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ABSTRACT
A design is presented for a randomized clinical trial comparing two second-line treatments, chemotherapy
versus chemotherapy plus reirradiation, for treatment of recurrent non-small-cell lung cancer. The central
research question is whether the potential efficacy benefit that adding reirradiation to chemotherapy may
provide justifies its potential for increasing the risk of toxicity. The design uses two co-primary outcomes:
time to disease progression or death, and time to severe toxicity. Because patients may be given an active
third-line treatment at disease progression that confounds second-line treatment effects on toxicity and
survival following disease progression, for the purpose of this comparative study follow-up ends at disease
progression or death. In contrast, follow-up for disease progression or death continues after severe toxicity,
so these are semi-competing risks. A conditionally conjugate Bayesian model that is robust to misspecifi-
cation is formulated using piecewise exponential distributions. A numerical utility function is elicited from
the physicians that characterizes desirabilities of the possible co-primary outcome realizations. A compar-
ative test based on posterior mean utilities is proposed. A simulation study is presented to evaluate test
performance for a variety of treatment differences, and a sensitivity assessment to the elicited utility func-
tion is performed. General guidelines are given for constructing a design in similar settings, and a computer
program for simulation and trial conduct is provided. Supplementary materials for this article are available
online.

1. Introduction

1.1. Background

This article describes a Bayesian design for a randomized clin-
ical trial to compare chemotherapy alone (C) and chemother-
apy plus reirradiation (C + R) as second-line treatments for
locoregional recurrence of non-small-cell lung cancer (NSCLC).
Locoregional disease recurrence, that is, within the original
region of disease, after first-line radiation therapy is a leading
cause of death in patients with NSCLC. Patients who are not
candidates for surgery, due to degraded health status from their
first-line treatment or their disease, often are given chemother-
apy as second-line treatment. Because many of these patients
do not respond to chemotherapy alone, adding reirradiation
to chemotherapy recently has been considered as a second-line
treatment option (McAvoy et al. 2014). In this trial, reirradia-
tion will be delivered using either intensity modulated radia-
tion therapy (IMRT) or proton beam therapy (PBT). The cen-
tral research question is whether the potential benefitC + Rmay
provide overC for delaying disease recurrence or death justifies
its potential for increasing the risk of toxicity. To address this
question, the designwill enroll eligible patients, randomize them
to either treatment, and follow them for pertinent outcomes.
The trial will terminate when either a prespecified trial duration
is achieved or there is strong evidence at an interim point in the
trial that one treatment is clinically preferable to the other.

CONTACT Thomas A. Murray tamurray@mdanderson.org Department of Biostatistics, MD Anderson Cancer Center, Houston, TX .
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

A complication in evaluating and comparing these second-
line treatments is that each patient’s clinical outcome may
include some combination of disease progression, toxicity, or
death, and all of these possible outcomes are very important.
Moreover, an active third-line treatment often is given follow-
ing disease progression. In this case, for comparing C to C + R
as second-line treatments, any toxicity occurring after disease
progression is closely related to the third-line treatment, and
thus the effects on toxicity of C or C + R as second-line treat-
ments are confounded with the effects of third-line treatment.
Similarly, time to death following disease progression is con-
founded with third-line treatment. To obviate potential con-
founding from third-line treatment and account for all clini-
cally relevant outcomes, the trial will monitor two co-primary
time-to-event outcomes that terminate follow-up at disease pro-
gression or death. The first outcome is progression-free survival
(PFS) time, defined as the time,YProg, to the earliest occurrence
of death, distant metastasis, or locoregional disease recurrence.
For succinctness, hereafter we will refer to these events collec-
tively as “progression.” PFS is considered an acceptable clinical
trial end-point in NSCLC (Pilz et al. 2012). The second out-
come is time to toxicity, defined as the time,YTox, to the earliest
occurrence of any severe (grade 3 or 4) National Cancer Insti-
tute (NCI) toxicity. Because follow-up ends at progression, a tox-
icity is observed only if it occurs prior to progression. Hence,
these events are semi-competing risks, where toxicity is the
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nonterminal event and progression is the terminal event (see,
e.g., Fine et al. 2001; Peng and Fine 2007).

Comparing treatments based on the event times YTox and
YProg is challenging because the treatment effects are multidi-
mensional and possibly in opposite directions. For example, rel-
ative to C, C + R may improve PFS but increase the probability
of toxicity prior to progression. Another possibility is thatC + R
may only improve PFS given that no toxicities occur, and instead
worsen PFS given that a toxicity does occur, possibly because the
toxicities that result fromC + R compared toC are more severe
and thus lead to earlier death. These complexities raise the key
issue of whether a particular treatment difference is favorable,
where any difference is multidimensional. Because this is cen-
tral to therapeutic decision making for individual patients, it
also plays a central role in scientific comparison of C to C + R
in the trial.

The approach often used in such settings is to compare treat-
ments using separate monitoring criteria for PFS or overall sur-
vival (OS) and toxicity (Cannistra 2004). This approach is lim-
ited by the fact that no formal criteria are specified for deciding
whether a particular increase in the risk of toxicity is justified
given a particular PFS or OS improvement. If the efficacy and
safety outcomes are opposing, physicians must make subjective
decisions about whether either treatment is clinically preferable,
accounting for these tradeoffs informally. The design described
here takes a more transparent approach, based on the above two
co-primary outcomes and a utility function that characterizes
the clinical desirability for every possible realization of these
outcomes. Clinical trial designs for co-primary outcomes have
been developed in other oncology settings by Thall et al. (2000),
Yuan and Yin (2009), and Hobbs et al. (2015).

1.2. Mean Utility

To combine toxicity and progression information in a practical
way that is scientifically and ethically meaningful, we will com-
pare the two treatments based on their mean utilities,

U (trt j) =
∫

U (y)p(y|trt j)dy, for j = C, C + R, (1)

whereU (y) denotes a utility function that characterizes the clin-
ical desirability of all possible realizations y = (yTox, yProg) of
Y = (YTox,YProg), and p(y|trt j) denotes the joint probability
distribution of the co-primary outcomes for patients given treat-
ment j. For brevity, we use Uj to denote U (trt j). Mean util-
ities have been used in phase I–II trials by Thall et al. (2013)
for bivariate time-to-event outcomes, and Lee et al. (2015a) for
bivariate binary outcomes. As far as we are aware, this is the
first utility-based trial design proposed for semi-competing risks
outcomes.

Both p(y|trt j) and U (y) in (1) are crucial elements of
the design. While p(y|trt j) can be estimated via a probabil-
ity model for the semi-competing risks, U (y) is subjective and
must be prespecified to reflect the desirability of y in this specific
NSCLC context. We elicit U (y) from the physicians planning
the trial, DG and SM, who are co-authors of this article, so
that U (y) reflects their experience treating this disease in this
particular clinical setting. While it may be argued that such
subjectivity should not be used for treatment evaluation and

comparison, in fact all statistical methods require subjective
decisions about what is or is not important, and all physicians
have utilities that motivate their therapeutic decisions, whether
they have written them down or not. For the methodology
described here, the physicians’ utilities represent a consensus,
and they are given explicitly. A key advantage of our approach
is that the utility function makes explicit which treatment is
preferred for any efficacy–safety tradeoff, which is in contrast
to an approach based on separate criteria for each outcome.

1.3. Outline

In Section 2, we formulate a novel Bayesian model for p(y|trt j)
in (1) based on piecewise exponential distribution that is robust
to model misspecification. We use historical data reported by
McAvoy et al. (2014) as a basis for establishing a prior. In
Section 3, we describe the utility elicitation process in detail
and provide general guidelines for applications of themethodol-
ogy in other contexts. We propose a parametric function for the
specification of U (y) in (1), which satisfies admissibility con-
straints that are relevant in this context, and elicit interpretable
parameter values for this function from the physicians planning
the trial. We also discuss efficient calculation of the Uj defined
in (1). In Section 4, we describe a design that uses a monitor-
ing criterion based on posterior mean utilities of the two treat-
ments. A simulation study is presented to evaluate operating
characteristics of the proposed design for a variety of multidi-
mensional treatment differences, and a sensitivity assessment to
the utility is performed. In the NSCLC trial design, there are up
to two interim tests and a possible third, final test, that is, a group
sequential approach is taken, although the methodology can be
applied more generally. We provide software to aid implemen-
tation of these methods in other contexts (see supplementary
material).

2. Probability Model

The possible realizations (yTox, yProg) of (YTox,YProg) are con-
tained in the union{

(yTox, yProg) : yTox ∈ [0,∞), yProg ∈ (yTox,∞)
}

∪ {(No Tox, yProg) : yProg ∈ [0,∞)
}
.

The first set in this union contains all progression times with
an earlier toxicity time, yTox < yProg, and the second set contains
all progression times where no prior toxicity occurs, denoted by
“No Tox.” We define the outcomes of the ith patient in terms of
potential times to progression, y∗

Prog,i, toxicity, y
∗
Tox,i, and inde-

pendent administrative right-censoring, c∗i , i = 1, . . . ,N. We
refer to these as potential times, indicated by a superscripted
asterisk, because they may not be observed. Using conventional
time-to-event definitions, the observed data for the ith patient
are yProg,i = min{y∗

Prog,i, c∗i }, δProg,i = I[y∗
Prog,i < c∗i ], yTox,i =

min{y∗
Tox,i, y∗

Prog,i, c∗i }, and δTox,i = I[y∗
Tox,i < min{y∗

Prog,i, c∗i }],
where I[A] = 1 if the event A is true and 0 otherwise. We
denote the treatment assigned to the ith patient by zi, which
equals C or C + R. Therefore, for the ith patient, we observe
(yTox,i, yProg,i, δTox,i, δProg,i, zi). Since patients are followed
until progression or administrative censoring has occurred,



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 13

Figure . The four possible orderings for the two co-primary outcomes
(yTox, yProg). We use a dark square to denote toxicity, a dark circle to denote
progression, and a clear circle to denote administrative censoring.

yTox,i ≤ yProg,i, and δTox,i = 1 only if yTox,i < yProg,i. Figure 1
illustrates the four orderings of (yTox, yProg) that may be
observed.

2.1. Likelihood Specification

We develop a Bayesian hierarchical model for the joint distri-
bution of the co-primary outcomes by conditioning on a binary
indicator, ξ , of whether a toxicity will occur prior to progression.
We rely on a Bernoulli distribution to model the probability of
toxicity prior to progression, and piecewise exponential distri-
butions tomodel the times to toxicity and progression given that
a toxicity will occur prior to progression, that is, ξ = 1, and the
time to progression given that a toxicity will not occur prior to
progression, that is, ξ = 0. Discussions of piecewise exponential
models for univariate time-to-event outcomes have been given
by Holford (1976) and Friedman (1982) in a frequentist context,
and by Ibrahim et al. (2001, Section 3) in a Bayesian context.

Let Bern(π ) denote a Bernoulli distribution with proba-
bility π , let Exp(λ; t̃ ) denote a piecewise exponential distri-
bution with hazard vector λ = (λ1, . . . , λK+1) corresponding
to the partition t̃ = (0 = t̃0 < t̃1 < · · · < t̃K < t̃K+1 = ∞), and
let Exp(λ; t̃ )[L,R] denote a piecewise exponential distribution
with domain truncated to [L,R]. The piecewise exponential dis-
tribution has the hazard λk for t ∈ [t̃k−1, t̃k), k = 1, . . . ,K + 1.
Using this notation, our assumedmodel for p(y|trt j) in (1)may
be summarized as follows:

ξ |trt j ∼ Bern(π j)

YTox|ξ = 1, trt j ∼ Exp
(
λT, j; t̃T

)
YProg|ξ = 1, YTox, trt j ∼ Exp

(
λP1, j; t̃P1

)
[YTox,∞)

YProg|ξ = 0, trt j ∼ Exp
(
λP2, j; t̃P2

)
. (2)

This models each event time as a piecewise exponential with
parameters depending on the observed, relevant preceding

variables. We use the subscripts T , P1, and P2 to distin-
guish the parameters characterizing the conditional hazards
for toxicity and progression given ξ = 1, and for progression
given ξ = 0, respectively. We will discuss selecting the parti-
tions t̃� = (0 = t̃�,0 < t̃�,1 < · · · < t̃�,K�

< t̃�,K�+1 = ∞) below,
for � = T, P1, P2. Thismodel reflects historical experience that
some proportion of the patients given treatment j will not expe-
rience toxicity before progression, either because the treatment
did not cause enough damage to result in a grade 3 or higher tox-
icity or because progression happened too quickly for an earlier
toxicity to occur.

The model proposed in (2) is similar to that of Zhang et al.
(2014), who do regression for semi-competing risks with treat-
ment switching. Other semi-competing risks models have been
proposed by Xu et al. (2010), Conlon et al. (2014), and Lee et al.
(2015b). While these alternative models could be applied in this
context, the proposed model greatly facilitates posterior estima-
tion and calculation of the mean utilities in (1). Moreover, the
proposed model is robust because it does not rely on restric-
tive parametric assumptions for the joint distribution of the
times to toxicity and progression, or the treatment effects on this
joint distribution, such as proportional-hazards. The proposed
model can be extended to adjust for covariates x by assuming
say, log{π j/(1 − π j)} = α j + x′β, andλ�, j = λ∗

�, j exp{x′γ�}, for
� = T, P1, P2, and j = C, C + R. However, since this is a ran-
domized clinical trial, covariate adjustment is not strictly neces-
sary to ensure fair treatment comparisons, and we do not con-
sider it below.

We assume patients in the trial, indexed by i = 1, . . . ,N, will
contribute independent observations. For some patients, ξi will
be observed, and for other patients, ξi will not be observed and it
will be an unknown parameter that is updated in ourGibbs sam-
pling algorithm. The observed pair (δTox,i, δProg,i) determines
whether ξi is known, as follows. If δTox,i = 1, that is, a toxicity
is observed, then ξi = 1, regardless of whether δProg,i = 0 or 1. If
δTox,i = 0 this alone does not determine ξi, but if δTox,i = 0 and
δProg,i = 1, that is, progression is observed with no prior toxic-
ity, then ξi = 0. Finally, if δTox,i = 0 and δProg,i = 0, that is, both
progression and toxicity are administratively censored, then ξi
is unknown. However, in this case ξi is partially observed, in
the sense that the full posterior conditional distribution for ξi
depends on the administrative censoring time, and the likeli-
hood contribution is a mixture.

Temporarily suppressing the patient index i and treatment
index j, the four possible likelihood contributions of an indi-
vidual observation are as follows:
(
δTox = 1, δProg = 1

)
: πh

(
yTox | λT ; t̃T

)
S
(
yTox | λT ; t̃T

)
×h

(
yProg | λP1; t̃P1

) [S (yProg | λP1; t̃P1
)

S
(
yTox | λP1; t̃P1

)
]

(
δTox = 1, δProg = 0

)
: πh

(
yTox | λT ; t̃T

)
×S

(
yTox | λT ; t̃T

) [S (yProg | λP1; t̃P1
)

S
(
yTox | λP1; t̃P1

)
]

(
δTox = 0, δProg = 1

)
: (1 − π)h

(
yProg | λP2; t̃P2

)
×S

(
yProg | λP2; t̃P2

)
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(
δTox = 0, δProg = 0

)
: πS

(
yTox | λT ; t̃T

)
+ (1 − π)S

(
yProg | λP2; t̃T

)
, (3)

where the hazard function at y is

h
(
y | λ�; t̃�

) = λ�,k for y ∈ [t̃�,k−1, t̃�,k ), k = 1, . . . ,K�,

and the probability thatY > y is

S
(
y | λ�; t̃�

) = exp

{
−

K�∑
k=1

[
min(y, t̃�,k) − min(y, t̃�,k−1)

]
λ�,k

}
,

� = T, P1, P2.

Conditioning on ξ , the first three expressions in (3) are unaf-
fected, whereas the fourth expression in (3) can be written as
[πS(yTox | λT ; t̃T )]ξ [(1 − π)S(yProg | λP2; t̃P2 )]1−ξ , which facil-
itates computation.

We are able to give this explicit form for the mixture like-
lihood contribution in the case where ξ is unknown, that is,
(δTox = 0, δProg = 0) in (3), because the distributions of the
event times, YTox and YProg are defined conditional on ξ in (2).
Given ξ = 0, we assume thatYProg is piecewise exponential, and
YTox does not enter the likelihood in this case because condition-
ing on ξ = 0 implies that a toxicity will not occur prior to dis-
ease progression. Given ξ = 1, we assume thatYTox is piecewise
exponential, and, given the value of YTox, we assume that YProg
is piecewise exponential with left-truncation time YTox because
conditioning on ξ = 1 implies that a toxicity will occur prior
to disease progression. Lastly, we propose using distinct param-
eters for each treatment group, that is, (π j,λT, j,λP1, j,λP2, j)

for j = C, C + R, thereby avoiding commonly used, yet often
unchecked and unjustified parametric assumptions, like propor-
tional hazards, which typically are used to obtain a univariate
parameter for treatment comparison.We avoid such parametric
assumptions by using mean utility as a one-dimensional basis
for constructing a comparative test, described below.

Reintroducing the individual and treatment indices, i and j,
under (2), the full likelihood may be expressed in the following
computationally convenient form:

L(λ, ξ, π|yProg, yTox, δProg, δTox, z)

∝
∏

j=C,C+R

π

∑
i:zi= j

[δTox,i+(1−δTox,i)(1−δProg,i)ξi]
j

×
∏

j=C,C+R

(1 − π j)

∑
i:zi= j

[(1−δTox,i){δProg,i+(1−δProg,i)(1−ξi)}]

×
∏

j=C,C+R

KT+1∏
k=1

λ

∑
i:zi= j

δT,i,k

T, j,k

×e
−
{ ∑
i:zi= j

[δTox,i+(1−δTox,i)(1−δProg,i)ξi]yT,i,k

}
λT, j,k

×
∏

j=C,C+R

KP1+1∏
k=1

λ

∑
i:zi= j

[δTox,iδP1,i,k]
P1, j,k e

−
{ ∑
i:zi= j

δTox,i(yP1,i,k−yT1,i,k)

}
λP1, j,k

×
∏

j=C,C+R

KP2+1∏
k=1

λ

∑
i:zi= j

[(1−δTox,i)δP2,i,k]
P2, j,k

×e
−
{ ∑
i:zi= j

(1−δTox,i)[δProg,i+(1−δProg,i)(1−ξi )]yP2,i,k
}

λP2, j,k

, (4)

where δT,i,k = 1, if δTox,i = 1 and yTox,i ∈ [t̃T,k−1, t̃T,k), and
δT,i,k = 0, otherwise, that is, a binary indicator for whether a
toxicity has occurred in the kth interval of t̃K , and yT,i,k =
min{yTox,i, t̃T,k} − min{yTox,i, t̃T,k−1}, that is, the overlap with
the kth interval of t̃T . We define δP1,i,k, yP1,i,k, and yT1,i,k with
respect to t̃P1, and δP2,i,k and yP2,i,k with respect to t̃P2 similarly.

2.2. Prior Specification

To complete themodel, we specify independent, conjugate prior
beta distributions forπ j , and gamma distributions for λ�, j,k, k =
1, . . . ,K�, � = T, P1, P2, and j = C, C + R. This prior choice
for the λ’s is similar to the independent gamma process (IGP)
proposed by Walker and Mallick (1997) for univariate time-to-
event analysis using a piecewise exponential model, and results
in a conditionally conjugate model structure, thereby greatly
facilitating posterior estimation. Let Beta(u, v ) denote a beta
distribution with mean u/(u + v ), and let Gamma(c, d) denote
a gamma distribution with mean c/d. The explicit prior specifi-
cation is

π j ∼ Beta
[
aπ∗, a(1 − π∗)

]
,

λ�, j,k ∼ Gam
(
r�,k, r�,k/λ∗

�,k
)
,

k = 1, . . . ,K� + 1, � = T, P1, P2, (5)

for j = C, C + R, where the a’s, π∗’s, r’s and λ∗’s denote pre-
specified hyperparameters. To ensure unbiased comparisons,
we assign corresponding treatment parameters the same prior
distribution, that is, πC and πC+R are assigned the same beta
prior distribution, and λT,C,1 and λT,C+R,1 are assigned the same
gamma prior distribution, etc.

The prior mean of π j is π∗ and the prior effective sample size
is a, which is an intuitive measure for the amount of informa-
tion provided by the prior (Morita et al. 2008). For example,
in a beta-binomial model, as in this model, the prior effective
sample size (ESS) of a Beta(u, v ) prior distribution is u + v . To
ensure that the prior does not provide an inappropriate amount
of information, the prior ESS should be small, say 1. Similarly,
the prior mean of λ�, j is λ∗

� and the prior effective number of
events is

∑K�

k=1 r�,k, for k = 1, . . . ,K� + 1, � = T, P1, P2, and
j = C, C + R. To ensure that the priors do not provide an inap-
propriate amount of information, we use default values of a =
1 and r� = r�,k = 1/(K� + 1), for k = 1, . . . ,K� + 1 and � =
T, P1, P2. In contrast, specifying values for π∗ and the λ∗

� ’s will
depend on the context. These values should reflect the physi-
cians expert knowledge, or historical data, when available. We
use historical data from a similar patient populationwith locore-
gionally recurrent NSCLC treated with reirradiation therapy,
possibly with concurrent chemotherapy (McAvoy et al. 2014).
We take λ∗

� = λ∗
�,1 = · · · = λ∗

�,K�+1, so that a priori the hazards
are constant at magnitudes seen in the historical data, which
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is reasonable in this context. Specifically, we specify π∗ = 0.15,
λ∗
T = 0.37, λ∗

P1 = 0.10, and λ∗
P2 = 0.07.

In the Web supplement, we consider an alternative prior
specification that is motivated by the hierarchical Markov
gamma process (HMGP) proposed by Nieto-Barajas and
Walker (2002). This alternative specification induces depen-
dence between hazard parameters in successive intervals, while
retaining a largely conditionally conjugate model structure.
The HMGP tends to give less variable estimates for the haz-
ard parameters than the IGP, but it increases computational
complexity and does not substantially affect the design’s prop-
erties (see Web supplement Table 2). Other options have been
proposed by Gamerman (1991), Gray (1994), and Arjas and
Gasbarra (1994). However, these alternatives do not result in
conditionally conjugate structures like the IGP and HMGP
priors that we consider. A review of these prior processes
is provided in Ibrahim et al. (2001, Section 3). We conduct
posterior estimation using a Gibbs sampler and provide the
full conditional distributions in the Web supplement. We also
provide R software to estimate the model with either prior
specification (see supplementary material).

2.3. Partition Specification

The piecewise exponential distributions in the model rely on
three partitions, t̃T , t̃P1, and t̃P2. The sampling methods pro-
posed by either Arjas and Gasbarra (1994) or Demarqui et al.
(2008) may be implemented to facilitate posterior estimation of
these partitions within the Gibbs sampler. However, thesemeth-
ods are computationally demanding in our design setting, which
requires extensive simulation to assess the operating character-
istics of the design. Alternatively, these partitions can be pre-
specified to provide an adequately flexible probability model. To
greatly facilitate calculation of mean utilities in the sequel, we
use identical partitions with K = 12 two-month intervals that
span the 24-month observation period. We denote the shared
partition by t̃ , with t̃0 = 0, t̃1 = 2, t̃2 = 4,. . .,t̃12 = 24, and t̃13 =
∞. As a sensitivity analysis, we report simulation results com-
paring shared partitions with one, two, and fourmonth intervals
(see Web supplement Table 4).

3. Utility Function

The utility function,U (y), in (1) must be specified to reflect the
clinical desirability of every possible realization of the two time-
to-event outcomes, with larger values indicating greater desir-
ability. For this reason, we recommend that U (y) be elicited
from the physicians planning the trial. For these outcomes,
which are semi-competing risks, it may seem that elicitingU (y)
from the physicians is very challenging; however, we provide
guidelines below to carry out this critical task in practice. We
establish key admissibility constraints for U (y) and propose a
class of parametric functions that satisfy these constraints. Rely-
ing on this class of parametric functions and a discretization of
the response domain, we then demonstrate how to develop a
spreadsheet that may be provided to the physician(s) to facili-
tate utility elicitation. We also provide an example spreadsheet
(see supplementary material). When there are multiple physi-
cians, we suggest that each physician select numerical utilities

using the spreadsheet on their own, and then confer with the
other physicians until consensus utilities are obtained. We pro-
vide detailed guidelines and an illustration below, in the context
of the NSCLC trial.

The utility elicitation approach below is similar to that of
Thall et al. (2013), who elicited utilities for bivariate time-to-
event outcomes in the context of phase II trials. They suggested
that the two-dimensional outcome domain first be discretized,
then numerical utilities be elicited for all of the resulting ele-
mentary events, and finally a smooth utility surface should be
fit to the discrete numerical values. In contrast, the approach
below relies on a preemptively established class of admissible
utility functions so that the physicians need not select numeri-
cal values for all elementary events on the partition. Rather, they
select numerical values for two interpretable parameters that
characterize the underlying utility function and explicitly deter-
mine the numerical utilities on the partition. Another impor-
tant advantage of the elicitation approach given below is that
the resulting numerical utilities on the partition must satisfy
the admissibility constraints. Moreover, the mean utilities in (1)
can be calculated using either the discrete utilities on the parti-
tion or the underlying parametric utility function without con-
cern about over-smoothing the elicited values. Lastly, the utility
parameters provide a parsimonious basis for a sensitivity analy-
sis to the elicited numerical utility values (see, e.g., Web supple-
ment Table 3).

3.1. Admissibility Constraints

Establishing constraints for U (y) in (1) substantially reduces
the set of admissible specifications for the utility. The utility
constraints should be established before eliciting the utilities
from the physician(s). This can be done in cooperation with the
physicians, although a statistician often can intuit these on their
own. In the NSCLC clinical setting, it clearly is desirable for a
treatment to delay progression, avoid toxicity, and, if a toxicity
occurs, delay its onset. Therefore, U (y) should be nondecreas-
ing in both yTox and yProg, and it should not be larger for a pro-
gression time with a prior toxicity than for the same progres-
sion time with no prior toxicity. In addition, progression, which
includes death, is less desirable than toxicity. Therefore, the util-
ity of any outcome with a progression at time y should not be
larger than the utility of any outcome with a toxicity at time y or
later. This subtle, yet important constraint ensures that the util-
ity of an outcome with death at time y is not larger than the util-
ity of an outcome with toxicity at time y or later. Without this
constraint, the utility could be specified so that an early death
would be preferable to a toxicity later on, which is not reason-
able. Following the above logic and definingU (No Tox, YProg =
y) = U (YTox = y, YProg = y), the utility should satisfy the fol-
lowing constraints:

U (y, y′) ≤ U (y, y′′) ≤ U (y′, y′′), for y ≤ y′ ≤ y.′′ (6)

After establishing these utility admissibility constraints, we
find it helpful to develop a flexible class of parametric functions
satisfying these constraints that can be used as a basis for elicita-
tion. For example, a flexible class of utility functions that satisfy
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Figure . The proposed utility function for various specifications of the toxicity discount parameter, ρ, and the temporal preference parameter, γ , with τ = 24 months.
The top line in each panel depicts how the utility increases given no prior toxicity, whereas the lower dashed lines depict how the utility increases following a toxicity at
the time-point of departure from the top line. An example case is depicted in each panel where (YTox = 10,YProg = 20).

the constraints in (6) is defined as follows:

U (YTox,YProg) =

⎧⎪⎪⎨
⎪⎪⎩
min

{
100

[
YProg − ρ(YProg −YTox)

]
/τ, 100

}
if γ = 0,

min

{
100

(
exp{γ [YProg − ρ(YProg −YTox)

]
/τ } − 1

exp{γ } − 1

)
, 100

}
otherwise,

(7)

where τ is the upper bound on the observation period, ρ ∈
[0, 1] is the toxicity discount parameter, and γ is the temporal
preference parameter. Figure 2 illustratesU (y) defined in (7) for
various specifications of ρ and γ , with τ = 24months. To deter-
mine U (YTox,YProg) using the figure for a particular outcome,
follow the top line until YTox, and then follow parallel to the
dashed lines until YProg; projecting the terminal point to the y-
axis determines the numerical utility of that outcome. An exam-
ple is depicted in each panel where (YTox = 10, YProg = 20). As
illustrated by Figure 2, γ controls how rapidlyU (y) increases in
time and ρ controls the rate at which U (y) increases following
a toxicity.

In the sequel, let y ≤ y′ ≤ y′′. When ρ = 0, U (y, y′′) =
U (y′, y′′) = U (y,′′ y′′), that is, toxicity does not affect the util-
ity.When ρ = 1,U (y, y) = U (y, y′) = U (y, y′′), that is, the util-
ity is completely determined by the earliest occurrence of either
type of event, and thus, the time to progression after toxic-
ity does not affect the utility. When 0 < ρ < 1, U (y) increases
in yProg at a diminished rate following a toxicity, so that ρ

quantifies the diminished quality of life a patient experiences
following toxicity. A formal interpretation for ρ arises from
the identity, U (y, (1 − ρ)−1(y′ − y) + y) = U (y′, y′), which
implies that (1 − ρ)−1 is the factor of additional time that a



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 17

patient must be alive and progression-free following a toxicity
at time y for the patient’s outcome to be equally desirable as that
of a progression at time y′ with no prior toxicity. For example,
using (7), the outcome (YTox = 0, YProg = y′(1 − ρ)−1) has the
same utility as the outcome (No Tox, YProg = y′). From a treat-
ment comparison perspective, if the physician knows thatC + R
will result in toxicity and C will not, ρ dictates how long C + R
would need to delay progression for it to be clinically preferable
toC.

Turning to γ in the functional form for U (y) in (7), when
γ = 0, U (y) increases linearly in YTox and YProg, which implies
that all regions of the observation period are equally important.
For this reason, we suggest using γ = 0 as a default value.When
γ < 0,U (y) increases more rapidly during the earlier region of
the observation period, which implies that delaying early events
is more important, and conversely for γ > 0, U (y) increases
more slowly during the earlier region of the observation period,
which implies that delaying early events is less important,. A for-
mal interpretation for γ arises from the identity,

exp
{
γ
( ε

τ

)}
= U (y − ε, y′ + ε) −U (y − ε, y′)

U (y − ε, y′) −U (y − ε, y′ − ε)
,

which implies that γ controls the relative change in U (y) over
successive ε-length intervals in the observation period. For
example, when τ = 24 months and ε = 2 months, the utility
increase over successive 2 month intervals in the observation
period changes by the factor exp{ γ

12 }. From a treatment compar-
ison perspective, γ reflects whether a progression delay from 1
to 3 months has greater clinical importance than a progression
delay from 3 to 5 months. Interestingly, some “objective” mea-
sures of efficacy arise from certain specifications ofU (y) in (7).
For example, when γ = 0 and ρ = 0, U (y) ∝ yProg, and mean
utility is thus proportional to mean PFS. Similarly, when γ = 0
and ρ = 1, mean utility is proportional to mean progression-
and-toxicity-free survival (PTFS).

3.2. Utility Elicitation

Using the functional form for U (y) in (7), we elicited ρ and γ

from the physicians as follows: (a) We explained the meaning of
ρ and γ to each physician and asked them to select numerical
values for ρ and γ individually, and (b) we then asked them to
confer to obtain consensus values. To accomplish (a) and (b), we
provided each physician with a spreadsheet that takes numer-
ical values for ρ and γ , and populates a discretized outcome
domain with numerical utilities based onU (y) (see supplemen-
tary material). We asked them to select numerical values using
the spreadsheet that reflected their clinical experience treating
recurrent NSCLC.

Before creating the spreadsheet, in cooperation with the
physicians, we selected an observation period of [0, τ = 24]
months and, following the advice of Thall et al. (2013), we
discretized the observation period using the shared partition
t̃ defined in Section 2.3. We denote the two-month inter-
vals, which were selected in cooperation with DG and SM, as
I1 = (0, 2], I2 = (2, 4], . . ., I12 = (22, 24]. Using these intervals,
the semi-competing risks outcome has the elementary events,
(YTox ∈ Ik,YProg ∈ Ik′ ), and (No Tox,YProg ∈ Ik′ ), for k ≤ k′ =

1, . . . , 12, and (No Tox, No Prog), where “No Tox” denotes the
outcome that no toxicity is observed prior to progression dur-
ing the 24-month observation period and “No Prog” denotes the
outcome that no progression is observed during the 24 month
observation period. We found that discretizing time in this way
greatly helps the physicians understand the utility, and, as we
discuss below, it also facilitates computation of mean utilities in
(1).

To translateU (y) in (7) to numerical utilities on the partition,
we define a discrete version of the utility function,UDiscrete(y), as
follows:

Uk,k = UDiscrete
(
YTox ∈ Ik, YProg ∈ Ik

)
= U

(
t̃k−1, 0.5

[
t̃k + t̃k−1

])
,

Uk,k′ = UDiscrete
(
YTox ∈ Ik, YProg ∈ Ik′

)
= U

(
0.5

[
t̃k + t̃k−1

]
, 0.5

[
t̃k′ + t̃k′−1

])
,

UK+1,k = UDiscrete
(
No Tox, YProg ∈ Ik′

)
= U

(
0.5

[
t̃k′ + t̃k′−1

]
, 0.5

[
t̃k′ + t̃k′−1

])
,

Uk,K+1 = UDiscrete
(
YTox ∈ Ik, No Prog

)
= U

(
0.5

[
t̃k + t̃k−1

]
, t̃K + 0.5

[
t̃1 + t̃0

])
, and

UK+1,K+1 = UDiscrete
(
No Tox, No Prog

)
= U

(
t̃K + 0.5

[
t̃1 + t̃0

]
, t̃K + 0.5

[
t̃1 + t̃0

])
,

for k < k′ = 1, . . . ,K. To restrict these discrete numerical util-
ities to the domain [0, 100], we subtracted the minimum,
U (t̃0, 0.5[t̃1 + t̃0]), from each Uk,k′ defined above, and then
divided by the range, U (t̃K + 0.5[t̃1 + t̃0], t̃K + 0.5[t̃1 + t̃0]) −
U (t̃0, 0.5[t̃1 + t̃0]). While any compact utility domain could
be used, [0, 100] works well in practice when communicat-
ing with the physicians, see Thall and Nguyen (2012); Thall
et al. (2013). The above translation strategy ensures thatUk,k′′ ≤
Uk′,k′′ ,Uk,k′ ≤ Uk,k′′ ,Uk,k′ ≤ UK+1,k′ , andUK+1,k ≤ Uk,k′ , for k <

k′ < k′′ = 1, . . . ,K, so the discrete utilities satisfy the previ-
ously established admissibility constraints. Crucially, the physi-
cians need only select numerical values for ρ and γ , rather than
all 0.5(K + 1) × (K + 2) + K = 103 numerical utilities on the
partition. In our context, after examining several pairs of (ρ, γ )
values and their resulting utilities, the consensus utilities from
DG and SM use ρ = 0.6 and γ = 0. The elicited U (y) is illus-
trated in Figure 2, and the corresponding numerical utilities on
the partition are reported in Table 7 of the online supplementary
material.

3.3. Mean Utility Calculation

Given the elicited U (y) and the Bayesian model for p(y|trt j)
in Section 2, we discuss how to calculate mean utilities in
(1). The mean utility of treatment j, Uj, is a function of the
model parameters, (π j,λT, j,λP1, j,λP2, j), so Uj has induced
prior and posterior distributions. Because we use G draws from
a Gibbs sampler for estimation, to obtain draws from the pos-
terior distribution of Uj , we calculate U (g)

j at each sampled



18 T. A. MURRAY ET AL.

value of (π
(g)
j ,λ

(g)
T, j,λ

(g)
P1, j,λ

(g)
P2, j) from the Gibbs sampler, for

g = 1, . . . ,G.
The samples from the posterior distribution ofUj can be cal-

culated based on either the elicitedU (y) or the discrete numer-
ical utilities on the partition. Using the elicitedU (y), these sam-
ples are given formally as

U (g)
j = π

(g)
j

[
100S

(
τ |λ(g)

T, j; t̃T
)

+
∫ τ

0

∫ τ

u
U (u, v ) f

(
u|λ(g)

T, j; t̃T
) f

(
v|λ(g)

P1, j; t̃P1
)

S
(
u|λ(g)

P1, j; t̃P1
) dv du

⎤
⎦

+
(
1 − π

(g)
j

) [
100S

(
τ |λ(g)

P2, j; t̃P2
)

+
∫ τ

0
U (v, v ) f

(
v|λ(g)

P2, j; t̃P2
)
dv

]
, (8)

where f (t ) = h(t )S(t ), for j = C, C + R and g = 1, . . . ,G. We
considered using (8) as the basis for our comparative testing cri-
terion discussed below, however doing so requires a numerical
integration routine at each iteration of theGibbs sampler, andwe
found this to be too computationally expensive. One evaluation
of (8) using numerical integration takes about 4 s in R, so this
approach is too computationally expensive for post-processing
the G posterior draws from the Gibbs sampler. We instead rely
on the elicited numerical utilities on the partition, which pro-
vide an excellent approximation to (8) and greatly facilitate
computation.

Denote the vector of elicited numerical utilities on the par-
tition by U , using any convenient ordering. For treatment j =
C, C + R, we denote

p j,k,k′ = Pr{(YTox ∈ Ik,YProg ∈ Ik′ )|trt j},
p j,K+1,k′ = Pr{(No Tox,YProg ∈ Ik′ )|trt j},

for k ≤ k′ = 1, . . . ,K, and

p j,K+1,K+1 = Pr{(No Tox,No Prog)|trt j}.

Denote the vector of these probabilities with the same ordering
asU by p j. Using this notation, givenU and p j, the mean utility
of treatment j is simply

Uj =
K+1∑
k=1

K+1∑
k′=k

Uk,k′ p j,k,k′ = U ′p j.

To facilitate computation of p j, we use the same partition t̃
for all three piecewise exponential distributions in the model
defined by (2), and for translating U (y) to U using the previ-
ously described strategy. Given (π j,λT, j,λP1, j,λP2, j), the prob-
abilities for the elementary events on the partition are given for-
mally as

p j,k,k = π j

{
S
(
t̃k−1 | λT, j; t̃

)− S
(
t̃k | λT, j; t̃

)

−S
(
t̃k−1 | λT, j; t̃

) [ λT, j,k

λT, j,k − λP1, j,k

]

×
[

S
(
t̃k | λP1, j; t̃

)
S
(
t̃k−1 | λP1, j; t̃

) − S
(
t̃k | λT, j; t̃

)
S
(
t̃k−1 | λT, j; t̃

)
]}

,

p j,k,k′ = π j
[
S
(
t̃k′−1 | λP1, j; t̃

)− S
(
t̃k′ | λP1, j; t̃

)]
×
[

λT, j,k

λT, j,k − λP1, j,k

]

×
[
S
(
t̃k−1 | λT, j; t̃

)
S
(
t̃k−1 | λP1, j; t̃

) − S
(
t̃k | λT, j; t̃

)
S
(
t̃k | λP1, j; t̃

)
]

,

p j,K+1,k′ = (1 − π)
[
S
(
t̃k′−1 | λP2, j; t̃

)− S
(
t̃k′ | λP2, j; t̃

)]
, and

p j,K+1,K+1 = π jS
(
t̃K | λT, j; t̃

)+ (
1 − π j

)
S
(
t̃K | λP2, j; t̃

)
, (9)

for k < k′ = 1, . . . ,K. A detailed derivation of the expres-
sions in (9) is provided in the Web supplement. Plugging
(π(g)

j ,λ
(g)
T, j,λ

(g)
P1, j,λ

(g)
P2, j) into (9), we obtain U (g)

j = U ′p(g)
j , for

g = 1, . . . ,G and j = C, C + R.

4. Group Sequential Design

For theNSCLC trial, we propose a design with up to two interim
tests and one final test, that is, a group sequential procedure
(see for example, Jennison and Turnbull 2000). Enrollment is
expected to be two patients per month. Due to this logistical
constraint and power considerations, we plan a five-year (60
month) trial that will enroll patients until either the trial has
been terminated or a maximum sample size of Nmax = 100 is
achieved. We will perform interim tests at 20 and 40 months
into the trial, at which points 40 and 80 patients are expected
to have be enrolled, respectively. Our comparative test criteria
are as follows, wherein we use t to denote the proportion of
the trial’s maximum duration that has passed at the time of the
analysis, D to denote the observed data at any point in the trial,
and ηTox, j = Pr(YTox < 24| j) to denote the probability of toxic-
ity within the observation period, for treatment j = C + R, C.
For the probability model in (2), ηTox, j = π j[1 − S(τ | λT, j; t̃ )].
Given a test cutoff pcut(t ), and maximum acceptable toxicity
probability during the observation period ηTox, if

Pr
(
UC > UC+R or ηTox,C+R > ηTox|D

)
> pcut(t ), (10)

then we terminate the trial and conclude that C is superior to
C + R. If

Pr
(
UC+R > UC and ηTox,C+R < ηTox|D

)
> pcut(t ), (11)

then we terminate the trial and conclude thatC + R is superior
to C. If neither (10) nor (11) holds, then there is not sufficient
evidence in the current data to conclude that either treatment
is superior and we continue the trial, up to the final analysis.
Given the set of η(g)

Tox, j ’s andU
(g)
j ’s from theGibbs sampler, where

the U (g)
j ’s are calculated using the methods in Section 3.3, we

estimate the posterior probabilities in (10) and (11) empirically
from the posterior sample. BecauseU (y) defines the desirability
of all possible outcomes, given that ηTox,C+R < ηTox, the decision
rules are based on the idea that, ifUC > UC+R, then on average
C will result in clinically superior outcomes compared toC + R,
and conversely.
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Even though we rely on Bayesian methods, it is important
to ensure that the proposed method controls Type I error and
has adequate power at the planned sample size for identifying
the anticipated treatment differences. To control Type I error,
and account for the practical issue that the interim looks may
not occur at planned times or sample sizes, we rely on an α-
spending function (Lan and Demets 1983). Specifically, we use
theα-spending functionαt3 so that ourmethod spends 4%, 26%
and 70% of the Type I error at the first interim, second interim
and final analysis, respectively. We use simulation to determine
pcut(t ) in (10) and (11) at each analysis so that Type I error is
spent in this manner. That is, the test cut-off pcut(t ) varies with
the α-spending function.

Because we are monitoring two outcomes that are semi-
competing risks, treatment differences are more complex than
for a univariate outcome. In this context, treatment differences
are defined with respect to the joint distribution of (YTox, YProg)
for each treatment. For example, the irradiation component of
C + Rmay delay progression compared toC, but simultaneously
cause additional late-onset toxicities. To elucidate treatment dif-
ferences, we focus on four interpretable measures of these joint
distributions, (a) ηTox, j = the probabilities of toxicity during the
observation period, (b) T50 j = the median times to toxicity,
(c) ηProg, j = the probabilities of progression during the observa-
tion period, and (d) P50 j = themedian times to progression, for
j = C, C + R. To assess power, we also use simulation, wherein
we iteratively generate data for each treatment arm from joint
distributions of (YTox, YProg) that we specify to exhibit a plausi-
ble treatment difference in the NSCLC setting, and we calcu-
late the proportion of simulation runs that lead to each con-
clusion. Because it is challenging to specify joint distributions
of (YTox, YProg) for each treatment that exhibit plausible differ-
ences, we provide guidelines below.

We recommend generating data from the same joint distribu-
tion for the standard of care, that is, treatmentC, throughout the
simulation study. This joint distribution should be based on his-
torical data, when available, and the clinician’s expertise. We use
the structure of the probability model in (2) to specify the joint
distribution forC. For the NSCLC trial, we specify πC, hT (t|C),
hP1(t|C), and hP2(t|C) to reflect the historical data reported by
McAvoy et al. (2014). Specifically, we specify πC = 0.15 and
hazard functions that are illustrated in Figure 3, along with

the induced distributions for the times to toxicity and progres-
sion. This joint distribution has ηTox,C = 0.15, where T50C = 3
months, and ηProg,C = 0.79, where P50C = 7.3 months. More-
over, the hazard for progression after a toxicity is greater during
the initial 18 months, but equivalent thereafter. The analytical
definitions for the hazard functions and the time to progression
distribution are provided in theWeb Supplement.We emphasize
that the hazard functions are not piecewise constant, so the joint
distribution we use to generate data for the simulation study
deviates from the underlying probability model that we use for
posterior inference.

In contrast, in the simulation study we recommend generat-
ing data from various plausible joint distributions for the exper-
imental therapy, that is, treatmentC + R. To determine a plausi-
ble joint distribution forC + R, we askedDG and SM to hypoth-
esize values for ηTox,C+R and P50C+R, which were 0.15 and 14
months, respectively. For the NSCLC trial, we consider joint
distributions for C + R that exhibit a range of ηTox,C+R around
0.15 and P50C+R around 14 months. To specify these joint dis-
tributions, it is practical, and reasonable in this context, to use
a proportional-hazards (PH) model with baseline hazard func-
tions defined above for C. As a sensitivity assessment, we also
generate data from joint distributions that are specified using an
accelerated failure time (AFT)model with baseline hazard func-
tions defined above forC. To further illustrate the robustness of
the proposed method, we generate data for each treatment arm
from joint distributions that are specified using a much differ-
ent structure than the underlying model in (2). We provide fur-
ther details about the specification of these joint distributions
for C + R when we report the results of an investigation below.
In general, a simulation study should be used to assess the pro-
posed method’s power for the anticipated treatment difference,
and then to decide whether the trial should be conducted at
the planned sample size. If power is inadequate, the statistician
should not recommend running the trial at the planned sample
size.

4.1. Simulation Comparator

In our simulation study, we compare the proposed method to
one that is based on separate tests for safety and efficacy. Specif-
ically, the comparator assesses efficacy using a log-rank test for

Figure . True hazard functions forC in our simulation study, along with the induced distributions of time to toxicity (“Tox”) and progression (“Prog”) when πC = 0.15. T
denotes the hazard for toxicity given that a toxicity will occur prior to progression, and P1 (P2) denotes the hazard for progression given prior (no prior) toxicity.
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whether the PFS distributions differ between the two treatment
arms, and assesses safety using a proportion test of the hypothe-
ses,

H0 : ηTox,C+R = ηTox versus

HA : ηTox,C+R < ηTox or ηTox,C+R > ηTox.

The above safety test only uses the data from theC + R arm, and
assesses whether C + R is safe, which we define as ηTox,C+R <

ηTox, or unsafe, which we define as ηTox,C+R > ηTox. For the
safety test, we define a binary indicator, xi, as follows. If the
ith patient has 24 months follow-up and had a toxicity prior to
progression, we define xi = 1. If the ith patient has 24 months
follow-up and did not have a toxicity prior to progression, we
define xi = 0. If the ith patient does not have 24 -months follow-
up, we consider xi not evaluable.We conduct the safety test using
the evaluable xi’s in theC + R arm.

The decision criteria for the comparator are as follows. Let
ZTox denote the safety test statistic, ZProg denote the log-rank test
statistic, and cTox(t ) and cProg(t ) denote prespecified cut-offs for
an analysis at time t . If either ZTox > cTox(t ) or ZProg > cProg(t ),
we conclude thatC is superior toC + R. If both ZTox < −cTox(t )
and ZProg < −cProg(t ), we conclude thatC + R is superior toC.
Otherwise, the trial continues until the next analysis, unless the
maximum sample size has been achieved, in which case the trial
is inconclusive. In contrast to the proposed method, the com-
parator requires different cutoffs for the safety and efficacy tests.
Following Jennison and Turnbull (2000), we specify O’Brien &
Fleming cut-offs that require greater evidence to stop the trial
at earlier analyses and control Type I error at the 0.10 level, like
the proposedmethod. Using this decision criteria, the compara-
tor will selectC + Rwhen there is sufficient evidence thatC + R
is more efficacious than C and C + R is safe, and it will select C
when eitherC is more efficacious thanC + R orC + R is unsafe.
Hence, the comparator does not account for the relative safety of
the two regimes, and does not make explicit whether an efficacy
improvement combined with a decline in safety is favorable. In
contrast, the proposed method will select C + R when there is
sufficient evidence that C + R offers a favorable tradeoff for the
two outcomes compared toC andC + R is safe, and it will select
C when eitherC offers a favorable tradeoff for the two outcomes
compared toC + R orC + R is unsafe.

4.2. Simulation Conduct

In each simulation run,we assign half of theNmax = 100 patients
to each treatment group, and generate potential event times
from the true model for each patient’s assigned treatment. We
use inversion sampling to generate data, which is a well-known
technique for generating data from non-uniform distributions
by inverting the cumulative distribution function (Devroye
1986). To determine the observed outcomes at each analysis, we
distinguish between trial time, defined as the time in months
since the start of the trial, and an individual patient’s follow-
up time, defined as the time in months since the patient initi-
ated treatment. We assume that one patient is assigned to each
treatment at the beginning of every month, so that the first two
patients are enrolled at trial time 0, the second two at trial time 1,
the third two at trial time 2, and so on until the last two patients

are enrolled 49 months after the start of the trial. We perform
the two interim analyses at 20 and 40 months, and a final anal-
ysis at Tmax = 60 months. Therefore, at the first interim analy-
sis, 40 of the planned 100 patients are enrolled, wherein the first
two enrollees have accrued a maximum of 20 months follow-
up, the second pair a maximum of 19 months follow-up, and so
on. These logistical calculations for the second interim and final
analyses follow similarly. For example, at the second interim
analysis, 80 of the planned 100 patients are enrolled, and, at the
final analysis, the last two patients enrolled have accrued a max-
imum of 11 months of follow-up.

Since the potential events can only be observed if they occur
during the presently accrued follow-up, in our simulation study,
the individual follow-up times at each analysis are the admin-
istrative right-censoring times. We assume that this is the only
censoring mechanism. In the actual trial, we anticipate very few
losses to follow-up for other reasons. Combining the poten-
tial event times with the logistical calculations discussed above,
we determine the observed data at each analysis, that is, D =
(yTox, yProg, δTox, δProg, z). Using the observed data, we apply the
stopping criteria for the proposed method and comparator, and
thereby determine eachmethod’s stopping time and decision for
the run. By iterating this entire process, we compare the operat-
ing characteristics of the twodesigns.One run takes about 30 s in
R. We used HTCondor, high-performance computing software,
to conduct runs in parallel across 200 computational nodes.

4.3. Simulation Results

We set the maximum acceptable toxicity probability within the
observation period at ηTox = 0.4, which is the value that will be
used in the actual trial. For the proposed method, we estimate
the posterior using the probabilitymodel described in Section 2,
and calculate mean utilities using the computationally efficient
method described in Section 3.3, based on the elicited utilities
with ρ = 0.6 and γ = 0. For ourmain simulation study, we gen-
erate data for C + R from joint distributions that are specified
using PH models as follows:

h�(t|C + R) = h�(t|C) exp{β�}, for � = {T,P1,P2}.

When we specify πC+R = 0.15 and βT = βP1 = βP2 = 0, C +
R and C have identical joint distributions of (YTox,YProg). By
adjusting πC+R, βT , βP1, and βP2, we can specify a joint distri-
bution for C + R with the desired values of ηTox,C+R, T50C+R,
ηProg,C+R, and P50C+R. To further simplify specification, we use
the same coefficient, βP = βP1 = βP2, to adjust both hP1 and hP2
for C + R. Increasing πC+R causes ηTox,C+R to increase, increas-
ing βT causes T50C+R to increase, and increasing βP causes both
ηProg,C+R and P50C+R to increase. We compare the two methods
for different sets of πC+R, βT and βP that result in joint distri-
butions for C + R with a range of plausible values for ηTox,C+R,
T50C+R, ηProg,C+R, and P50C+R. We focus on scenarios where
ηTox,C+R ranges from 0.05 to 0.45, and P50C+R ranges from 5
months to 15 months.

Before presenting the simulation results, we emphasize that
in this semi-competing risks context the conventional notion
of power is inadequate as it relies on a one-dimensional treat-
ment effect. Here, the treatmentsmay differ for both toxicity and
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Table . Main simulation study results. �U = UC+R −UC is the mean utility difference, where �U > 0 indicates C + R is more desirable than C; ηTox and ηProg are the
probabilities of toxicity and progression during the  month observation period for C + R, where ηTox = . and ηProg = . for C throughout; T50 and P50 are the

median times to toxicity and progression forC + R, where T50= . and P50= . forC throughout;N andDur denote mean sample size and mean duration in months;
and “C + R”(“C”) denotes the proportion of runs where themethod concluded thatC + R (C) is superior. Themaximum allowable toxicity probability during the month
observation period is ηTox = 0.4.

Specifications Proposed Comparator

Scenario �U ηTox T50 ηProg P50 C + R C N (Dur) C + R C N (Dur)

. . . . . . . . . (.) . . . (.)
. . . . . . . . . (.) . . . (.)
. −. . . . . . . . (.) . . . (.)
. −. . . . . . . . (.) . . . (.)
. −. . . . . . . . (.) . . . (.)
. −. . . . . . . . (.) . . . (.)
. −. . . . . . . . (.) . . . (.)
. −. . . . . . . . (.) . . . (.)
. −. . . . . . . . (.) . . . (.)
. −. . . . . . . . (.) . . . (.)
. . . . . . . . . (.) . . . (.)
. . . . . . . . . (.) . . . (.)
. . . . . . . . . (.) . . . (.)
. . . . . . . . . (.) . . . (.)
. . . . . . . . . (.) . . . (.)

progression, and these differences may be in opposite directions
for these outcomes. In such a case, it may not be clear which
treatment is superior. For example, when ηTox,C+R = 0.05 ver-
sus ηTox,C = 0.15 and P50C+R = 15 versus P50C = 7 months,
C + R improves both toxicity and progression compared to C,
a so-called “win-win” scenario, so C + R is clearly superior to
C. In contrast, when ηTox,C+R = 0.25 versus ηTox,C = 0.15 and
P50C+R = 15 versus P50C = 7 months, C + R improves pro-
gression but worsens toxicity compared to C, a so-called “win-
lose” scenario, so it is not at all clear which treatment is supe-
rior, if either. The proposed method, which is based on mean
utilities, offers an explicit solution for this problem, whereas the
comparator does not.

The results of our main simulation study are given in Table 1.
To describe each scenario in the table, we report �U = UC+R −
UC, which is the mean utility difference, where �U > 0 indi-
cates C + R provides a favorable tradeoff for the two outcomes
compared toC; ηTox and ηProg, which are the probabilities of tox-
icity and progression during the 24 month observation period
for C + R, where ηTox = 0.15 and ηProg = 0.79 for C through-
out; and T50 and P50, which are the median times to toxic-
ity and progression for C + R, where T50 = 3.0 and P50 = 7.3
months for C throughout. In each scenario block, that is, 1.1–
1.5, 2.1–2.5, and 3.1–3.5, ηTox,C+R ranges from 0.05 to 0.45, while
T50C+R = T50C = 3 months throughout. In contrast, ηProg,C+R
(P50C+R) is relatively invariant in each block near 0.79, 0.90, and
0.56 (7, 5, and 14 months), respectively. Scenario 1.2 is the null
case where the joint distribution of (YTox, YProg) is identical for
C + R andC. We used its results to select the probability cut-offs
for the proposed method, so it is based on 25,000 runs, which
ensures these cut-offs are accurate to three digits. All other sce-
narios are based on 2500 runs, which ensures the corresponding
power figures are accurate to two digits. By design, both meth-
ods control Type I error at the α = 0.10 level, and each method
erroneously concludes thatC + R is superior toC, andC is supe-
rior toC + R with probability at most 0.05.

In Scenarios 1.1–1.4, |�U | is quite small, ηTox,C+R < ηTox, and
both methods are unlikely to conclude that either treatment is

superior. That said, Scenario 1.1 is a “win-lose” case that slightly
favors C + R with �U = 1.4, where C + R is safer but less effi-
cacious thanC, and the proposedmethod is more likely to select
C + Rwhereas the comparator is more likely to selectC. Scenar-
ios 1.3 an 1.4 are “win-lose” cases that slightly favor C with �U
of –1.4 and –2.9, where C + R is less safe but more efficacious
than C, and the proposed method selects C with probabilities
0.08 and 0.18 compared to 0.05 and 0.06 for the comparator. Sce-
nario 1.5 is a “win-lose” case that favors C where C + R is also
too toxic, and the proposed method is far more likely to select
C than the comparator, with probability 0.46 versus 0.21. More-
over, the proposed method has consistently has smaller mean
sample size and duration than the comparator.

Scenarios 2.1–2.5 increasingly favor C as ηTox,C+R increases,
with �U between −10.4 and −12.9, and the proposed method
accordingly selectsC with probability between 0.48 and 0.85. In
contrast, the comparator is insensitive to increases in ηTox,C+R,
selectingC with probability between 0.50 and 0.59. More specif-
ically, in Scenarios 2.1 and 2.2,C + R is at least as safe asC but it
is less efficacious thanC, and the proposed method is less likely
to selectC than the comparatorwith respective probabilities 0.48
and 0.52 compared to 0.59 and 0.58. However, in “lose-lose” Sce-
narios 2.3–2.5,C + R is less safe and less efficacious thanC, and
the proposedmethod is far more likely to selectC than the com-
parator with respective probabilities 0.60, 0.69, and 0.85 com-
pared to 0.51, 0.50, and 0.55.

Scenarios 3.1–3.5 present five cases where C + R has much
better efficacy thanC but ηTox,C+R varies between 0.05 and 0.45.
In Scenarios 3.1 and 3.2,C + R is at least as safeC, bothmethods
are likely to selectC + R, but the proposedmethod benefits from
a smaller mean sample size and duration than the comparator.
Scenario 3.2 reflects the anticipated difference between C + R
and C, and the proposed method has adequate power, 0.76, for
selecting C + R at the planned sample size. In “win-lose” Sce-
narios 3.3 and 3.4, C + R is less safe than C but offers a favor-
able tradeoff asC + R is highly efficacious, whereas in Scenario
3.5 C + R is too toxic despite its large efficacy advantage. These
are challenging cases for both methods, as there is low power to
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distinguish whether ηTox,C+R < ηTox or ηTox,C+R > ηTox, and
both methods are likely to be inconclusive.

In the online supplementary material, we report results from
additional simulation studies, including whereNmax = 200 with
an enrollment rate of 4 patients permonth rate. The results show
the same general patterns as the main investigation, but with
larger power figures. We also report comparisons of the prob-
ability model with the IGP prior versus the alternative HMGP
prior, utilities with ρ = 0.1 and ρ = 0.9, and shared partitions
with one and four month intervals. The results show that the
HMGPprior tends to slightly increase power, but the shared par-
tition negligibly affects the proposedmethod’s operating charac-
teristics. In contrast, for utilities with ρ = 0.1 (ρ = 0.9) com-
pared to ρ = 0.6, the results show that the proposed method
is less (more) sensitive to changes in ηTox,C+R. We also report
a simulation study where we generate data for treatment C + R
fromAFTmodels, rather than PHmodels. The results show that
the comparator has diminished power, which is not surprising
as it relies on the log-rank test, whereas the proposed method
is less affected. Finally, we illustrate the flexibility of the pro-
posedmethod by generating data for both treatments from joint
distributions defined using latent outcomes that follow mixture
distributions, and thus these joint distributions have a different
structure than the underlying probabiltymodel for the proposed
method.

5. Conclusion

Conventional methods based on separate tests for each clin-
ically important outcome do not reflect the implicit tradeoff
between outcomes, so when the treatment affects these out-
comes in opposite ways, that is, a “win-lose” scenario, it is not
clear which treatment is preferred. The proposed method com-
pares treatments accounting for toxicity and efficacy outcomes
via posterior mean utility, which explicitly reflects the physi-
cians’ clinical experience with these tradeoffs. The elicited util-
ities provide a practical basis for transforming complex out-
comes, like the twoNSCLC semi-competing risk outcomes, into
a one-dimensional criterion for comparing treatments. More-
over, the main simulation study in Section 4 shows that, com-
pared to the proposed method, an approach based on separate
tests can have much lower power when a treatment provides a
modest advantage for both outcomes.

One potential limitation of the proposed design is that
follow-up terminates at non-fatal progression. An alternative
would be a sequential, multiple assignment, randomized trial
(SMART) (see Almirall et al. 2014; Murphy 2003; Murphy and
McKay 2004) that has an additional randomization for third-
line treatment at disease progression, see, for example, Thall
et al. (2000, 2007) or Wang et al. (2012). We chose not to imple-
ment a SMARTdesign for practical reasons; the proposed design
is already very complex, and third-line treatment options are
numerous. Another potential limitation is the piecewise con-
stant hazard assumption, which could be relaxed by assum-
ing continuous hazard models (see, e.g., Sharef et al. 2010)
that might provide better model fit to the realized data and
greater power than the proposed method. These enhancements
are natural extensions to the methods developed in this article,
although computation will be a challenge.

Supplementary Material

Web Supplement: This document provides the full conditional distribu-
tions for Gibbs sampling, derivations of the elementary event probabil-
ities, simulation details and additional results, and the table of elicited
numerical utilities on the partition. (Web-Supplement.pdf)

Software: R software to implement the models discussed in Section 2 using
a Gibbs sampler, calculate mean utility discussed in Section 3, and con-
duct the simulation study detailed in Section 4. (SCRBUB-Design.R)

Utility Elicitation Spreadsheet: Spreadsheet mentioned in Section 3 that
was used for utility elicitation. (Utility-Elicitation.xls)
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