean ordinal scores gave a similar ranking,
with (TEC, CVD) having the highest estimated score (0.67)
and (CVD, TEE) the lowest (0.31). Once again, the 95% con-
fidence set for the optimal rule did not exclude any of the 12
regimes but the test of the overall null H0 rejected. The in-
crement in mean ordinal score conferred by (TEC, CVD) over
(CVD, TEE) was greater than 100%, whereas this increment was
about 30% for the mean expert score. An even greater difference
between (TEC, CVD) and (CVD, TEE) is obtained when the
binary scores are considered: 0.11 for the first and 0.44 for
the second. A comparison between the increment conferred
by the binary scores and the ordinal scores by (TEC, CVD)
over (CVD, TEE) indicates that whereas the latter produces only
few overall successes compared to the former, when transient
successes are also considered, the distinction between the two
regimes is less profound. Further comparison using the expert
scores indicates that the distinction between these two regimes
is even less profound when the nature of the transient successes
is also taken into account.

The estimated mean log survival times of the 12 regimes,
in the last column of Table 3, are ordered quite differently
from the mean score ordering. For instance, (CVD, TEC) and
(TEE, CVD) have the largest mean log survival estimate 3.36.
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Figure 3. Estimated regime-specific mean scores (binary score, ordinal score, expert score, and modified expert score) for 12 chemotherapy
pairs, using the inverse of the estimates of the randomization probabilities and the inverse of the estimates of the dropout probabilities. The
rectangles are the 95% simultaneous confidence intervals, and each middle bar is the estimated counterfactual mean score.

However, the 95% confidence setC for the optimal DTR includes
all regimes, and the test at the 95% level that E[U(a,a∗)] is the
same for all (a, a∗) fails to reject (S = 15.65), so the results are
inconclusive. This is not surprising. Given that most patients
survived long after the duration of the studied therapies, the ef-
fect on survival of these earlier therapies was likely washed out
by treatment decisions made subsequently, and moreover, small
differences among the mean log survival of the DTRs would
not be detectable with the sample size of this study. In any case,
even if the analyses would have shed convincing evidence that
regimes rank differently on the basis of mean log survival times
compared to mean scores, this could have been explained by the
fact that some switch rules might be preferable for temporarily

diminishing disease burden, whereas others might be preferable
for prolonging survival.

To assess the sensitivity of our inferences to departures from
assumption (5) and, in particular, to evaluate to what extent
the benefit attributed to the switch rule estimated as optimal
based on the expert score and on mean log survival depended
on our assumptions about the dropout process, we conducted
four extreme analyses. The first two analyses imputed extreme
values for the expert scores of the 12 dropouts and the last two
analyses imputed extreme values for the death times of the 12
dropouts as follows.

In the first analysis, for patients who were first assigned to
CVD (the stage 1 chemo corresponding to the regime with

Table 3. IPTW estimated mean scores and log survival times for the 12 viable DTRs. 95% simultaneous confidence intervals are
given in parentheses

Binary score Ordinal score Expert score Log survival

(CVD-KA/VE) 0.41 (0.14–0.75) 0.50 (0.19–0.81) 0.61 (0.46–0.76) 2.95 (2.60–3.30)
(CVD-TEC) 0.19 (0.00–0.94) 0.47 (0.21–0.73) 0.63 (0.49–0.78) 3.36 (2.96–3.77)
(CVD-TEE) 0.11 (0.00–0.99) 0.31 (0.07–0.55) 0.56 (0.41–0.71) 2.95 (2.32–3.59)
(KA/VE-CVD) 0.21 (0.06–0.52) 0.43 (0.19–0.67) 0.66 (0.54–0.78) 3.10 (2.48–3.72)
(KA/VE-TEC) 0.19 (0.05–0.49) 0.55 (0.42–0.69) 0.71 (0.61–0.81) 2.93 (2.61–3.25)
(KA/VE-TEE) 0.24 (0.07–0.56) 0.37 (0.10–0.65) 0.63 (0.48–0.78) 2.87 (2.41–3.33)
(TEC-CVD) 0.44 (0.15–0.79) 0.67 (0.45–0.89) 0.78 (0.66–0.89) 3.08 (2.73–3.43)
(TEC-KA/VE) 0.46 (0.21–0.72) 0.57 (0.31–0.83) 0.73 (0.56–0.90) 3.26 (2.70–3.81)
(TEC-TEE) 0.31 (0.13–0.58) 0.54 (0.35–0.73) 0.74 (0.63–0.84) 3.12 (2.78–3.45)
(TEE-CVD) 0.44 (0.12–0.81) 0.52 (0.13–0.90) 0.69 (0.51–0.87) 3.36 (2.57–4.16)
(TEE-KA/VE) 0.25 (0.09–0.55) 0.41 (0.17–0.65) 0.65 (0.51–0.79) 2.94 (2.52–3.36)
(TEE-TEC) 0.37 (0.11–0.74) 0.53 (0.24–0.82) 0.70 (0.55–0.85) 3.05 (2.58–3.51)
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Figure 4. Estimated regime-specific mean log survival time for 12 chemotherapy pairs, using the inverse of the estimates of the randomization
probabilities and the inverse of the estimates of the dropout probabilities. The rectangles are the 95% simultaneous confidence intervals, and
each middle bar stands for the estimated counterfactual mean score.

smallest estimated mean expert score), we imputed the high-
est score 1, whereas for all others, we imputed the lowest score
0. This analysis was conducted to examine the robustness of
the conclusion that the regime (CVD, TEE) has the lowest esti-
mated mean score to assumptions about the dropout mechanism.
In the second analysis, for patients who were first assigned to
TEC (the stage 1 chemo corresponding to the regime with largest
estimated mean expert score), we imputed the lowest score 0,
whereas for all others, we imputed the highest score 1. This
analysis was conducted to examine the robustness of the con-

clusion that the regime (TEC, CVD) has the highest estimated
mean score to assumptions about the dropout mechanism. Re-
sults reported in the first two columns of Table 4 indicate that
the regimes (CVD, TEE) and (TEC, CVD) remain as the ones
with the smallest and largest mean expert scores, respectively.
However, as in the earlier analysis, the results are inconclusive
as the confidence intervals overlap.

In the third and fourth analyses, the survival time imputed
for each dropout whose last course of chemo was j − 1 and
who was alive at the end of that course was calculated using

Table 4. Sensitivity analysis: Estimated mean expert score and log survival time using worst-case and best-case imputation schemes
for dropouts. 95% simultaneous confidence intervals are given in parentheses

Expert scorea Expert scoreb Log survivalc Log survivald

(CVD-KA/VE) 0.62 (0.47–0.77) 0.62 (0.47–0.77) 2.93 (2.59–3.26) 2.92 (2.58–3.26)
(CVD-TEC) 0.63 (0.49–0.77) 0.63 (0.48–0.78) 3.28 (2.88–3.67) 3.27 (2.85–3.68)
(CVD-TEE) 0.57 (0.43–0.71) 0.57 (0.43–0.71) 2.93 (2.32–3.54) 2.92 (2.31–3.53)
(KA/VE-CVD) 0.65 (0.52–0.77) 0.67 (0.55–0.80) 3.20 (2.65–3.76) 3.20 (2.64–3.77)
(KA/VE-TEC) 0.70 (0.59–0.81) 0.73 (0.62–0.84) 3.05 (2.69–3.41) 3.05 (2.68–3.42)
(KA/VE-TEE) 0.62 (0.47–0.77) 0.65 (0.50–0.80) 3.00 (2.54–3.46) 3.00 (2.53–3.47)
(TEC-CVD) 0.77 (0.65–0.89) 0.77 (0.65–0.89) 3.02 (2.68–3.36) 3.18 (2.89–3.47)
(TEC-KA/VE) 0.72 (0.56–0.87) 0.72 (0.56–0.88) 3.13 (2.60–3.67) 3.31 (2.80–3.82)
(TEC-TEE) 0.73 (0.62–0.83) 0.73 (0.62–0.83) 3.03 (2.63–3.42) 3.17 (2.83–3.50)
(TEE-CVD) 0.65 (0.50–0.80) 0.68 (0.54–0.83) 3.06 (2.43–3.69) 3.02 (2.42–3.63)
(TEE-KA/VE) 0.63 (0.50–0.75) 0.66 (0.53–0.79) 2.83 (2.38–3.28) 2.79 (2.36–3.23)
(TEE-TEC) 0.67 (0.53–0.81) 0.71 (0.57–0.84) 2.87 (2.42–3.31) 2.83 (2.39–3.27)

NOTE: a1 imputed for the dropouts with CVD in the 1st course, and 0 imputed for all other dropouts. b0 imputed for the dropouts with TEC in the 1st course, and 1 imputed
for all other dropouts. cMaximum of the survival time in reference group imputed for dropouts with KA/VE in the 1st course and 0.5 of the minimum remaining survival time
imputed for all other dropouts. dHalf of the minimum remaining survival time in reference group imputed for dropouts with CVD or TEE in the 1st course and Maximum of
the survival time imputed for all other dropouts.
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the survival times of subjects who had the same courses of
chemo up to and including j − 1 and had the same values of
Ej and Tj as the given dropout, throughout referred to as the
reference group. In the third analysis, each dropout who was
first assigned to KA/VE (the stage 1 chemo corresponding to
the regime with smallest estimated mean log survival time)
was imputed the longest survival time of his reference group.
For all other dropouts, each survival time was computed by
adding to 2(j − 1), where j − 1 was the last course of chemo
received by the given dropout, one half of the shortest remaining
survival time of his reference group. In the fourth analysis, we
replicated this last imputation scheme only to impute the survival
times of the dropouts who were first assigned to TEE and CVD
(the stage 1 chemos corresponding to the regimes with largest
estimated mean log survival) and imputed the survival times
of all remaining dropouts with the longest survival time in the
corresponding reference group. The results reported in the last
two columns of Table 4 show that the order of the DTRs does not
stay the same as in the earlier analysis that assumed informative
but explainable dropout. In particular, regime (TEE, CVD) is
no longer a regime with the largest mean log survival time and
regime (KA/VE, TEE) is no longer the one with the smallest
mean. Nevertheless, (CVD, TEC) stays as the regime with the
largest mean log survival time. Once again, these rankings are
not firm as any given pair of confidence intervals overlap.

6. DISCUSSION

In this article, we have presented a new statistical analysis
of a novel clinical trial in which prostate cancer patients were
initially randomized to one of four chemotherapies, and those
who responded poorly to their initial regimen were randomly
reassigned to one of the remaining candidate chemos. Such SR
trials mimic the way in which oncologists actually behave when
treating cancer patients and thus they allow investigators to
study adaptive treatment strategies. Our analysis was motivated
by the fact that, as is routine in oncology practice, quite a few
(47) patients enrolled in this trial discontinued their assigned
therapy due to either severe toxicity or PD. Because many of
them (35) did so for reasons that precluded further therapy, we
switched the target of analysis to comparison of viable DTRs
that additionally stipulate that patients developing toxicity or PD
should be removed from study therapy. This was made possible
by expanding the data set to include toxicity and PD as addi-
tional per-course outcomes, using additional information pro-
vided by the PI of the trial. We thus redefined patient outcome
as a more informative compound event combining information
on both efficacy and toxicity. The remaining noncompliers (12
patients) were assumed to have followed a possibly informa-
tive, but explainable, dropout mechanism given the history of
PSA up to the time of withdrawal. We applied IPTW methods
to estimate counterfactual regime-specific means of the com-
pound endpoint, an elicited expert score, under different DTRs.
We found that (TEC, CVD) had the highest estimated mean
expert score, followed by (TEC, TEE) and (TEC, KA/VE),
while (CVD, TEE) had the lowest estimated mean expert
score. However, the uncertainty in the estimated mean scores
is substantial, as indicated by the 95% simultaneous confidence
intervals.

We also applied our proposed methodology to the overall suc-
cess/failure endpoint score and another ordinal endpoint score
that distinguishes therapies providing transient benefits. The for-
mer score was used by Bembom and van der Laan (2007) as
well, although their analysis was restricted to complete cases.
These authors found that (CVD, KA/VE) has the highest overall
success rate. In contrast, (CVD, KA/VE) is no longer the top
choice. This is not surprising, because among those patients who
followed regime (CVD, KA/VE), nine patients who developed
severe toxicity or severe PD were excluded by Bembom and
van der Laan (2007). After redefining the compound endpoint,
only one of these nine patients is still missing. The other eight
patients were assigned 0 for the overall success/failure endpoint
score in our analysis. Therefore, the estimated regime-specific
mean score for (CVD, KA/VE) is greatly shrunk to a lower num-
ber. Our result, with (TEC, KA/VE) and (TEC,CVD) having the
highest estimated overall success rates, is more consistent with
Thall et al. (2007), who used all patients in their first-line anal-
ysis based on the success/failure endpoint and concluded that
the best initial chemo is TEC, while the worst initial chemo is
CVD. We found the ranking of the 12 regimes in our analyses
to be relatively insensitive to the choice of scores.

The estimators of mean log survival times of the 12 regimes
were ordered quite differently than the means of the three con-
sidered scores. We interpret this distinct ordering as a manifes-
tation that the DTRs might possibly rank differently with regard
to their ability to temporarily reduce disease burden compared
to prolonging survival.

One limitation of this study is its sample size. The trial was
designed to be hypothesis generating (Thall et al. 2007); hence,
it had 150 patients. The sample size is far too small to draw con-
firmatory conclusions comparing the 12 treatment pairs. Sample
size calculations for SR trials are important to provide practical
guidance (see Murphy 2005; Feng and Wahed 2009; Dawson
and Lavori 2012). Our proposal to construct simultaneous con-
fidence intervals is conservative and assumes normality of the
estimators of the counterfactual mean scores, which is justified
only in large samples. Future research is needed to improve
finite sample inferences about optimal regimes.

APPENDIX

To compute the simultaneous confidence intervals for the 12 means
E[Y(a,a∗)], following Bembom and van der Laan (2008), we reasoned
as follows. If µ and µ̃ denote the 12 × 1 vectors comprised by the 12
meansE[Y(a,a∗)] and estimated means Ẽ[Y(a,a∗)] respectively, we know
that

√
n (µ̃− µ) → N (0, �) .

The asymptotic normality follows, under regularity conditions, af-
ter standard Taylor expansion arguments, because computation of µ̃
involves solving jointly smooth estimating equations for it and the
parameters α and η of the treatment and dropout model.

Then, max{| µ̃j−µj√
�jj /n

|; j = 1, . . . , 12} is distributed like Zmax =
max{|Zj |; j = 1, . . . , 12} where Z = (Z1, . . . , Z12) ∼ N (0, 
) with

 = diag(�)−1/2�diag(�)−1/2. If zmax,.95 is the 95th percentile ofZmax,

and Ij is the interval(
µ̃j − zmax,.95

√
�jj/n, µ̃j + zmax,.95

√
�jj/n

)
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then

Pr{µj ∈ Ij for j = 1, . . . , 12}

= Pr

{∣∣∣∣∣ µ̃j − µj√
�jj/n

∣∣∣∣∣ ≤ zmax,.95 for j = 1, . . . , 12

}
= Pr{Zmax ≤ zmax,0.95 for j = 1, . . . , 12} = 0.95.

In the construction of our confidence interval, we replaced �jj/n

with the nonparametric bootstrap estimator Vboot,j of the asymptotic
variance of µ̃j using 1000 bootstrap replications. We also used a
Monte Carlo procedure to compute an estimate ẑmax,0.95 of the un-
known value zmax,0.95. Specifically, we computed the nonparamet-
ric bootstrap estimator 
̂boot of the correlation matrix 
. Next,

we generated Ẑk
iid∼ N (0, 
̂boot), k = 1, . . . , 10, 000, and for each k,

we computed Zmax,k = max{|Zk,j |; j = 1, . . . , 12}. Finally, we com-
puted ẑmax,0.95 as the 95th percentile of the empirical distribution of
Zmax,k, k = 1, . . . , 10, 000 and calculated the confidence intervals as
(µ̃j − ẑmax,0.95

√
Vboot,j , µ̃j + ẑmax,0.95

√
Vboot,j ).

[Received March 2010. Revised October 2011.]
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Comment
Daniel ALMIRALL, Daniel J. LIZOTTE, and Susan A. MURPHY

1. INTRODUCTION

Sequential treatments, in which treatments are adapted over
time based on the changing clinical status of the patient, are often
necessary because treatment effects are heterogeneous across
patients: not all patients will respond (similarly) to treatment,
calling for changes in treatment to achieve an acute response
or to place all patients on a positive health trajectory. Further, a
treatment that is effective now for one patient may not work as
well in the future for the same patient, again necessitating a se-
quence of treatments. Moreover, it is often necessary to balance
benefits (e.g., symptom reduction) with burden (e.g., toxicity),
a trade-off that may unfold over time. As a result, in clinical
practice clinicians often find themselves implicitly or explic-
itly using a sequence of treatments with the goal of optimizing
both short- and long-term outcomes, or, as may be the case in
cancer treatment, to prevent death. Dynamic treatment regimes
(DTRs) operationalize such sequential decision making. A DTR
individualizes treatment over time via decision rules that specify
whether, how, or when to alter the intensity, type, or delivery
of treatment at critical clinical decision points. Sequential mul-
tiple assignment randomized trials (SMARTs) or equivalently,
sequentially randomized trials, have been developed explicitly
for the purpose of constructing proposals for high-quality DTRs.

In the article “Evaluation of Viable Dynamic Treatment
Regimes in a Sequentially Randomized Trial of Advanced
Prostate Cancer,” Wang et al. (2012, hereinafter WRLMT) pro-
vide an excellent and lucid re-analysis of data from a SMART
study and both motivate and encourage a discussion about de-
sign and analysis issues around SMARTs. In our comment, we
focus on two important ideas raised by WRLMT: (1) the design
of SMARTs (as opposed to the analysis of SMARTs), and (2)
the analysis of, and presentation of results based on, multiple
outcomes.

2. DESIGNING SMART STUDIES

2.1 Ensuring Viable Embedded DTRs in the Design
of a SMART

It is critically important to ensure prior to the conduct of a
SMART that the DTRs embedded within it are indeed viable.
A first step to ensure that the embedded DTRs are viable is a
clear operationalization of the embedded tailoring variable used
to restrict subsequent treatment options within the SMART. Of-
ten, the embedded tailoring variable is a well-operationalized

Daniel Almirall is Faculty Research Fellow, Institute for Social Re-
search, University of Michigan, Ann Arbor, MI 48106-1248 (E-mail:
dalmiral@umich.edu). Daniel J. Lizotte is Assistant Professor, David R.
Cheriton School of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1 (E-mail: dlizotte@uwaterloo.ca). Susan A. Murphy
is Professor of Statistics and Psychiatry, and Research Scientist at the Insti-
tute for Social Research, University of Michigan, Ann Arbor, MI 48106-1248
(E-mail: samurphy@umich.edu). Funding for this work was provided by the
grants R01-MH-080015 (Murphy) and P50-DA-010075 (Murphy).

notion of early (or “in treatment”) response and nonresponse.
WRLMT use the phrase “course-specific success or failure.” In
this regard, the efforts of the prostate SMART study designers
are commendable: As noted in WRLMT and in more detail in
Thall et al. (2007), after an eight-week course of initial treat-
ment, success (versus failure) was defined as a decline of at
least 40% in prostate-specific antigen (PSA), no regression of
any magnitude on any measurable disease dimension, no symp-
tom increase in pain, anorexia, asthenia, or cachexia, and no
new lesions or new cancer-related symptoms. Further, criteria
for scoring success after being offered the second course of the
same treatment were also clearly operationalized.

A second important step to ensure that the embedded DTRs
are viable is a clear operationalization of how to treat patients
in the event that additional common contingencies (e.g., beyond
what is typically thought of as course-specific success or failure)
arise during treatment. Such contingencies may include intoler-
able side effects (such as toxicity in the treatment of cancer, or
weight gain in the treatment of schizophrenia), excessive treat-
ment burden (such as is possible with preventive and behavioral
interventions), and treatment drop-out or refusal to receive sub-
sequent treatment (such as may happen with any intervention).
Indeed, in our experience, the clinical trial protocol (includ-
ing the materials provided to either the Data Safety Monitoring
Board and/or Institutional Review Boards) will detail a plan
for what will happen in the event that any of these common
contingencies arise. Often, the plan may be a transfer of the
patient to “treatment as usual by patient’s clinician,” or in some
settings, the plan may include a behavioral therapy aimed at
re-engagement of the patient in treatment. The embedded DTRs
are only viable if they incorporate the trial protocol plans for
these commonly occurring contingencies.

In their re-analysis of the prostate SMART, WRLMT report
that among the 47 participants who did not complete their ther-
apy according to the 12 originally conceived DTRs embedded
within the SMART, 35 of them did so due to severe toxicity or
progressive disease (PD). WRLMT note that in actual oncology
practice, severe toxicity or PD preclude further chemotherapy
for patients with advanced prostate cancer and, instead, indicate
a therapeutic or palliative treatment of some sort. They further
note that this is precisely what was discovered to have happened
during the conduct of the prostate SMART.

Given the relatively large proportion (35/150 = 23%) of par-
ticipants who were affected by PD or toxicity so severe as to
preclude chemotherapy, we suspect that the trial protocol likely
detailed a plan (i.e., the provision of therapeutic or palliative care
for those with severe toxicity or PD) for these contingencies.

In other SMART studies, a common contingency is that
a patient misses the clinic visit during which course-specific

© 2012 American Statistical Association
Journal of the American Statistical Association
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success or failure is assessed. If the patient returns to the clinic
for treatment beyond the window of time during which subse-
quent (originally planned) treatments are appropriate, a clear
alternative treatment plan is necessary to make the embedded
DTRs viable. This issue is particularly important in the design
of SMARTs because the trial design depends on course-specific
success or failure.

To summarize, common contingencies that may arise during
treatment require a prespecified treatment plan and the absence
of such a plan may lead to the consideration of nonviable em-
bedded DTRs. Of course, we do not mean to imply that the
embedded DTRs need to be tailored to any and all contingen-
cies that may arise.

The primary consequence of having nonviable DTRs in the
design of a SMART is that it becomes unclear what DTRs
the SMART is designed to make inferences about. As a result,
the effects of the proposed DTRs resulting from the study will
be less replicable as it will be unclear to future investigators
how these contingencies were handled in the trial. Since the
primary motivation to conduct a SMART in the first place
is to inform decision making concerning the sequencing of
treatments, this is a consequential omission in the design of
SMARTs. Thus, the consideration of additional contingencies
as part of the embedded DTRs is not merely a quality control
measure or an ethical concern. Rather, the treatment plan
following one of these contingencies is part of the definition of
the embedded DTRs. Without accounting for these additional
contingencies, as we learned from WRLMT, we do not have
realistic DTRs that are applicable to the population of interest
and, therefore, useful in informing sequential decision making.

Our message that it is critical to ensure that embedded DTRs
are viable during the design phase of a SMART is not new.
Indeed, as emphasized in the recent National Research Coun-
cil’s study report on “The Prevention and Treatment of Missing
Data in Clinical Trials, 2010,” the consideration of viable inter-
ventions should be a basic tenet of all RCT designs. However,
unlike standard RCTs, SMARTs force us to confront this issue.

Since the primary focus of standard RCTs is often on initial
treatment offerings, this means that even when there exist (or
should exist) treatment plans for common contingencies that
may arise, they are not always explicitly considered to be part
of the definition of treatment. Instead, these common contin-
gencies are often considered treatment outcomes. We note that
while the rate at which these contingencies occur is a treatment
outcome, the plan for how to treat participants in these situa-
tions is part of the definition of treatment, a subtle but important
distinction.

In contrast, since SMARTs are explicit in their aim to develop
DTRs, the issue of what to do next given common contingencies
that may arise (even beyond what is considered course-specific
success or failure) is less easily “swept under the rug.”

2.2 Matching the Statistical Analysis to the Rationale for
a SMART

In our experience in designing SMART studies, the overar-
ching goal of the study is to construct one or more proposals for
high-quality DTRs. These proposals would then be combined
with the results of other studies and emerging science to produce

DTR(s) that would form one or more of the intervention arms
in a future randomized confirmatory trial. Thus, the goal of a
SMART is often quite different from the more “confirmatory”
goal of most standard RCTs.

This appears to be the case in the prostate SMART considered
here, as WRLMT write: “The ultimate goal was to use the results
of the trial as a basis for generating hypotheses and planning a
future, confirmatory trial.”

This goal is quite similar to the goal of randomized factorial
designs used in engineering (Box, Hunter, and Hunter 1978) and
its emerging use in the development of behaviorial interventions
(Collins et al. 2005; Collins, Murphy, and Strecher 2007; Collins
et al. 2009, 2011; Strecher et al. 2008; Chakraborty and Murphy
2009). Indeed, SMARTs can be viewed as sequentially random-
ized factorial designs (Murphy and Bingham 2009).

Similar to the use of factorial designs in engineering,
SMARTs are intended to aid in the construction of a multi-
component intervention (namely, a DTR) as opposed to confirm
a best DTR. Accordingly, the statistical analysis of a SMART
need not have a confirmatory flavor. For example, in these facto-
rial designs, investigators might not conduct hypothesis tests. In-
stead, investigators might rank order the treatment/intervention
factors in terms of estimated effect sizes and keep the x most
highly ranked factors; similar “ranking and selection” ideas have
been proposed in the clinical trial literature (Simon, Wittes, and
Ellenberg 1985; Sargent and Goldberg 2001) as well. If hypoth-
esis tests are used, the focus is on reducing the Type II error as
opposed to controlling the Type I error rate.

For example, scientists might test a small number of pre-
specified hypothesis, each at a specified, marginal, significance
level, and then control the overall error rate of the remaining
hypothesis (Collins, Murphy, and Strecher 2007; Chakraborty
and Murphy 2009).

Despite the fact that the prostate SMART study discussed by
WRLMT appears to be focused on constructing proposals for
high quality DTRs, WRLMT control the experiment-wise error
rate (i.e., they construct simultaneous confidence intervals). It
is thus easy to misinterpret the use of simultaneous confidence
intervals as implying that the trial was intended to be confir-
matory. We maintain that regime-specific confidence intervals
should and can be used to conduct inference in building a high
quality DTR. Of course, these nonsimultaneous confidence in-
tervals will not confirm that one regime is best. In fact, much of
the current work on sample size planning for SMARTs (Feng
and Wahed 2008, 2009; Oetting et al. 2010; Li and Murphy
2011) does not focus on devising sample size formulas that
control the experiment-wise error rate. Rather, the focus has
been on formulas that control the Type I error of a prespeci-
fied primary aim that aides in building an effective DTR. We
acknowledge that SMARTs can be designed to confirm which
of the embedded DTRs is best; indeed in some settings, such as
in the development of internet-based interventions where large
sample sizes are inexpensively obtained, this approach may be
desirable and is likely feasible.

3. COMPOSITE ENDPOINTS

Our second comment describes a new approach that can
be used in addition to endpoints such as those considered by
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WRLMT to further quantify the trade-off between toxicity and
efficacy.

In Section 3.3, WRLMT discuss three composite endpoints
(Y binary, Y ordinal, and Y expert) of treatment efficacy and toxicity.
These three composite endpoints, as well as log-survival time,
were used in the re-analysis by WRLMT. The three endpoints
exploit newly available toxicity and efficacy data (not available
during the primary analysis of the trial) that the authors show
serve as better surrogates for the overall health status of pa-
tients over the entire 32 week treatment period compared to the
endpoints stipulated by the original study protocol.

The three new endpoints differ in terms of how they trade-off
toxicity and efficacy during chemotherapy. We suspect this is
important in oncology because the most efficacious chemother-
apies are likely the treatments associated with high levels of
toxicity and vice-versa, that is, some chemotherapies that are
less effective may also be the ones that are also less toxic. This
question, of how to trade-off opposing outcomes, also arises
in other areas of clinical research such as in the treatment of
schizophrenia where the trade-off is between symptom relief
and weight gain.

As implied by the authors, the choice of the endpoint Y nec-
essarily influences the conclusions drawn from the study, but
the “correct” choice of the endpoint is often not obvious or even
well-defined.

The authors note that Y ordinal is in a sense finer-grained than
Y binary because it “distinguishes therapies that produce transient
efficacy benefits from therapies that don’t.” They further note
that Y expert “distinguishes not only regimes that provide transient

efficacy benefits from those that don’t, but it also quantifies the
clinical desirability of the different transient benefits.”

In examining the results in WRLMT, we can see that using
all-or-nothing “success” (i.e., Y binary) as the desired outcome
produces a different estimated optimal DTR than the result ob-
tained when considering (possibly transient) efficacy benefits:
the results show that the estimated optimal DTR according to
Y binary is (TEC, KA/VE), while the estimated optimal DTR ac-
cording to Y ordinal or Y expert is (TEC, CVD).

As a possible adjunct to the high-quality analysis presented
in the article by WRLMT, we can conduct a sensitivity anal-
ysis with respect to the endpoint definition that provides fur-
ther insight into how the results would change depending on
the relative utilities of different joint outcomes. For exam-
ple, this can be done by considering outcomes Y ∗

(a,a∗)(δ) =
(1 − δ) · Y bin

(a,a∗) + δ · Y
expert
(a,a∗) , where δ ∈ [0, 1] is used to inter-

polate between the binary outcome score and the expert out-
come score. Note that for δ = 0, we recover the binary outcome
score, whereas for δ = 1 we recover the expert outcome score,
and for intermediate values of δ, we define an outcome that
is a combination of both. The different outcomes indexed by
δ under this framework represent not just different levels of
granularity, but also different sets of preferences for Y

expert
(a,a∗) vs

Y bin
(a,a∗).
For this example, since the authors’ estimate of the DTR

means, Ẽ[Y(a,a∗)], is linear in the observed outcome scores Yi ,
we can use the estimates provided in the paper to compute DTR
means for Y ∗

(a,a∗)(δ). Figure 1 illustrates how the estimated DTR
means change as a function of δ.

(TEC, KA/VE)
(TEC, CVD)

(CVD, KA/VE)
(CVD, TEE)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

˜E[Y(a,a∗)(δ)]

Estimated DTR means as a function of outcome score choice

Figure 1. Estimated DTR means as a function of δ, where Y(a,a∗)(δ) = (1 − δ) · Y bin
(a,a∗) + δ · Y

expert
(a,a∗) . The online version of this figure is in color.
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As expected, we see that (TEC, KA/VE) is preferable for
Y bin (δ = 0), whereas (TEC, CVD) is preferable for Y expert

(δ = 1). The cross-over point, at δ ≈ 0.28, helps us understand
at what preference point the results will differ. Such an anal-
ysis is useful since different patients or clinicians may have
different preferences in how they trade-off Y expert versus Y bin.
Figure 1 also shows that (CVD, TEE) appears the worse no
matter what the trade-off. Further, we see that some DTRs
change ranking substantially for different outcomes: for exam-
ple, (CVD, KA/VE) goes from 4th for Y bin to second-last for
Y expert.

One could also imagine doing a similar analysis that trades
off two different expert scores, for example Y

expert−1
(a,a∗) versus

Y
expert−2
(a,a∗) , which may represent two opposing views (operational-

ized by different choices for Cj ) on how to trade-off efficacy ver-
sus toxicity. Or one could imagine a similar analysis that trades
off two continuous, direct measures of toxicity versus efficacy,
such as Y(a,a∗)(δ) = (1 − δ) · T (a, a∗) + δ · E(a, a∗). The latter
may only be possible if toxicity and efficacy can be placed on
“similar footing” so that a linear convex trade-off of this sort is
clinically meaningful. This could be done by first “calibrating”
or “scaling” the measures of T and E to ensure the linear combi-
nation is meaningful so that, for example, δ = 0.5 represents a
moderate or typical clinical preference for one outcome over the
other. This last idea may not be possible in oncology research
since, as noted by WRLMT, severe toxicity may be so highly
undesirable that no level of efficacy (no matter how high) could
trade-off with it.

This approach to trading off two or more opposing outcomes
is being developed further for use in data analyses that build
optimal DTRs (say, using Q-Learning) from data arising from
SMARTs (Lizotte, Bowling, and Murphy 2010).

[Received January 2012. Revised January 2012.]
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Comment
Paul CHAFFEE and Mark VAN DER LAAN

1. INTRODUCTION

We would like to congratulate the authors of this article on a
thoughtful and thorough design and data analysis. Their analy-
sis represents a good example of how complex longitudinal data
from observational studies or randomized trials should be ana-
lyzed, and reflects care and thought. The authors target questions
of interest using sophisticated causal inference tools instead of
allowing available software and common practice to dictate the
analysis.

1.1 Background

The authors analyzed data from a sequentially randomized
controlled trial, in which the longitudinal data structure on one
patient can be coded as O = (L(1), A(1), L(2), A(2), L(3),
A(3), L(4), A(4), Y = L(5)), where L(1) denotes baseline co-
variates, L(j ), j = 2, 3, 4, encodes both efficacy and toxicity
measurements, A(j ) = (A1(j ), A2(j )), A1(j ) indicates a treat-
ment category among specified options, A2(j ) is a dropout in-
dicator, and Y is a particular final outcome such as a treatment
efficacy score measured at 32 weeks. Let P0 denote the true
probability distribution of O. If the person drops out, then the
subsequent L-process, including Y , is defined deterministically
in some arbitrary manner. Treatment decisions A1(j ) were as-
signed either deterministically in response to the observed his-
tory of the patient or randomly to three categories, with proba-
bility 1/3 in cases where this type of experimentation made sense
from a medical point of view. Certain patients developed a his-
tory that resulted in a medically sensible deterministic switch
of A1(j ) to an alternative therapy (coded as OFF) prescribed
by the treating physician, even though this deterministic switch
was not a priori planned or foreseen in the protocol of the trial.
The authors dealt with this by defining this switch as another
natural treatment decision, as if planned by design, that can be
incorporated in the targeted treatment rules of interest, instead of
viewing it as right-censoring and thereby targeting parameters
that cannot even be identified.

The authors defined the quantity of interest as the mean of
outcome Y (measured at 32 weeks after randomization) under
a dynamic intervention d applied to the “intervention” nodes
A(j ), denoted by E0Yd . This intervention is chosen so that it
fully respects the designed deterministic treatment switches
as well as the unplanned deterministic switch to OFF, and the
intervention enforces no dropout till the end (i.e.,A2(j ) = 0 for
j = 1, 2, 3, 4). The dynamic intervention d is indexed by
an assigned first-line therapy for A1(1) among four possible
choices, and a second-line therapy, among the remaining three,
to which the patient will be switched if the first-line therapy

Paul Chaffee is a PhD candidate in Biostatistics, in the Division of Bio-
statistics, University of California Berkeley, Berkeley, CA 94720 (E-mail:
pchaffee@berkeley.edu). Mark van der Laan is Jiann-Ping Hsu/Karl E. Peace
Professor in Biostatistics, in the Division of Biostatistics, University of Califor-
nia Berkeley, Berkeley, CA 94720 (E-mail: laan@berkeley.edu).

fails and switching to this second-line therapy does not violate
the deterministic switches in the data-generating experiment.
If the patient experiences two consecutive successful responses
on the same therapy, then the intervention stops. The inter-
vention is also stopped if the patient experiences an event that
enforces the treatment to be switched to OFF. Twelve such
dynamic rules are considered, indexed by four choices of the
first-line therapy and three choices for the second-line therapy.
The authors estimated the mean E0Yd for each of these 12 rules
d and constructed simultaneous confidence bands.

The dynamic rules are chosen so that this quantity of inter-
est, E0Yd , can actually be identified from the data-generating
experiment: that is, the positivity assumption P0(A(j ) =
dj (Pa(A(j ))) | L̄(j ), Ā(j − 1)) > 0 almost everywhere (a.e.)
holds, where we denote the history of all variables right be-
fore A(j )—the “parents” of A(j )—with Pa(A(j )), and we use
the notation L̄(j ) = (L(1), L, . . . , L(j )). A natural byproduct
of selecting such realistic rules is that these dynamic treatments
are of practical and scientific interest—a point effectively argued
by the authors. Therefore, we can represent E0Yd as �(P0) for
a specified mapping � : M → � that maps a probability dis-
tribution of O in the statistical model M into a real number. We
remind the reader that a statistical model is an assumed collec-
tion of possible probability distributions of the data structure O
and thus represents all statistical knowledge about the experi-
ment. The pure statistical estimation problem is now defined as
estimation of �(P0) based on n iid copies of O ∼ P0, with the
knowledge that P0 ∈ M.

The authors estimated E0Yd with a stabilized inverse proba-
bility of censoring-weighted (IPCW) estimator, defined as the
inverse probability of treatment- and censoring-weighted empir-
ical mean of the outcome over all subjects who followed the rule
d. Specifically, the stabilized IPCW estimator of ψ0 = �(P0) is
defined as

ψ IPCW
n ≡

∑
i YiI (Ai = d̄(Li))/g0(Ai | Li)∑
i I (Ai = d̄(Li))/g0(Ai | Li) ,

where Ai = (Ai(1), . . . , Ai(4)), Li = (Li(1), . . . , Li(5)), and
g0(Ai | Li) ≡ ∏

j P (Ai(j ) | L̄i(j ), Āi(j − 1)), and for nota-
tional convenience, we use A = d̄(L) to denote the set of
relations (A(1) = d1(L(1)), A(2) = d2(Pa(A(2))), . . . , A(4) =
d4(Pa(A(4)))). Thus, g0 denotes the conditional probability,
given covariates, of following a specified treatment through the
entire trial and not being censored. We use subscript n to denote
sample-based estimators.

Since, ignoring dropout for now, the treatment mechanism
is known in a sequentially randomized trial, such estimators
are guaranteed to be consistent and asymptotically linear (and
thereby asymptotically normally distributed), and they are also

© 2012 American Statistical Association
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quite stable since the positivity assumption is practically satis-
fied. By estimating the treatment mechanism and incorporating
covariates that are predictive of the outcome, thus ignoring the
knowledge that the treatment mechanism is known, such an
IPCW estimator can be made highly efficient, or even fully
efficient.

The authors indeed used an estimator of g0 for this reason.
If dropout would have been quite severe and informative, then
a typical IPCW estimator may be quite inefficient, biased, and
unstable (see, e.g., Stitelman, Gruttola, and van der Laan 2011;
van der Laan and Rose 2011). Given that dropout was quite min-
imal in this particular trial, the selected estimation procedure,
which is easy to understand and implement, appears to represent
a reasonable choice.

In our previous discussion of the first analysis of this trial
(Bembom and van der Laan 2007), we were given some room to
provide constructive suggestions and demonstrated an analysis
of realistic dynamic treatment rules with the available data,
but we find the current analysis thorough. At that time, some
of the data compiled for analysis in the current article were
not available. The new, augmented dataset led the authors to
redefine the set of outcomes and to propose target parameters
indexed by a set of treatment rules different from those based
on the earlier data.

1.2 Substitution Estimators

We define the parameter of interest as a mapping � : M →
� from the statistical model M to the parameter space, where
for simplicity, we consider scalar parameters. A substitution es-
timator of � is a plug-in estimator �(Pn), with Pn ∈ M being
an estimator of the true P0. In our research over the last decade,
we have focused on the development of double robust locally
efficient substitution estimators based on the targeted minimum
loss-based learning framework proposed in van der Laan and
Rubin (2006), building on a rich literature in semiparametric
models. As substitution estimators, these estimators are not only
asymptotically optimized but also fully respect the global con-
straints implied by the statistical model and the target parameter,
which makes them robust under sparsity. We refer to van der
Laan and Rose (2011) for a comprehensive book on targeted
learning, including contributions of many authors, document-
ing the motivation, developments, and many of the applications
of targeted minimum-loss-based estimation (TMLE) to complex
data structures. We would like to use the opportunity of this dis-
cussion to present a double robust, locally efficient substitution
estimator for causal effects of multiple time point interventions,
recently presented in van der Laan and Gruber (2011), which
represents a particular TMLE inspired by innovative advances
in general double robust estimation in Bang and Robins (2005).
TMLE provides an alternative to IPCW estimation that is gener-
ally more efficient, less biased (TMLE is double robust), more
finite-sample-robust under sparsity, and inherits the virtues of
substitution estimators mentioned above. Without a reanalysis
of the dataset, it is difficult to judge the potential benefit of this
procedure for this particular study, but certainly if bias due to
informative dropout had been a serious concern, it would have
been worthwhile to apply this procedure.

In this discussion, we will also demonstrate a particular
TMLE, proposed in van der Laan and Rubin (2006), chosen to
guarantee to outperform the IPCW estimator, even under severe
misspecification of the time-dependent covariate and outcome
regressions. Though not discussed here, we refer to recent orig-
inal work by Rotnitzky et al. (forthcoming), who go beyond
this by presenting a general method for constructing a double
robust, locally efficient estimator that is guaranteed to beat any
user-supplied estimator (not just this IPCW estimator). This has
nice applications in the sequentially randomized trial analyzed
by the authors here. Subsequently, we applied Rotnitzky et al.’s
idea to the TMLE framework to construct TMLEs that are guar-
anteed to outperform any user-supplied estimator (Gruber and
van der Laan 2012). We refrain from discussing these important
relevant advances in this discussion, but wish to highlight this
important work by Rotnitzky and coauthors, and the resulting
enhanced property of TMLE. In this discussion, we will also
present a small-scale simulation aiming to imitate a longitudi-
nal data structure of a two-time-point, sequentially randomized
trial without right-censoring, and we conclude with a few re-
marks. We will start with some background that motivates the
development of TMLE.

2. WHY NOT NPMLE?

The density P0 of the data-generating distribution factorizes
as P0 = Q0g0, where g0 = ∏

j g0(A(j ) | Pa(A(j ))) represents
the known treatment and unknown right-censoring mechanism,
while Q0 = ∏5

j=1 P0(L(j ) | Pa(L(j ))) represents the unspeci-
fied relevant factor of the likelihood. Note that g0 = g(P0) and
Q0 = Q(P0) are themselves parameters of the data-generating
distribution. The statistical model M for P0 consists of all
such distributions of O. As a result of sequential randomiza-
tion, and assuming that right-censoring also satisfies the sequen-
tial randomization and positivity assumptions, the distribution
of the counterfactualLd = (L(1), Ld (2), Ld (3), Ld (4), Ld (5) =
Yd ) under dynamic intervention d is given by the so-called G-
computation formula:

Q0,d (l) =
∏
j

P0(L(j ) = l(j ) | L̄(j − 1) = l̄(j − 1),

Ā(j − 1) = d(L̄(j − 1))).

In particular, E0Yd is defined as the mean of the marginal dis-
tribution underQ0,d of component Yd . This defines now EYd as
a statistical target parameter �(P ) of P ∈ M, which depends
on P only through Q = Q(P ). If L(j ) are discrete-valued, then
we can estimate each conditional distribution of L(j ), given
its parents Pa(L(j )), with empirical proportions, resulting in
a pure empirical estimator, Qn, of the true Q0 = Q(P0). The
corresponding plug-in estimator �(Qn) would be the nonpara-
metric maximum likelihood estimator (NPMLE). The problem
with this estimator is that it is often not defined due to empty
strata in finite samples, and even when defined, it is often too
variable to be useful in finite samples.
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3. WHY NOT SMOOTHED NPMLE?

In general, one will need to apply smoothing to estimate Q0.
For example, one could use a kth nearest-neighbor regression
estimator for each conditional distribution of a binary variable
coding L(j ), given its parents. However, to guarantee that these
nearest-neighbor regression estimators are consistent, one needs
the number of neighbors in the neighborhood over which one
smoothes to go to infinity. In a covariate space of dimension k,
this means that nhk has to go to infinity, and thereby, that the
smoothing width h converges to zero slower than n−1/k . If one
averages outcomes over a neighborhood of width h, then the
bias will be O(h). As a consequence, if k ≥ 2, this smoothed
NPMLE will have a bias O(n−1/k) that cannot be neglected
for statistical inference: confidence intervals ignoring this bias
will have asymptotically zero coverage, and p-values cannot be
trusted either. Using parametric regression models represents
an extreme form of smoothing that is guaranteed to result in
bias that will not even converge to zero as sample size goes to
infinity, making confidence intervals particularly meaningless.

4. SUPER LEARNING: BETTER, BUT NOT ENOUGH

The typical bias of an estimator of Q0 that converges at a
particular rate to Q0 will be of the same order as that rate.
By constructing an adaptive estimator of Q0 that is able to
adapt to underlying smoothness or structure of Q0, one can
construct an estimator that might achieve a better rate of con-
vergence than the typical minimax rate of convergence implied
by the statistical model {Q(P ) : P ∈ M} for Q0. Such an esti-
mator will therefore also have less bias. For that purpose, one
can use super learning (van der Laan and Dudoit 2003; van
der Laan, Polley, and Hubbard 2007; van der Laan and Rose
2011), which involves using cross-validation to select among a
family of candidate estimators of Q0 that are indexed by dif-
ferent fine-tuning parameters and approximation strategies. For
example, the library of the super learner could include kernel
regression estimators indexed by different bandwidths and dif-
ferent degrees of orthogonality of the kernels so that the best
choice among all these kernel estimators will achieve the mini-
max rate for the model which assumes that the true underlying
smoothness of Q0 is known. Due to the oracle inequality for
the cross-validation selector, the super learner will also achieve
this adaptive minimax rate of convergence. So, super learn-
ing results in less-biased estimators of ψ0 ≡ �(Q0) relative to
using a nearest-neighbor type of estimator or standard kernel
regression estimator. However, the best rate of convergence one
can realistically hope for is still worse than 1/

√
n (i.e., the rate

achieved for a correctly specified parametric model), so the bias
for ψ0 implied by the super learner fit will still be nonnegligible
and result in a plug-in estimator that is not asymptotically linear.

Additional bias reduction is thus essential, but this bias re-
duction should be fully targeted toward the target parameter.
That is, the estimator Qn does not need to solve all score
equations as does the NPMLE, but it needs to solve certain
target parameter-specific score equations, such as the efficient
influence curve/efficient score for the target parameter. For that
purpose, we combine super learning with TMLE, resulting in
the targeted learning approach (van der Laan and Rubin 2006;
van der Laan and Rose 2011). This step will need to involve an

estimator of the true treatment and censoring mechanism g0, and
if g0 is unknown, super learning is again recommended to obtain
maximal bias reduction for this step. For this purpose, it is useful
to note that g0 can be factorized as a product of treatment prob-
abilities and censoring probabilities. If treatment A1(j ) at time
j has more than two possible values, then one can code A1(j ) in
terms of a few binaries and still estimate the conditional proba-
bility of A(j ) with corresponding logistic regressions, and cor-
responding adaptive regression estimators for binary outcomes.

5. TARGETED MINIMUM-LOSS-BASED ESTIMATION

5.1 Efficient Influence Curve

We remind the reader that an efficient influence curve
D∗(P ) at P is the canonical gradient of the pathwise deriva-
tive of � : M → � along a richly selected class of parametric
submodels through P (e.g., see Bickel et al. 1997; van der Vaart
1998; van der Laan and Robins 2003; van der Laan and Rose
2011). A regular asymptotically linear estimator has an influence
curve that equals one of the gradients of the pathwise derivative,
which explains why the canonical gradient is also called the ef-
ficient influence curve. In particular, the asymptotic variance of
a regular asymptotically linear estimator is larger than or equal
to the variance of the efficient influence curve. An estimator
ψn of ψ0 is asymptotically efficient at P0 among the class of
regular estimators if and only if it is asymptotically linear at P0,
with the influence curve equal to the efficient influence curve:
that is, ψn − ψ0 = 1/n

∑n
i=1D

∗(P0)(Oi) + oP (1/
√
n). A min-

imal condition for a substitution estimator �(Pn) to be asymp-
totically efficient is that it solves 0 = ∑n

i=1D
∗(Pn)(Oi) (or at

least up till an oP (1/
√
n)-term). This equation for Pn does not

define Pn (it is just one equation for an infinite-dimensional
Pn), but provides an important and necessary characteristic of
Pn and makes the bias of �(Pn) second order. The efficient in-
fluence curve at P depends on a relevant part of P, Q(P ), and
a purely nuisance part, g(P ), and so, we also use the notation
D∗(P ) = D∗(Q(P ), g(P )).

5.2 TMLE Algorithm

The first step in TMLE is to represent �(P ) as a mapping
of a part of P, say �(Q), with Q = Q(P ). One then obtains an
initial estimate Qn of Q0 and gn of g0, and subsequently, one
constructs a targeted estimator Q∗

n, g
∗
n, obtained by iteratively

minimizing an empirical risk w.r.t an appropriate loss function
along a cleverly chosen submodel throughQn and gn so that the
final update (Q∗

n, g
∗
n) of the initial estimator, (Qn, gn), solves

the efficient influence curve score equation PnD∗(Q∗
n, g

∗
n) =

0. We use superscript ∗ to indicate that these estimators are
targeted. Here, we used the notation Pnf = 1/n

∑n
i=1 f (Oi).

The iterative updating of gn is not necessary (in which case
g∗
n = gn), but can provide additional gains in the TMLE, as

discussed below. The corresponding TMLE of ψ0 is simply the
plug-in estimator ψ∗

n = �(Q∗
n). Under regularity conditions,

ψ∗
n is a double robust, locally efficient asymptotically linear

estimator: that is,�(Q∗
n) is consistent and asymptotically linear

if either g∗
n or Q∗

n is consistent, and it is efficient if both are
consistent.
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One could construct a targeted estimator of the relevant fac-
tor of the likelihood as in van der Laan (2010), Stitelman et al.
(2011), and van der Laan and Rose (2011), involving coding
L(j ) in terms of binaries, fitting the conditional distributions
of these binaries with data-adaptive logistic regression, and tar-
geting this fit with a subsequent targeted maximum likelihood
update step involving univariate logistic regression with a clever
covariate, using the initial fit as offset.

Alternatively, we can note that

Q̄d
4 (l̄(4)) = E(Y | Ā(4) = d(l̄(4)), L̄(4) = l̄(4))

= E(Yd | L̄d (4) = l̄(4))

Q̄d
3 (l̄(3)) = E(Q̄d

4 (L̄(4)) | Ā(3) = d(l̄(3)), L̄(3) = l̄(3))

= E(Yd | L̄d (3) = l̄(3)),

and so on so that

Q̄d
0 = E

(
Q̄d

1 (L(1))
) = EYd.

In this manner, it follows that EYd is a function � of a vector
of iteratively defined conditional means Q̄d = (Q̄d

4 , . . . , Q̄
d
0 ).

Suppose that Y is binary. The initial regression Q̄d
4 can be es-

timated with logistic regression. The targeting step involves
adding a clever covariate I (Ā = d(L̄))/g whose coefficient can
be fitted with univariate logistic regression, using the initial es-
timator as offset. This targeted estimator Q̄d,∗

4,n of Q̄d
4 is now

used as an outcome in (0,1) in the next logistic regression of
Q̄d

4 onto Ā(3) = d(L̄(3)), L̄(3), and again, the resulting fit is
targeted by fluctuating the fit with a univariate logistic regres-
sion model using a clever covariate I (Ā(3) = d(L̄(3))/

∏3
j=1 gj .

This sequential regression procedure finally ends by taking the
empirical mean of the estimator of Q̄d

1 over the baseline co-
variates L(1), which is the final targeted estimate of EYd . The
same estimator applies to continuous Y ∈ (0, 1), and thereby,
for bounded continuous outcomes.

For details about this TMLE ψ∗
n = �(Q̄d,∗

n ), obtained by
plugging in a targeted estimator Q̄d,∗

n of these iteratively de-
fined conditional means Q̄d

0 , we refer to van der Laan and
Gruber (2011). In the latter article, we also present some simu-
lations demonstrating its practical performance.

6. STATISTICAL PROPERTIES

If g0 is estimated consistently, then under appropriate reg-
ularity conditions, the TMLE of ψ0 described above will be
consistent and asymptotically linear even if all the conditional
regressions for Q̄d

j , j = 4, 3, 2, 1 are inconsistent. In addition, if
Q̄d is estimated consistently, then this TMLE is asymptotically
efficient. That is, as with all TMLEs, this TMLE is a double
robust, locally efficient substitution estimator. It respects the
global constraints of the statistical model and target parame-
ter by using logistic regressions (see Gruber and van der Laan
2010; van der Laan and Gruber 2011). The asymptotic variance
of ψ∗

n can be estimated with 1/n2 ∑n
i=1{D∗(Q̄∗

n, gn)}2(Oi), and
statistical inference proceeds accordingly.

7. TMLE THAT IS GUARANTEED TO BEAT IPCW

The efficient influence curve can also be represented
asD∗(P ) = DIPCW(P ) −DCAR(P ), whereDIPCW(P ) = I (A =
d(L))(Y − ψ)/g is the estimating function solved by the stabi-

Table 1. Comparison of TMLE and IPCW in estimation of a single
treatment history-specific parameter EYā at n = 100 in simulated data

under two different data-generating mechanisms, P0 and P †
0

P0 (n = 100) Bias Var. Rel. MSE

TMLE –0.0068 0.0018 0.25
IPCW (gn) * 0.0040 0.52
IPCW (g0) * 0.0077 1.00

P
†
0 (n = 100) Bias Var. Rel. MSE

TMLE * 0.0036 0.6
IPCW (gn) * 0.0064 1.0
IPCW (g0) * 0.0061 1.0

NOTE: Results based on 2000 simulations. IPCW (g0) refers to the IPCW estimator using
the true g0 for the treatment mechanism; IPCW (gn) is the IPCW estimator with g0 estimated
from the data.
*Indicates < 10−3.

lized IPCW estimator, while DCAR is a score of g (e.g., see
Robins and Rotnitzky 1992; van der Laan and Robins 2003).
As proposed in van der Laan and Rubin (2006), given a cur-
rent estimator Q̄k

n, g
k
n, we can construct a submodel through

gkn with score at zero-fluctuation equal to DCAR(Q̄k
n, g

k
n). By

codingA(j ) in terms of binaries, this submodel can be chosen to
correspond with fluctuating each of these binary conditional dis-
tributions with a univariate logistic regression in a cleverly cho-
sen covariate, using the current estimator as offset. By also itera-
tively updating gkn in the TMLE algorithm described above along
this clever submodel, we obtain a TMLEQ∗

n, g
∗
n that solves both

the efficient influence curve equationPnD∗(Q∗
n, g

∗
n) = 0 and the

score PnDCAR(Q∗
n, g

∗
n) = 0 for the censoring mechanism. As a

consequence, it also solves PnDIPCW(Q∗
n, g

∗
n) = 0 so that ψ∗

n is
now also a stabilized IPCW estimator, and is guaranteed to be
at least as efficient as the stabilized IPCW estimator used in the
study.

8. A SIMULATED EXAMPLE

We simulated data that mimic a simplified two-time-point,
sequential randomized controlled trial with structure for a sin-
gle observation O = (L(1), A(1), L(2), A(2), L(3) = Y ). Each
A(j ) was binary and completely randomized, and eachL(j ) (in-
cluding L(3)) was a single, continuous random variable in the
interval [0, 1]. We did not incorporate dropout in this data-
generating experiment.

We chose as parameters of interest for these data the four pos-
sible treatment-history-specific counterfactual parameters EYā ,
where ā ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. In words, these are the
mean population outcomes under the specified sequential in-
terventions on the variables (A(1), A(2)). We report results for
one of them (EY0,0) under two different data-generating distri-
butions. In the first distribution, L(j ) is a particular function of
Ā(j − 1) and L̄(j − 1). The second incorporates similar rela-
tionships, but the influence of Pa(L(j )) on L(j ) for each j is
very weak (see the Appendix).

The true values of these parameters of the simulated data
distribution are, of course, not of interest, since they are entirely
fabricated. The results of interest are the relative performances
of the estimators in estimating these values.
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The sequential regressions required for the TMLE were es-
timated with main-terms logistic regressions, and thus possibly
misspecified for Q̄j , j < 3. P (A(j ) = a|Pa(A(j ))), for the use
in the IPCW estimator was also estimated using main-terms lo-
gistic regression, and included all elements of Pa(A(j )), which
is a consistent estimator of the true conditional treatment proba-
bilities. We found the TMLE to be quite insensitive to the choice
of g incorporated (i.e., gn vs. g0), and we thus only include re-
sults using g0 (Table 1).

We simulated data at three sample sizes, 50, 100, and 500, but
include results only for n = 100 since the relative performances
of the three estimators were quantitatively similar at all samples
sizes. We report estimated bias, variance, and relative mean
square error (MSE), the latter defined as MSE(·)/MSE(ψ IPCW

n,g0
).

A more thorough simulation study would first evaluate the
relative variance of the efficient influence curve and the influence
curve of the stabilized IPCW estimator under a variety of settings
so that one knows how much information has been neglected by
the IPCW estimator. One can then also investigate the relative
gain of an estimator such as TMLE, which takes full advantage
of the asymptotic efficiency bound.

9. CONCLUDING REMARKS

Though randomized trials make the IPCW estimator a valid
estimator that is relatively efficient and unbiased in the absence
of censoring, knowledge of the treatment mechanism can be
utilized by constructing locally efficient substitution estimators
of the target parameter that are guaranteed asymptotically linear
and more efficient than, for example, the standard IPCW estima-
tor, even under severe misspecification of the relevant factor of
the likelihood. The potential gain in efficiency and bias of these
estimators relative to current practice in actual clinical trials
that are subject to informative censoring remains an important
area of research. In addition, the utilization of machine (super)
learning to maximize efficiency and minimize bias due to in-
formative dropout represents another potential improvement in
the analysis of randomized controlled trials. Obviously, such
estimators still need to be specified a priori. Asymptotic the-
ory teaches us that adaptive estimation is essential for obtaining
an asymptotically linear and thereby consistent and normally
distributed estimator of the target parameter in semiparametric
models where we lack knowledge of the parametric models in-
volved (see the main theorem in Zheng and van der Laan 2010
and chap. 27 in van der Laan and Rose 2011 by the same au-
thors). There is an evident need for adaptive estimation in typical
randomized controlled trials that are subject to dropout or other
forms of missingness that are only partially understood.

APPENDIX: DATA-GENERATING FUNCTIONS FOR
SIMULATIONS

As mentioned, we ran simulations under two different data-
generating functions. The influence of Pa(L(j )) on L(j ) for
j = 2, 3 was much stronger under the first distribution.

• Data generation under “P0”:
L(1) = expit(3 ∗ Z1), where Z1 ∼ N (0, 1)
A(1) ∼ Ber(0.5)

L(2) = expit(logit(L(1)) + 2 ∗ A(1) + Z2), where Z2 ∼
N (0, 0.16)
A(2) ∼ Ber(0.5)
Y = expit(logit(L(1)) + 1.5 ∗ A(1) + logit(L(2)) − 0.5 ∗
A(2) + Z3), with Z3 ∼ N (0, 0.16)

• Data generation under “P †
0 ”:

L(1) = expit(3 ∗ Z4), where Z4 ∼ N (0, 1)
A(1) ∼ Ber(0.5)
L(2) = expit(0.01 ∗ logit(L(1)) + 0.05 ∗ A(1) + Z5), wh-
ere Z5 ∼ N (0, 16)
A(2) ∼ Ber(0.5)
Y = expit(0.01 ∗ logit(L(1)) + 0.1 ∗ A(1) + 0.01 ∗ logit
(L(2)) − 0.05 ∗ A(2) + Z6), with Z6 ∼ N (0, 12.25)
Zi ⊥ Zj for all i 	= j .

[Received January 2012. Revised January 2012.]
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Rejoinder
Lu WANG, Andrea ROTNITZKY, Xihong LIN, Randall E. MILLIKAN, and Peter F. THALL

1. A BRIEF HISTORY OF THE SCRAMBLE

Because the analyses reported in this article are the culmi-
nation of a process that began in 1998 when the trial was con-
ceived by Millikan and Thall at MD Anderson Cancer Cen-
ter (MDACC), it is worthwhile to first provide a brief history,
and also some remarks on the relationship between theory and
application.

The prostate cancer trial was motivated, in part, by the desire
to better reflect actual clinical practice by evaluating multistage
treatment strategies. This was a radical idea for oncologists
in 1998 and, sadly, it remains so at this writing. This trial was
dubbed “The Scramble” by members of the Genitourinary Med-
ical Oncology Department at MDACC, due to its unique and
apparently complex structure. When we conceived the prostate
trial scramble design in 1998, we were not aware that a litera-
ture on dynamic treatment regimes (DTRs) existed. Since then,
the scramble has served as a prototype for later oncology trials,
including an ongoing trial at MDACC of six two-stage DTRs of
targeted agents for advanced kidney cancer (Thall et al. 2007).

The immense research activity in DTRs among statisticians
over the past decade seems to have been motivated in large part
by their interesting mathematical structure and the challenging
technical problems that they present. The original impetus for
this area of research was analysis of complex observational data,
pioneered by Robins (1986, 1987, 1989). Because DTRs are es-
sentially mathematical formalisms of routine medical practice,
clinical trials based on DTRs provide great advantages com-
pared to conventional trials that reduce variables and focus on
one stage of therapy. Evidently, as statisticians, we have not done
an effective job of communicating these facts to the oncology
and larger medical research communities. In fact, actual trials of
DTRs are few even as theoretical research activity has exploded.
The good news is that many oncologists and research physicians
in other areas very much like the idea of designing trials to eval-
uate DTRs, and moreover implementing such trials is not much
harder than conventional trials. Since the ultimate aim of all this
research activity is to develop improved medical therapies, it
is high time for a more proactive approach to communicating
these new statistical ideas to the medical research communities,
and undertaking the hard work of actually implementing trials
to evaluate DTRs.

2. SMARTS

We thank Almirall, Lizotte, and Murphy (ALM) for their kind
words regarding our reanalysis of the data from the prostate can-
cer trial. ALM provide a nice overview of sequentially multiple
assignment randomized trials (SMARTs), and focus on design

We thank the editor, Hal Stern, for inviting this discussion. We also are
grateful to the two sets of discussants both for providing many insights into
the issues arising in our article, and for pointing the way to new and important
methodological research in dynamic treatment regimes.

and analysis as separate issues. ALM argue that it is important
to design trials to evaluate viable DTRs by giving “a clear opera-
tionalization of how to treat patients,” for all foreseen outcomes,
that is, codifying the actions to be taken in response to all fore-
seen outcome histories. We could not agree more. However, a
viable DTR is one that actually can and will be implemented
in the targeted population by the treating physicians. In most
medical settings, there are a myriad of possible outcomes and
accompanying actions. Inevitably, this complexity must be sim-
plified to obtain a feasible design, including viable regimes that
actually can and will be implemented in practice during actual
trial conduct.

Stopping chemotherapy in patients with advanced disease
when progressive disease (PD) or severe toxicity (TOX) occurs
is so routine in oncology practice that, when we conceived the
prostate trial scramble design in 1998, it did not seem worth
mentioning in the design. In fact, because all patients who de-
veloped PD or TOX were removed from the intervention, the
removal rule was effectively operationalized in this trial. Years
later, for this third data analysis, our inclusion of PD and TOX
as outcomes and numerically scoring the resulting bivariate per-
stage outcome were motivated, initially, by what we naively
considered to be 47 dropouts. Formally and correctly calling
PD and TOX outcomes led to 35 of these 47 patients being
fully evaluated, and it enabled us to define viable DTRs that
elaborated the simpler DTRs in the original design.

This trial raises three important points. The first point is that
one cannot optimally design an experiment until after it has been
carried out. Only actually conducting a trial can reveal the many
complexities that are relevant to the study goals. That is, science
is a learning process. ALM provide a very useful explanation
of this issue as it relates to SMARTs in their section 2.2. The
second point is that working harder to explain and define actual
clinical outcomes led us to define DTRs that were viable, and
hence that actually could be carried out in practice by treating
physicians. The third point is that treatments have many effects,
and accounting for these inevitably leads to both more complex
statistical models and the need, as ALM point out, to account
for trade-offs between efficacy and toxicity.

Although this all may appear to be quite challenging, ALM
point out more good news, namely, that clinical trial protocols
almost invariably include detailed explanations of the actual
viable DTRs that will be used. After all, the first purpose of a
clinical trial is to treat patients, and any reasonable protocol must
spell out how this will be done. To simplify things somewhat,
ideally, a medical statistician’s task is to incorporate this sort of
explanation formally into the trial design by defining the viable
DTRs that will be evaluated. To motivate this, ALM provide a
useful account of the consequences of having nonviable DTRs

© 2012 American Statistical Association
Journal of the American Statistical Association
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in a SMART trial. Their discussion of this issue could be used,
in its simplest form, as an explanation of why conventional trial
designs often fail to provide results that are useful to practicing
physicians.

3. COMPOSITE ENDPOINTS

In their discussion of composite endpoints, ALM provide a
simple and useful way to combine two of our scoring methods,
by taking a weighted average. Because careful consideration of
clinical events almost invariably leads to multivariate outcomes,
inevitably, there arises the need to somehow reduce this to one
dimension, in terms of either observations or parameters. ALM’s
repeated use of the words “trade-off” and “preference” in their
discussion is encouraging, as we believe that this sort of thinking
is essential when evaluating multiple, often competing, clinical
outcomes. For example, methods based on scores (Bekele and
Thall 2004), efficacy–toxicity trade-offs (Thall and Cook 2004),
and utilities (Houede et al. 2010) have been proposed for dose-
finding trials, while quality-adjusted survival time (Glasziou,
Simes, and Gelber 1990; Zhao and Tsiatis 1996) has been used
for many years as a more honest and ethical tool than using sur-
vival time alone. These and similar methods should be portable
for use in designing SMARTs, and we feel that they will play a
central role when evaluating DTRs in the future.

4. NEW METHODS

We thank Chaffee and van der Laan (CVDL) for their kind re-
marks and their concise explanation of the formalism underlying
our analyses. CVDL indicate that because in a SMART trial, the
treatment probabilities are known by design and bounded away
from zero, inverse probability weighting (IPW) estimation of the
DTR-specific counterfactual means offers an easy-to-implement
procedure that yields estimators that are well behaved, that is,
nearly unbiased and with an approximately normal distribution.
They reiterate the point we made in Section 4.4, noting that IPW
estimators can be made nearly efficient by replacing the known
treatment probabilities by probabilities estimated under models
for the treatment process that incorporate covariates that are
predictive of the outcome. They go on to indicate that when, as
in our trial, there are few dropouts, IPW estimators that further
weight by the inverse of the conditional probabilities of dropout
given past data offer an attractive practical analytic choice for
SMART trials. We agree with all of these points. In fact, this is
precisely the rationale that led us to analyze the data using the
proposed IPW methodology.

Revisiting arguments made in the past by Robins and Ritov
(1997), CVDL argue that, in the presence of severe dropout,
even if one is prepared to assume that dropout is ignorable, that
is, the dropout probabilities are conditionally independent of the
outcome given past covariates and treatments, due to the curse
of dimensionality, one cannot estimate the counterfactual DTR
means without making some dimension reduction assumption
about either (a) the dropout probabilities or (b) the conditional
law of the endpoint of interest given the data collected up to
each study cycle. CVDL offer the targeted maximum likelihood
(TML) methodology as an attractive analytical tool for SMART
studies with severe ignorable dropout. They indicate that
TML is a general strategy for estimation of parameters of

nonparametric or semiparametric models. In the context of
SMART clinical trials with ignorable dropouts, certain variants
of TML produce estimators of the DTR counterfactual means
having the following attractive features:

(1) they respect natural constraints on the counterfactual
means;

(2) they are double robust, that is, they are consistent and
asymptotically normal provided either a working model
for (a) or a working model for (b) is correct, but not
necessarily both;

(3) they achieve the smallest possible variance for estimators
that are consistent and asymptotically normal under the
semiparametric model that assumes the working model
for (a) to be correct, if indeed the data generating law
also satisfies the working model for (b), a property that
CVDL refer to as local efficiency; and

(4) they are guaranteed to be at least as efficient as any given
IPW estimator that uses known or consistently estimated
treatment and dropout probabilities.

CVDL present a simulation study of a moderately sized
SMART trial with two time points, no dropout, and four possi-
ble static treatment regimes. In their simulation, TML performs
better than an IPW estimator that uses treatment probabilities
estimated under a logistic regression model with linear terms
in the variables recorded up to each time point. Given that, in
a clinical trial with no dropouts, the treatment probabilities are
known by design, double robustness is not an issue. For such
settings, one could also use a simple, easy-to-implement variant
of the IPW estimator, which also satisfies (1), (3), and (4) (see,
e.g., section 6 of Rotnitzky and Robins 1995). This is an IPW
estimator in which the treatment probabilities are estimated un-
der a logistic regression model that, in addition to the linear
terms in the past covariates, includes specifically tailored pre-
processed covariates computed at a first stage. It would have
been interesting to include this estimator in CVDL’s simulation
study.

Several proposals other than TML exist that yield estimators
satisfying some or all of (1)–(4). For example, Robins (2000)
and Bang and Robins (2005) satisfied (2) and (3); Tan (2006,
2008) and Cao, Tsiatis, and Davidian (2009) satisfied (2)–(4);
and Rotnitzky et al. (2012) and Tan (2010) satisfied (1)–(4).
Although (2)–(4) are attractive theoretical large sample prop-
erties, it is important to bear in mind that many cancer studies
are moderately sized, thus these properties are relevant only so
long as they are good proxies for finite sample performance.
We thus agree with the statement made by CVDL in their con-
cluding remarks that more research is needed to understand the
performance in terms of bias and efficiency of TML and any of
the alternative semiparametric approaches in realistic SMART
clinical trial settings.

5. CONCLUSIONS

Although it is well known that DTRs reflect more closely
what happens in clinical practice, their use in clinical studies
is still in its infancy, and there are many practical challenges.
While increasing statistical methodological research has been
done in recent years on design and analysis of DTRs, there
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are still many open methodological issues. Some of these
were encountered in our analysis of the prostate cancer trial,
and were nicely addressed by the discussants. In the future,
promotion of DTRs in clinical studies will require close
collaborations between statisticians and clinicians to overcome
practical barriers and develop consensus guidelines for design
and analysis.
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