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The scienti� c goal of a phase I oncology trial of a new chemotherapeutic agent is to � nd a dose with an acceptable level of toxicity.
For ethical reasons, dose-� nding is done adaptively, with doses chosen for successive cohorts of patients based on the data obtained from
previous cohorts. Typically, patients are at risk for several qualitatively different toxicities, each occurring at several possible severity levels.
In this article, we describe how we addressed the dose-� nding problem in a phase I trial of gemcitabine for treatment of soft tissue sarcoma.
The oncologists planning the trial wanted to account for differences in importance among the toxicities that they had identi� ed. They
also requested that the dose-� nding method utilize the fact that a low-grade toxicity observed at a given dose, although not dose-limiting,
provides a warning that a higher grade of that toxicity is likely to occur at a higher dose. Conventional phase I methods reduce each type
of toxicity to an indicator of its occurrence at or above a severity level considered dose-limiting, de� ne “toxicity” as the maximum of these
indicators, and base dose-� nding on that single binary variable. Because conventional methods do not address the aforementioned concerns,
we developed a Bayesian method for dose-� nding in the sarcoma trial based on a vector of correlated, ordinal-valued toxicities with severity
levels varying with dose. We also developed a method for jointly eliciting the prior, a vector of weights quantifying the clinical importance
of each level of each type of toxicity, and a target total toxicity burden acceptable to the physicians. Our method assigns each cohort the dose
with a current posterior mean total toxicity burden closest to the target. The elicitation process is iterative, with the oncologists repeatedly
shown the algorithm’s behavior and asked to adjust their weights to ensure that the statistical decisions re� ect appropriate clinical behavior.
We describe how this methodology has worked in the sarcoma trial, present simulations and sensitivity analyses of the trial under several
clinical scenarios, and provide guidelines for general application.
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1. INTRODUCTION

The primary goal of a phase I clinical trial of a new chemo-
therapeutic agent in oncology is to determine a dose with ac-
ceptable toxicity. Because safety is a central concern in such
trials, typically patients are treated in successive cohorts, with
the dose for each cohort chosen adaptively based on the dose-
toxicity data from previous patients in the trial. Thus, a phase I
design must provide both an algorithm for sequentially assign-
ing doses to patient cohorts and a rule for selecting a dose, usu-
ally called the “maximum tolerated dose” (MTD), at the end
of the trial. For convenience,here we refer to these two related
statistical problems together as “dose-� nding.” A dif� culty in
phase I, especially acute early in the trial, is that doses must
be assigned to patients based on very little data. Because any
ethically reasonable algorithm must de-escalate when a dose is
found to be unacceptably toxic, and only a limited number of
toxicities are permitted, little or no data are available on doses
with high toxicity probabilities. Thus the dose-� nding problem
is scienti� cally dif� cult due to ethical constraints. Numerous
statistical designs for phase I trials have been proposed (Storer
1989; O’Quigley, Pepe, and Fisher 1990;Durham and Fluornoy
1994; Babb, Rogatko, and Zacks 1998; Piantadosi, Fisher, and
Grossman 1998; Gasparini and Eisele 2000). Each of these ap-
proaches characterizes toxicity as a binary variable, with the
underlying statistical model and the algorithm for trial conduct
based on the probability of toxicity as a function of dose.

This article is motivated by the problem of designing
a phase I trial of presurgical gemcitabine with external beam
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radiation (EBR) for patients with soft tissue sarcoma. In plan-
ning the trial, we worked with a team of three oncologists who
have extensive experience in sarcoma treatment and share re-
sponsibility for conduct of this trial. The trial was activated in
January 2002 and is currently ongoing. Each patient receives
a � xed dose of 50 cGy external beam radiation and 1 of 10
doses of gemcitabine, 100;200; : : :; or 1,000 mg=m2: In virtu-
ally all oncology chemotherapy settings, the patient is at risk
of several different types of toxicity, each occurring at several
possible severity levels. These levels typically are expressed as
“grades,” taking on integer values from 0 (indicating no tox-
icity of that type) to 4 (the most severe level). The toxicities
used as a basis for dose-� nding in the trial are summarized in
Table 1, which gives the grades of each type of toxicity that
the oncologists consider to be dose-limiting. We explain the
“severity weight” listed beside each grade of each toxicity later.
These weights play a central role in all that follows. Because
it may take up to 6 weeks to evaluate all of the possible toxi-
cities in each patient, to facilitate trial conduct, the cohort size
is allowed to vary between three and four, as follows. If the
� rst three patients in a cohort have had all of their toxicities
evaluated before a fourth patient is accrued, then that cohort is
considered complete, the next gemcitabine dose is chosen, and
treatment of the next cohort with that dose is begun.As in many
phase I trials, the safety constraint is imposed that no untried
dose may be skipped when escalating. The trial will end when
at least 36 patients have been accrued and evaluated.

The methodology that we developed for dose-� nding in the
sarcoma trial is a radical departure from conventional phase I
methods. This was motivated by several concerns expressed by
the oncologists. They requested that the dose-� nding method
account for the fact that, clinically, the toxicities that they had
identi� ed are not equally important. Additionally, the differ-
ent toxicities do not occur independently. For example, fa-
tigue and nausea/vomiting are likely to occur together, as are
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Table 1. Toxicities and Severity Weights in the Sarcoma Trial

Type of toxicity Grade Severity weight

1 Myelosuppressionwithout fever 3 1.0
4 1.5

Myelosuppressionwith fever 3 5.0
4 6.0

2 Dermatitis 3 2.5
4 6.0

3 Liver 2 2.0
3 3.0
4 6.0

4 Nausea/vomiting 3 1.5
4 2.0

5 Fatigue 3 .5
4 1.0

myelosuppression (i.e., low blood cell count, associated with
suppression of normal bone marrow function) and fever. They
also requested that the dose-� nding method utilize the fact that
a low-grade toxicity observed at a given dose, although not
dose-limiting, provides a warning that a higher grade of that
toxicity is more likely to occur at a higher dose level. To explain
why these concerns motivated us to develop the methodology
described in this article, we � rst need to explain the limitations
of conventionalmethods.

A typical protocol for a phase I oncology trial lists the pos-
sible toxicities that must be monitored. This list often includes
transient conditions, such as fatigue, nausea/vomiting, myelo-
suppression, thrombocytopenia (low platelet count), fever,
infection, and dysfunction of speci� c organs, and irreversible
toxicities, such as permanent organ damage or death. In gen-
eral, the different toxicities do not occur independently. The
conventionalapproach to dose-� nding is to reduce each type of
toxicity to an indictor of its occurrence at or above a severity
level considered dose-limiting, de� ne “toxicity” as the maxi-
mum or some other binary-valued function of these indicators,
and base the model and dose-� nding method on that binary
variable. Most phase I protocols de� ne “toxicity” as the occur-
rence at grade 3 or 4 of several listed toxicities. Although it is
logistically convenient to reduce the ordinal scale of given tox-
icity to the binary variable for which grades 0, 1, or 2 are “no
toxicity” and grades 3 or 4 are “toxicity,” this common practice
discards useful information. For example, if several patients
experience a grade 2 toxicity of a given type at a dose level k,
then a typical method based on the foregoing binary variable
would escalate to level k C 1 as if no toxicities had occurred at
level k. Clearly, a probability model that distinguishesbetween
grades 0, 1, and 2 rather than combining them as the event “no
toxicity” should provide a more reliable basis for predicting the
jump from grade 2 to grade 3 or higher as the dose is increased
from k to k C 1. Furthermore, if each of several different types
of toxicity has been de� ned as a binary variable, then de� ning
“toxicity” as the maximum of these indicators implicitly as-
sumes that the different toxicities are exchangeable and hence
equally important. For example, this de� nition does not distin-
guish between a patient who has grade 3 fatigue and a patient
who has suffered complete kidney failure. Thus dichotomizing
all toxicities at the same grade and assuming that they are ex-
changeable leads to conclusions that simply do not make sense.

To provide a dose-� nding method for the sarcoma trial ad-
dressing all of these issues, we found it necessary to go be-
yond the conventionalphase I framework. We characterized pa-
tient outcome as a vector of correlated, ordinal-valuedtoxicities
by applying the multivariate ordinal probit regression model of
Chen and Dey (2000), extended to allow the different toxici-
ties to have different numbers of severity levels. To address the
oncologists’ concern that qualitatively different toxicities often
are not equally important, we used numerical weights to char-
acterize the clinical importance of each severity level of each
type of toxicity. During several sessions with the oncologists,
we developed a method for jointly eliciting the prior for the
model parameters and the toxicity severity importance weights.
We de� ned the total toxicity burden of a patient as the sum of
the weights of all toxicities experienced by that patient. This
provides the basis for the dose-� nding algorithm. We used the
elicited weights to identify a target total toxicity burden by con-
structing a set of hypothetical dose-toxicity scenarios and ask-
ing the oncologists in each case whether they would escalate,
repeat the same dose, or de-escalate for the next cohort. Our
method assigns to each cohort the dose with the current pos-
terior mean total toxicity burden closest to the target. Because
this method quanti� es the oncologists’ experiences in dealing
with multiple toxicities in the clinic and incorporates this infor-
mation into the dose-� nding algorithm, it re� ects actual clinical
practice more closely than do conventionalmethods.

The methodology evolved iteratively over the course of sev-
eral sessions with the oncologists. Initially, they speci� ed the
� ve toxicities myelosuppression (M), fever, dermatitis (D),
nausea/vomiting (N ), and fatigue (F ) as binary variables, we
de� ned “toxicity” in the conventionalmanner as the maximum
of these � ve indicators, and we constructeda continual reassess-
ment method (crm) design (O’Quigley et al. 1990) with a target
toxicity rate of 30%. At the second session, during which we
presented the crm design, the issues arose that M is positively
associated with fever and that M with fever (MC) is a much
more severe event than M without fever (M¡). This led us to
combine these two variables into the � ve-level ordinal toxic-
ity M0 < M¡

3 < M¡
4 < MC

3 < MC
4 , where grade is denoted

by a subscript and M0 denotes no M of grade > 2. This in
turn motivated the oncologists to re� ne the other toxicities, so
that D, N , and F each became a trinary variable. They also
added liver toxicity (L), de� ned as a four-level variable (see
Table 1). We next elicited numerical weights to quantify the
clinical importance of each level of each type of toxicity. We
subsequently formulated the probability model, developed the
idea of using the individual patient’s total toxicity burden in
terms of the weights as the basis for dose-� nding, and elicited a
target total toxicity burden for dose-� nding and a prior from the
oncologists.We repeated this process over the course of several
sessions, until the algorithmmade decisions that the oncologists
considered clinically sensible under all of the scenarios.

In Section 2 we present the probability model and dose-
� nding algorithm. In Section 3 we describe a method for simul-
taneously eliciting the prior, toxicity weights, and target total
toxicity burden. In Section 4 we return to the sarcoma trial, in-
cluding speci� cs of the elicitation process, the current data, and
how the algorithmhas behaved to date. We present a simulation
study in Section 5, and close with a discussion in Section 6.
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2. MODEL AND DOSE–FINDING ALGORITHM

2.1 Modeling Objectives

A statistical model for outcome-adaptive decision making
in a clinical trial must provide a practical framework for re-
peatedly incorporating new data and computing decision crite-
ria. For the sarcoma trial, where the decision is which dose to
give the next cohort, we required a model characterizing how
the probabilities of the severity levels of each type of toxicity
vary with dose, while also accounting for association among
the toxicities. In theory, many parametric multivariate ordinal
regression models have these properties. A dif� culty in phase I
trials is that doses must be chosen based on very little data;
this problem is especially severe early in the trial. Because the
goal is dose-� nding rather than model � tting, however, any rea-
sonably tractable model with the aforementioned properties is
acceptable, provided that the dose-� nding method works well
under the assumed model. Because we use computer simula-
tion of the trial design to examine its operating characteristics
and calibrate its parameters before actual trial conduct, which
requires that the model be � t thousandsof times, computational
tractability also is an essential requirement.

To obtain a model with all of these properties for the sar-
coma trial, we applied the Bayesian multivariate ordinal probit
model of Chen and Dey (2000). This is a member of the general
class of models developed by Albert and Chib (1993) and Chib
and Greenberg (1998), that uses a vector of correlated latent
Gaussian variables to induce association among binary, cate-
gorical, or ordinal outcomes. The extension of the multivariate
ordinal version of this model to accommodate ordinal variables
with different numbers of levels is straightforward. Although
this model may appear somewhat complicated,we used as sim-
ple a version as possible without sacri� cing any of the structure
described earlier, and in fact found this model quite tractable.

2.2 Probability Model

Let Y D .Y1; : : : ; YJ / denote the vector of ordinal toxicity
variables. The j th type of toxicity, Yj , takes on one of the
Cj C 1 values fyj;0; yj;1; : : : ; yj;Cj

g, where yj;k is the kth most
severe level for k D 0; : : : ; Cj : In the sarcoma trial, J D 5,
and if Yj refers to, say, dermatitis, then Cj D 2, yj;0 denotes
grade 0, 1, or 2 dermatitis; yj;1 denotes grade 3 dermatitis;
and yj;2 denotes grade 4 dermatitis. Binary Yj corresponds to
Cj D 1. To improve numerical stability, we replaced each gem-
citabine dose d by x D log.d=1,000), and we refer to x as the
“dose.” We model association among the Yj ’s by introducing
the vector of correlated latent variables ZJ£ 1 D .Z1; : : : ;ZJ /,
which is assumed to be multivariate normal with E(Zj / D
¯j;0 C x¯j;1 for each j , all variances equal to 1, and correla-
tion matrix Ä. In matrix notation, E(Z/ D X¯ , where XJ£ 2J is
the block-diagonal matrix with j th block .1 x/ and ¯2J£ 1 D
.¯1;0; ¯1;1; : : : ; ¯J;0;¯J;1/: The latent variable vector Z deter-
mines the observed outcome vector Y via the conditions

Yj D yj;k if °j;k · Zj < °j;kC1

for k D 0;1; : : : ;Cj and j D 1; : : : ; J;

where the cutoff parameters °
Cj£ 1
j D .°j;1; : : : ; °j;Cj

/ must

satisfy the constraint ¡1 D °j;0 < °j;1 < ¢ ¢ ¢ < °j;Cj
<

°j;Cj C1 D C1: Denote Aj;k D .°j;k; °j;kC1] and ° CC£ 1 D
.° 1; : : : ; ° J /, where CC D C1 C ¢ ¢ ¢ C CJ . We require the
variance-covariance matrix Ä of Z to be its correlation matrix
to ensure identi� abilityof the posteriordistributions,which also
requires that °j;1 ´ 0: Because °j;0 D ¡1, °j;Cj C1 D C1,
and °j;1 D 0; if Cj > 1, then there are only Cj ¡ 1 random
cutpoint parameters. Thus, although ° has CC entries, it actu-
ally contains only

PJ
j D1 1.Cj > 1/.Cj ¡ 1/ parameters, where

1.A/ is the indicator of the event A. Denoting the model para-
meter vector by µ; the marginal distribution of Yj for a patient
treated with dose x is thus

¼j;k.x; µ/ D Pr.Yj D yj;kjx; µ/

D 8f°j;kC1 ¡ .¯j;0 C ¯j;1x/g

¡ 8f°j;k ¡ .¯j;0 C ¯j;1x/g; (1)

where 8 is the standard normal cdf. Denote ¼ j .x; µ/ D
.¼j;1.x; µ/; : : : ; ¼j;Cj

.x; µ // for each j D 1; : : : ; J and
¼.x; µ/ D .¼ 1.x; µ /; : : : ; ¼J .x; µ//: Let ÁW.¢j¹;6/ denote
the pdf of a multivariate normal random vector W with
mean vector ¹ and variance-covariance matrix 6; and write
W » N.¹; 6/. For a given vector of toxicity severity levels
k D .k1; : : : ; kJ /, the corresponding outcome of Y is y.k/ D
.y1;k1; : : : ; yJ;kJ

/; and this would arise from the J -dimensional
set A.k;° / D A1;k1 £¢ ¢ ¢ £ AJ;kJ of Z values. Thus a single
patient’s contribution to the likelihood is given by

L .Yj° ;¯; Ä; x/

D
C1Y

k1D0

¢ ¢ ¢
CJY

kJ D0

»Z

A.k;° /

ÁZ.zjX¯; Ä/ dz

¼ 1[YDy.k/]

; (2)

which shows how Z induces association among the elements
of Y through Ä: Let x.i/ denote the ith patient’s dose, with
Xi the corresponding matrix. The likelihood for n patients is
obtained by substituting Y D Yi , x D x.i/ , and X D Xi in (2)
and taking the product over i D 1; : : : ; n:

Denote the J .J ¡ 1/=2 unique off-diagonal elements of Ä

by ½ D .½1;2; ½1;3; : : : ; ½J ¡1;J / and the cutpoint parameter vec-
tor by ° ; so that the model parameter vector is µ D .¯;° ;½/:

A priori, we assume ¯ » N.¹; 6/; subject to the constraint
Pr.¯j;1 > 0/ D 1 for all j D 1; : : : ; J: That is, we abuse
notation in that the prior of ¯ is 2J -variate normal with J en-
tries truncated at 0, but ¹ and 6 correspond to the untrun-
cated 2J -variate normal. This constraint ensures that Pr.Yj >

yj;kjx/ D 1 ¡ 8f°j;k ¡ .¯j;0 C ¯j;1x/g increases with x for
each j and k > 1; which is necessary for the model to make
sense. For each j with Cj > 1, we assume that the parameters
f°j;2; : : : ; °j;Cj

g follow independent, uninformative priors on
the domain [0; 10]; with each g.° j / / 1; subject to the con-
straint 0 < °j;2 < °j;3 < ¢ ¢ ¢< °j;Cj

: The upper limit 10 on the
support of the distribution of the °j;k’s is chosen for numerical
convenience because, relative to a standard normal, the prob-
ability mass beyond 10 is vanishingly small. We assume that
the elements of ½ are iid N(0, 1,000), truncated to the support
[¡1;C1]; with Ä positive de� nite. We describe method for
specifying a prior on ¯ using elicited information in Section 3.
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2.3 Dose-Finding Algorithm

If doses are to be chosen based on multivariate toxicity data,
then inevitably some form of dimension reduction must be car-
ried out to obtain a real-valued criterion to use as a basis for
deciding whether to escalate, stay at the same dose, or de-
escalate. The conventional approach, which reduces each Yj

to 1.Yj ¸ yj;k/ for a toxicity level yj;k of type j considered by
the oncologists to be dose limiting and de� nes “toxicity” as the
maximum of the J indicators, suffers from several pathological
properties. Our proposed alternative approach does away with
these pathologies, in part by incorporating medical knowledge
into the dimension-reduction process. The method requires that
positive-valued numerical weights that characterize the impor-
tance of each level of each type of toxicity be elicited from the
oncologist. For each j D 1; : : : ; J; denote the elicited weight
of toxicity type j occurring at severity level yj;k by wj;k;

with wj D .wj;1; : : : ;wj;Cj
/ and wCC¡J£ 1 D .w1; : : : ; wJ /:

The j th weight vector must satisfy the admissibility require-
ment 0 D wj;0 < wj;1 < wj;2 < ¢ ¢ ¢< wj;Cj

: If the oncologists
assign wj;k D wj;kC1 , then levels k and k C 1 of Yj should
be combined. The numerical domain of the wj;k ’s is arbitrary,
because the method is invariant to the weights’ multiplicative
scale. We used the interval 0 to 10 in the sarcoma trial because
the oncologists were comfortable with this range.

We de� ne the severity weight of Yj for a patient given dose x

to be the random variable Wj taking the value wj;k with prob-
ability ¼j;k.x; µ/: This replaces the observed toxicity Yj with
the weight-valued variable Wj , by assigning the severity cate-
gory probabilities of Yj to the corresponding elicited weights.
We de� ne the patient’s total toxicity burden (TTB) to be TTB DPJ

jD1 Wj : The dose-� nding algorithm is based on the posterior
expected TTB at each dose,

Ã.w; x;data/ D EfE.TTBjx; µ/jdatag

D
JX

j D1

CjX

kD1

wj;kEf¼j;k.x; µ/jdatag: (3)

By straightforward algebra, it follows from .1/ that

E.TTBjx; µ/

D
JX

j D1

(

wCj
C

CjX

kD1

.wj;k¡1 ¡ wj;k/8.°j;k ¡ ¯j;0 ¡ ¯j;1x/

)

;

which is increasing in x because wj;k¡1 < wj;k and ¯j;1 > 0
for all j and k: Thus Ã.w; x; data/ is increasing in x: We use
this as a basis for dose-� nding by � rst eliciting a � xed tar-
get TTB value, Ã¤; from the oncologists, and then assigning
to each successive cohort the dose with Ã.w; x;data/ clos-
est to Ã¤: To see how this works, for simplicity suppress j

and consider one toxicity. If Y D yk is observed at x , then
the posterior of f¼1.x; µ /; : : : ; ¼C .x; µ/g must shift probabil-
ity mass toward ¼k.x; µ/. If yk is a high level toxicity (i.e.,
k is high in the range 1; : : : ; C), then because the wk ’s are "
in k;

PC
kD1 wk¼k.x; µ/ must increase stochastically, and hence

also in expectation given the data. By the monotonicity of
Ã.w; x; data/ in x , this would tend to decrease the next se-
lected dose. Similarly, observation of low-level toxicities will
decrease the chosen dose, on average.

3. ELICITATION PROCESS

Although we developed the foregoing model and method for
the sarcoma trial over the course of several sessions with the on-
cologists, future applicationsshould require much less time and
effort, because a computer program is freely available from the
� rst author on request. The method requires eliciting a substan-
tial amount of information, however, including the toxicities,
the prior on µ; w, and Ã¤: An effort should be made at the start
to include all physicians involved in the trial who are opinion
leaders, to avoid having to repeat the process due to subsequent
disagreements.

Initially, the physicians must specify the cohort size, c, sam-
ple size, N , doses, d D .d1; : : : ; dK /; the toxicities to be mon-
itored, and their severity levels. Because there will be N=c

cohorts to search among K doses, it may be useful to study sev-
eral feasible values of N in the computer simulations as a basis
for choosing N . Next, the physiciansmust be asked to specify a
numerical severity weight for each level of each toxicity within
a given positive-valued numerical range, with 0 corresponding
to no toxicity. Because the method is invariant to the particular
numerical range of severity weights, the main criterion is that
the physicians use a range with which they are comfortable.
This establishes w: The process of specifying w may lead the
physicians to modify the toxicities, because quantifying the im-
portance of the possible clinical outcomes in this way requires
them to think deeply about the process of treating patients and
conductinga dose-� nding trial.

Given d; Y, and w, the physicians must specify hypothetical
J -variate toxicity outcomes for m hypothetical cohorts, with
the severities of the toxicities varying widely between cohorts
from “very toxic” to “not toxic at all.” As a rough guideline,
m should be large enough to obtain a reasonable representa-
tion of the range of possible toxicities and severities, but not
so large that the elicitation process becomes unduly burden-
some to the physicians. Toxicities with larger numbers of levels
should be included in more cohorts than toxicities with fewer
levels. No single type of toxicity should be the only contribu-
tor to all of the “very toxic” cohorts. That is, the toxicity bur-
den should be spread across several different types of toxicity,
to the extent that this is clinically reasonable. The statisticians
may suggest additional cohorts, as we did, but these must make
sense clinically to the physicians. We denote the outcomes of
the m hypothetical cohorts by y¤

1 D .y¤
1;1; : : : ;y¤

1;c/; : : : ; y¤
m D

.y¤
m;1; : : : ; y¤

m;c/.
Next, for each hypothetical cohort, r D 1; : : : ;m; the physi-

cians must be asked two questions, (1) whether observation of
y¤

r D .y¤
r;1; : : : ; y¤

r;c/ in the � rst cohort of the trial would cause
them to repeat the same dose (Dr D repeat), escalate to a higher
dose (Dr D escalate), or de-escalate to a lower dose (Dr D de-
escalate) for the next cohort; and (2) what dose, d¤

r D d.y¤
r /;

would they consider most likely to produce the outcomes y¤
r of

that hypotheticalcohort. Letting w¤
r;l denote the severity weight

vector corresponding to y¤
r;l; for r D 1; : : : ;m and l D 1; : : : ; c,

the mean TTB of the rth hypothetical cohort is

TTB
¤

r D 1
c

cX

lD1

JX

jD1

w¤
r;l;j :
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The ordered mean hypothetical TTB values are denoted by
TTB

¤
.1/ · ¢ ¢ ¢ ·TTB

¤
.m/; and the corresponding vector of de-

cisions in this order of increasing TTB values, D.1/; : : : ; D.m/:

We de� ne an admissible sequence of decisions ordered in this
way to be one comprising a string of escalations, followed by
a string of repeats, followed by a string of deescalations. If the
m decisions are not admissible, then, working with the physi-
cians, the hypotheticaloutcomes, elicited decisions, weights, or
possibly other portions of the underlying structure are modi-
� ed as appropriate. Once an admissible set of decisions is ob-
tained, the target TTB is de� ned to be the mean of the elicited
TTB

¤
r values for which the physicians’ decision was to repeat

the same dose,

Ã¤ D
Pm

rD1 TTB
¤
r 1.Dr D repeat/Pm

rD1 1.Dr D repeat/
:

Because Ã¤ is determined by the physicians’ subjective input,
it is analogous to a � xed target toxicity probability speci� ed by
the physicians in the simpler case of one binary toxicity.

The doses d¤
1 ; : : : ; d¤

m obtained as answers to the second
question may be used to construct a prior on ¯ , as follows.
Recall that because we assume vague priors on ° and ½;

only the hyperparameters ¹ and 6 of the prior on ¯ must
be speci� ed. Beginning with a vague N.¹o; 6o/ prior on ¯;

with ¹o
j;0 D 0, ¹o

j;1 D 1, varo.¯j;0/ D varo.¯j;1/ D 10,000 for
each j , we computed the posterior of ¯ given the hypotheti-
cal data fd¤

1 ;y¤
1; : : : ; d¤

m;y¤
mg: We modi� ed this distribution by

multiplyingeach variance by m, the number of hypotheticalco-
horts, and setting each off-diagonal element of 6 equal to 0.
This gave the prior on ¯ used at the start of the trial. As a check
for internal consistency, it may be assumed in turn that each hy-
pothetical cohort is the � rst cohort in the trial. If the algorithm
makes the same decision as the physicians, then construction
may proceed; otherwise, the prior or possibly some other as-
pect of the model or design must be modi� ed, as appropriate,
so that the method behaves in accordance with clinical practice.

4. THE SARCOMA TRIAL REVISITED

Although the oncologistsinitiallydecidedon a toxicitysever-
ity weight domain ranging from 0 (no clinical importance) to 10

(the most severe toxicity of that type seen), as shown in Table 1,
the highest weight that they assigned was 6. Table 2 summa-
rizes the 16 hypothetical cohorts used in the elicitation process
for the sarcoma trial, with no toxicities of any type denoted
by NT. Each toxicity is subscripted by its grade. For example,
the � rst patient in hypotheticalcohort 3, with outcomes denoted
by M¡

3 C D3 C N3; experienced grade 3 myelosuppression
without fever, grade 3 dermatitis, and grade 3 nausea/vomiting.
The description of each cohort is followed by the corresponding
empirical mean TTB, the elicited decision for the next cohort,
and the dose that the oncologistsconsidered most likely to have
caused the cohort’s outcomes. Using the elicitation method de-
scribed in Section 3, the three cohorts for which the decision
was to repeat the same dose were 1, 9 and 16. This gives a tar-
get per patient TTB of Ã¤ D .3:00 C 3:12 C 3:00/=3 D 3:04,
which is the value used to conduct the sarcoma trial.

At this writing, 14 patients have been treated and evalu-
ated. Table 3 summarizes the outcomes and TTBs for these
patients. To more fully illustrate how the method works in
practice, these data are followed in Table 3 by hypothetical
data for the remaining 22 patients in the trial. The third co-
hort included only three patients, because the toxicities of all
of these three patients were evaluated before a fourth patient
was available to be accrued to this cohort. The � rst cohort was
treated at 400 mg=m2: Although Ã.w;700; data4/ D 3:24 is
closest to the target Ã¤ D 3:04, because of the safety con-
straint that no untried dose may be skipped when escalating,
the second cohort was treated at 500 mg=m2. Incorporating
the second cohort’s data, because Ã.w; 600;data8/ D 2:85 is
closest to 3.04, the third cohort was treated at 600 mg=m2.
The next value, Ã.w;700; data11/ D 3:24, determined that the
fourth cohort should receive 700 mg=m2. The tabled data from
the fourth cohort consist of actual outcomes plus one hypo-
thetical patient, number 15. Because Ã.w;600; data15/ D 3:15,
the trial de-escalates to 600 mg=m2: The remaining decisions
reported in the table rely on hypothetical outcomes for pa-
tients 16–36. Based on these data, the trial would stay at
600 mg=m2 for cohort 6 because Ã.w; 600;data19/ D 3:01,
and then return to 700 mg=m2 as the dose for the � nal 17 pa-
tients, with Ã.w; 700;data23/ D 3:31, Ã.w;700; data27/ D

Table 2. Hypothetical Cohorts Used in the Elicitation Process for the Sarcoma Trial

Cohort Outcomes TTB
¤

Decision d¤

1 MC
4 , D4,NT , NT 3.00 Repeat 400

2 M¡
4 , L3, F 4, N4 1.88 Escalate 200

3 M¡
3 C D3 C N3, M¡

3 ,M¡
3 ,M¡

3 2.00 Escalate 300
4 D4,D4, L2, L2 4.00 De-escalate 600
5 M¡

3 C F3, M¡
3 C F 3, L2 C F 3,N3 2.25 Escalate 300

6 MC
4 ,L4, D4, NT 4.50 De-escalate 700

7 D3, D3, NT , NT 1.25 Escalate 100
8 M¡

3 , D3, F 3,F 3 1.25 Escalate 200
9 D3,D4, L2, L2 3.12 Repeat 400

10 MC
3 C N3, MC

3 C D3 C N3 ,D3 C F 3 C N3, F 3 C N3 5.50 De-escalate 800
11 M¡

3 C D3 C F3, F 3,F2, N4 2.12 Escalate 300
12 L3, L3, NT , NT 1.50 Escalate 200
13 MC

3 C D3 C F 4,MC
3 C D3 C F 4,M¡

3 C F 4,D3 C F 4 5.62 De-escalate 900
14 M¡

3 C N3, F4 ,L2, D3 C N3 2.38 Escalate 300
15 D4 C F 4, L3 C F 4, L2 C N4,N4 4.25 De-escalate 600
16 M¡

3 C F 4, L2 C F3, M¡
3 C D3 C N4, L2 3.00 Repeat 500

NOTE: Myelosuppression, dermatitis, liver toxicity, fatigue, and nausea/vomiting are denoted by M, D, L, F, and N, with each subscripted by grade. With myelosuppression, presence and absence
of fever are denoted by superscripts “C ” and “¡”. NT denotes no toxicities of any type, and d¤ is the dose considered by the oncologists most likely to have caused the cohort’s outcomes.
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Table 3. Patient-by-Patient Illustration of the Method Used in the Sarcoma Trial

Patient Dose (mg=m 2) Myelosuppression Dermatitis Liver Fatigue Nausea TTB

1 400 Grade 3 without fever Grade 3 None None Grade 3 5.0

2 400 Grade 3 without fever None None None None 1.0

3 400 Grade 3 without fever None None None None 1.0
4 400 None None None None None 0

5 500 None Grade 3 None None None 2.5
6 500 None None None None None 0

7 500 Grade 3 without fever Grade 3 None None None 3.5

8 500 Grade 4 without fever None Grade 2 None None 3.5

9 600 None Grade 3 None None None 2.5

10 600 None None Grade 3 None None 2.0

11 600 None Grade 3 None None None 2.5

12 700 Grade 3 without fever None None None None 1.0

13 700 None None Grade 3 None None 3.0

14 700 None None None Grade 3 None .5

15 700 Grade 3 with fever Grade 4 None Grade 3 Grade 3 13.0

16 600 Grade 3 without fever None None None Grade 3 2.5

17 600 Grade 3 without fever None None None None 1.0

18 600 None Grade 3 Grade 2 None None 4.5

19 600 None Grade 3 None None None 2.5

20 600 None None None None None 0

21 600 None Grade 3 None None None 2.5

22 600 Grade 4 without fever None None None None 1.5

23 600 Grade 4 without fever None None None None 1.5

24 700 Grade 3 without fever None Grade 2 None None 3.0

25 700 Grade 3 without fever None None None None 1.0

26 700 Grade 3 without fever None None None Grade 4 3.0

27 700 Grade 3 without fever None None None None 1.0

28 700 Grade 3 with fever None None None None 5.0

29 700 Grade 3 without fever Grade 3 None None Grade 3 5.0

30 700 None None None Grade 3 None .5

31 700 None None None Grade 3 None .5

32 700 Grade 4 without fever None Grade 2 None Grade 3 5.0

33 700 Grade 3 without fever Grade 3 None None None 3.5
34 700 None None None None None 0

35 700 None None Grade 3 None None 3.0

36 700 None None Grade 3 None None 3.0

NOTE: The � rst 11 patients are real; the remaining 25 are hypothetical.

3:09, Ã.w; 700;data31/ D 3:03, Ã.w; 700;data35/ D 3:02,
and, � nally, Ã.w; 700;data36/ D 3:03 determining 700 mg=m2

to be the MTD.
For the sarcoma trial, conventionalmethods typically would

de� ne one binary “toxicity” as the maximum of the indica-
tors 1(myelosuppressiongrade ¸ 3), 1(dermatitis grade ¸ 3),
1(liver toxicity grade ¸ 3), 1(nausea/vomiting grade ¸ 3),
and 1(fatigue grade ¸ 3). For example, a conventionalmethod

would consider a patientwith grade 2 liver toxicity (TTB D 2:5)
to have “no toxicity” and a patient with grade 4 fatigue
(TTB D 1) to have “toxicity,” and furthermore would not dis-
tinguish the latter patient from a patient with grade 4 myelo-
suppression with fever, grade 4 dermatitis, and grade 4 liver
toxicity (TTB D 18). Consequently, the proposed algorithm
based on the TTB with target 3.04 for Ã.w; x;data/ makes
more sensible decisions. For example, if three of the four pa-
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tients in the � rst cohort treated at 400 mg=m2 had either grade 4
fatigue or grade 3 myelosuppressionwithout fever and one also
had grade 3 nausea, for TTB values f0;1; 1;2:5g and empiri-
cal mean TTB D 1:125, then for these data Ã.w;500; data4/ D
2:10, and the algorithm would escalate to 500 mg=m2; whereas
a conventionalmethod would score three toxicities in these four
patients and de-escalate to a lower dose.

5. SIMULATION STUDY AND SENSITIVITY ANALYSES

5.1 Simulation Study Design

To assess the method’s average behavior, we performed
a simulation study of the sarcoma trial. Due to the inherentcom-
plexity of patient outcome, specifying a reasonably representa-
tive set of possible dose-toxicity probabilities to study is not
straightforward. To obtain a manageable set of dose-toxicity
scenarios for the simulation study, we considered only cases
where the target TTB occurred at 200, 500, or 800 mg=m2;

and we categorized the main source of toxicity as being either
those having high-severity (HS) weights (w ¸ 5) or greater,
or low-severity (LS) weights (w · 2). We considered the re-
maining toxicities, grade 3 dermatitis (w D 2:5) and grade 3
liver toxicity (w D 3), intermediate and included them in either
group. Each of the six scenarios was characterized by 10CC D
130 � xed probabilities pj;1;d ; : : : ;pj;Cj ;d ; for j D 1; : : : ; 5
and d D 100; : : : ;1000, where pj;k;d D Pr.Yj D yj;kjd/ and

pj;0;d D 1 ¡
PCj

kD1 pj;k;d . We chose these probabilities non-
parametrically to satisfy

P
j

P
k wj;kpj;k;d D 3:04 for d D 200

under scenarios 1 and 2, d D 500 under scenarios 3 and 4,
and d D 800 under scenarios 5 and 6. Figure 1 summarizes
the six scenarios graphically in terms of the TTB as a func-
tion of dose. We induced association among the elements of
each simulated .Y1; : : : ; Y5/ by generating a sample of standard
normal random variables Z5£ 1 with speci� ed correlation ma-
trix, then de� ning the correlated uniform.0; 1/ random variates
U5£ 1 D .8.Z1/; : : : ; 8.Z5//, and � nally denoting Pj;k;d DPk

rD0 pj;r;d for k D 0; : : : ;Cj and Pj;¡1;d D 0, de� ning Yj D
yj;k if Pj;k¡1;d · Uj < Pj;k;d : We elicited the correlationsfrom
the oncologists in terms of the latent variables, Z; underlying
the toxicities, as follows. The only toxicities that the oncolo-
gists consideredcorrelated a priori were F and N . We asked the

Figure 1. TTB as a Function of Dose Under Each of the Six
Dose-Toxicity Scenarios Considered in the Simulation Study.

oncologists the following question: “For two randomly chosen
patients, if you observe that the � rst patient is more fatigued
than the second, what is the probability of observing more
severe nausea/vomiting in the � rst patient than the second?”
The oncologists assigned a probability between .55 and .60 to
this event. Denoting the latent variables corresponding to F

and N for the two patients by .Zi;F ; Zi;N / for i D 1;2 and
q D Pr.Z1;F > Z2;F jZ1;N > Z2;N /; if we assume that q is
symmetric in that q D Pr.Z1;F < Z2;F jZ1;N < Z2;N/; then q is
related to Kendall’s ¿ via ¿ D 2q ¡ 1. Because the Pearson’s
correlation ½ between ZF and ZN between ¿ and satis� es the
relationship ½ D sin.¿¼=2/ (Kruskal 1958), :55 < q < :60 im-
plies that :15 < ½ < :31. We used the average ½ D :23. We sim-
ulated the trial 1,000 times under each scenario; each reported
value is the average over these replications.

5.2 Numerical Methods

We followed the computational framework developed by
Albert and Chib (1993) for one polytomous outcome, ex-
tended by Chib and Greenberg (1998) to accommodate cor-
related binary outcomes and by Chen and Dey (2000) to
the correlated ordinal case. Denote the outcome indices of
the ith patient by ki D .ki;1; : : : ; ki;J / for i D 1; : : : ; n; and
write Z.n/ D .Z1; : : : ;Zn/ and Y.n/ D .Y1; : : : ; Yn/: Because
PrfYi D y.ki/jZi; µ g D 1fZi 2 A.ki ;° /g; by Bayes’s theorem
the joint posteriorof the latent variables and parameters is given
by

f
¡
Z.n/; µ

­­Y.n/
¢

D
nY

iD1

f
¡
Zi ; µ jYi D y.ki/; xi

¢

/ f .µ/

nY

iD1

1fZi 2 A.ki ;° /gf .Zijµ; xi/; (4)

where f .µ/ denotes the prior of µ . Under this representation,
the latent variables are used to ease the computational burden
of computing the posterior f .µ jY/: By using a Markov chain
Monte Carlo (MCMC) algorithm, values of .Z.n/; µ / generated
from .4/ will yield the desired posterior. The following algo-
rithm is similar to those given by Chen and Dey (2000) and
Cowles (1996). Let Z.n/

j D .Zj;1; : : : ; Zj;n/ be the independent

latent variables associated with Yj , and let Z.n/
¡j be the subvector

of Z.n/ obtained by deleting Zi;j from Zi for each i D 1; : : : ; n:

The MCMC algorithm proceeds as follows:

1. For each j D 1; : : : ; J; start with f .° j ;Z.n/
j jZ.n/

¡j ;Y.n/;

¯;½/; integrate out Z.n/
j to obtain f .° j jZ.n/

¡j ;Y.n/;¯; ½/;

generate ° j from this distribution,and generate Z.n/
j from

f .Z.n/
j jZ.n/

¡j ;° j ; Y.n/;¯; ½/:

2. Generate ¯ from f .¯jZ.n/;Y.n/; ° ; ½/:

3. Generate ½ from f .½ jZ.n/;Y.n/;° ; ¯/:

Step 1 uses the fact that f .° j jZ.n/
¡j ;Y.n/;¯ ;½/ D f .° j j

Z.n/
¡j ;° ¡j ;Y.n/;¯; ½/ due to the conditional independence

of ° 1; : : : ; ° J : It alternates between this distribution and

f .Z.n/
j jZ.n/

¡j ;° j ; Y.n/;¯;½/ because these are much more
tractable than f .° j jZ.n/;Y.n/;¯ ;½/: Because steps 1–3 gen-
erate f .µ;Z.n/jY.n//; the posterior f .µ jY.n// is obtained as
a natural consequence.
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For the simulation study, we evaluated the MCMC algo-
rithm’s performance using standard convergence diagnostics.
A burn-in of 1,000 and a chain of length 30,000, retaining
every 15th sample, provided adequate convergence. Although
the posterior sample size is constrained by computing resources
due to the need for many replications in the simulation study, in
the actual trial conduct we base all inferences on a much larger
MCMC posterior sample size.

5.3 Simulation Results

Table 4 summarizes the simulation results. Under sce-
narios 1 and 2, because the target Ã¤ D 3:04 is achieved
at 200 mg=m2; the starting dose of 400 mg=m2 is unacceptably
toxic. Under scenario 1, most of the toxicity is due to LS events,
such as L2; F , or N . In contrast, most of the toxicity burden
under scenario 2 is due to HS toxicities, such as MC or L4: Un-
der either of these two scenarios, the method chooses the best
dose, 200 mg=m2; more than 90% of the time, and on average
treats 22 of 36 patients at this dose. The algorithm thus appears
to perform well regardless of whether most of the toxicity bur-
den arises from LS or HS toxicities. For scenarios 3 and 4, the
target TTB is achieved at 500 mg=m2; with most of the TTB
due to LS toxicities under scenario 3 and to HS toxicities under
scenario 4. Again, the method is insensitive to the source of the
toxicities,with an 85–87% correct selection rate and most of the
36 patients treated at or near the selected MTD. For scenarios
5 and 6, where Ã¤ D 3:04 at 800 mg=m2; the correct selection
rate is about 80%, slightly lower than the other cases. This is
due primarily to the “do-not-skip” rule, which requires that at
least one cohort be treated at each dose level when escalating,
so that at least 16 of the 36 patients must be treated at doses
below 800 mg=m2 and few patients are available for evaluation
at the higher dose levels.

5.4 Sensitivity Analyses

A fundamental issue is the method’s robustness to the
severity weights, because other physicians might specify sub-
stantively different weights. To address this, we performed
a sensitivityanalysis by randomly perturbingthe elicited weight
vector, w D .w1; : : : ;wJ /; to obtain hypothetical weights
as follows. For each toxicity type j D 1; : : : ; J , temporar-
ily suppressing j for simplicity, we � rst replaced the maxi-
mum weight, wC ; by w

.h/
C D U wC for U » uniform[.5,1.5].

Thus w
.h/
C is obtained by randomly decreasing or increas-

ing wC by up to half its value. Next, we randomly perturbed
the lower severity weights w1 < w2 < ¢ ¢ ¢ < wC¡1 while
maintaining their ordering by � rst generating a C-category
Dirichlet random vector q D .q1; : : : ; qC¡1/ with parameter
vector a D .a1; : : : ; aC/ determined by dispersion parameter
aC D a1 C ¢ ¢ ¢ Cac D 3 and mean vector .a1; : : : ; aC /=aC D
.w1;w2 ¡ w1; : : : ; wC ¡ wC¡1/=wC : The C ¡ 1 hypothetical
lower severity weights were then given by .w

.h/
1 ; : : : ; w

.h/
C¡1/ D

.q1; q1 C q2; : : : ;
PC¡1

rD1 qr/w
.h/
C : Repeating this for each j

yielded w.h/ D .w.h/
1 ; : : : ;w.h/

J /: The hypothetical w.h/ deter-
mines a TTB target, Ã .¤;h/, and given � xed outcome proba-
bilites fpj;k;dg as de� ned in Section 5.1, w.h/ determines the
best dose, d .¤;h/; among the 10 doses {100, : : : , 1,000}, having
a TTB closest to Ã .¤;h/. Independentlygenerating 10,000 such
w.h/ vectors, the distributionof the correspondingÃ .¤;h/ values
has .2:5;5:0;50; 95;97:5/thpercentiles .1:76;1:92;2:97;4:37;

4:67/. Examining the distribution of the corresponding
d.¤;h/ values chosen under scenario 4, for example, where
d D 500 has TTB closest to the elicited Ã¤ D 3:04, we found
that d .¤;h/ D 400; 500, and 600 mg=m2 with probabilities .051,
.875, and .071. Thus, despite the fact that w.h/ is obtained as
a rather severe perturbation of w, under scenario 4 the targeted
dose under w.h/ is nearly certain to be within one dose level of

Table 4. Simulation Results for the Sarcoma Trial Under the Six Dose-Toxicity Scenarios

Main
toxicities

Gemcitabine dose (mg=m 2)

Scenario 100 200 300 400 500 600 700 800 900 1,000

Ã ¤ = 3.04 at 200 mg=m2

1 LS Psel 1.6 93.7 4.7 0 0 0 0 0 0 0
Npats 2.2 21.8 5.3 5.6 1.1 0 0 0 0 0

2 HS Psel 4.1 92.0 3.8 0 0 0 0 0 0 0
Npats 4.5 22.0 4.5 4.6 .4 0 0 0 0 0

Ã ¤ = 3.04 at 500 mg=m2

3 LS Psel 0 0 0 5.6 85.4 9.0 0 0 0 0
Npats 0 0 0 5.6 18.5 9.7 2.1 .1 0 0

4 HS Psel 0 .1 0 5.2 86.9 7.8 0 0 0 0
Npats 0 0 .1 6.6 20.6 7.8 1.0 0 0 0

Ã ¤ = 3.04 at 800 mg=m2

5 LS Psel 0 0 0 0 0 .3 10.4 80.7 8.3 .2
Npats 0 0 0 4.0 4.0 4.0 5.6 11.4 5.9 1.0

6 HS Psel 0 0 0 0 0 .1 13.3 80.3 6.2 0
Npats 0 0 0 4.0 4.0 4.0 5.7 11.7 5.8 .7

NOTE: Psel, % selected; Npats, number of patients treated.
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the dose (500 mg=m2) targeted by the elicited w, and 87.5%
of the time the targeted doses are the same. We obtained sim-
ilar results under the other scenarios. Thus the targeted dose
appears to be robust to the elicited weights.

To examine the sensitivity of the dose-� nding method itself
to w, we simulated the trial under scenario 4 using each of 16
hypothetical weight vectors, w.h;1/; : : : ;w.h;16/; given in Ta-
ble 5. We chose these weight vectors to re� ect the distribution
of d .¤;h/ noted earlier, because 1=16 D :063, so that the targeted
doses were d .¤;h;1/ D 400, d .¤;h;2/ D ¢ ¢ ¢ Dd .¤;h;15/ D 500, and
d .¤;h;16/ D 600. We chose w.h;1/ and w.h;16/ so that Ã .¤;h;1/

and Ã .¤;h;16/ were the medians of the hypothetical w with
d .¤;h/ D 400 and d .¤;h/ D 600. We chose w.h;2/; : : : ;w.h;15/

so that Ã .¤;h;2/; : : : ; Ã .¤;h;15/ were equally spaced percentiles,
between the 10th and 90th, of the distribution of Ã .¤;h/ val-
ues for which d .¤;h/ D 500. For the rth hypothetical weight
vector, w.h;r/; we denoted the percent absolute deviation of
the selected dose, dsel; from d .¤;h;r/ by devr D 100jdsel ¡
d .¤;h;r/j=d .¤;h;r/. In all 16 cases, dsel was within one level
of d .¤;h;r/ more than 99.9% of the time. For d .¤;h;1/ D 400,
doses (300; 400;500) were selected (1:7; 60:6; 37:7)% of the
time, and on average, dev1 was 10.4%. In 13 of the 14 cases
where d .¤;h;r/ D 500, this target dose was selected between
80.6% and 86.5% of the time, and in one case 500 was se-
lected 73.2% of the time. The mean values of dev2; : : : ; dev15

varied from 2.9% to 5.5%. In the 16th case, .500; 600;700/

were selected .43;54; 3/% of the time, and on average dev16

was 12.1%. Thus the method appears to be robust to the elicited
weights in terms of changes in the targeted dose, correct se-
lection percentage, and deviation of the selected dose from the
targeted dose.

Using the elicited severity weights, we also examined the
method’s sensitivity to cohort size, sample size, starting dose,
and Ã¤. We conducted simulations examining the effects of
cohort size and sample size under scenario 4. For cohort sizes
.1;2; 3;4; 5/, with starting dose 400 and sample size 36, the re-
spective correct selection percentageswere .89;86; 89;87; 86/.
Because the range of these values is well within what would be

expected from simulation variation, the method appears to be
insensitive to cohort size. For sample sizes .28; 32;36; 40;44/,
with the cohort size � xed at 4 and a starting dose of 400 mg=m2;

the correct selection percentages were .82; 84;87; 88;89/.
Thus the method’s reliability improves with larger sample size.
We examined the effect of changing the starting dose from
400 mg=m2 to 100 mg=m2 under scenarios 2, 4, and 6, where
the target TTB is achieved at 200 mg=m2, 500 mg=m2; and
800 mg=m2. In these cases the correct selection percentages
were 92% when the target was 200 mg=m2, 84% when the tar-
get was 500 mg=m2 and 42% when the target was 800 mg=m2.
The comparatively low value in the last case was as expected,
because the “do-not-skip” rule with starting dose 100 mg=m2

requires that 28 of the 36 patients be treated at doses below
800 mg=m2; which leaves at most two cohorts to treat at the
correct dose. If this rule is dropped, then the correct selection
percentage in this case is 80%. To examine the effect of higher
correlation among the toxicities on the correct selection rate,
we changed the correlations so that there was high correlation
between fatigue and nausea/vomiting (.60), low correlation be-
tween fatigue and dermatitis (.20), and moderate correlation
between fatigue and myelosuppression (.40). Under scenarios
2, 4, and 6, with this correlation structure the correct selection
percentages were 92% when the target TTB was achieved at
200 mg=m2, 86% at 500 mg=m2, and 79% at 800 mg=m2. Be-
cause these are nearly identical to the values given in Table 4
obtained with the original correlation structure, it appears that
this degree of association among the toxicitiesdoes not alter the
method’s behavior, on average.

We assessed the method’s sensitivity to Ã¤ by simulating the
trial with target Ã¤.1/ D Ã¤ § 1, for 1 D §:25 and §:50—
that is, Ã¤.1/ D 2:54; 2:79; 3:29, and 3.54—under each of
scenarios 2, 4 and 6. De� ning the “best” dose d among the
10 levels studed as that at which

P
j

P
k wj;kpj;k;d is closest

Ã¤.1/, in each of these cases the best dose was identical to that
for which 1 D 0. The percentages of selecting the best dose
for 1 D .¡:50; ¡:25;0; C:25;C:50/ were .68; 76;92; 75;65/

under scenario 2, .77; 82;87; 85;80/ under scenario 4, and

Table 5. The 16 Hypothetical Weight Vectors Used to Study the Method’s Sensitivity to the Elicited Weights

Toxicity M¡
3 M¡

4 MC
3 MC

4 D3 D4 L2 L3 L4 N3 N4 F 3 F4 Ã ¤

elicited w 100 150 500 600 250 600 200 300 600 150 200 50 100 304

w(h,1) 10 11 416 497 140 524 52 535 869 187 234 12 71 198
w(h,2) 20 21 96 563 130 545 81 511 524 93 160 40 138 218
w(h,3) 156 158 469 470 87 541 122 395 420 123 176 13 88 234
w(h,4) 20 21 470 491 325 715 11 12 508 207 220 35 52 247
w(h,5) 1 4 645 706 29 387 291 295 304 153 197 70 134 259
w(h,6) 44 151 732 733 168 803 2 41 321 208 209 118 140 270
w(h,7) 33 191 595 614 171 736 143 146 506 91 100 77 116 280
w(h,8) 74 127 845 846 365 407 137 140 373 160 229 86 103 292
w(h,9) 227 228 458 518 94 854 100 367 769 101 190 49 119 302
w(h,10) 283 285 351 367 139 406 377 421 669 129 144 33 62 314
w(h,11) 351 531 771 822 124 425 259 349 620 36 162 17 90 327
w(h,12) 11 12 346 356 486 583 317 352 830 95 217 15 77 341
w(h,13) 401 412 610 619 544 627 41 243 564 80 113 91 145 356
w(h,14) 149 235 581 874 335 846 145 165 838 37 171 72 137 375
w(h,15) 580 707 777 861 360 526 153 162 572 208 217 60 114 400
w(h,16) 129 146 302 413 330 632 370 386 433 168 185 33 84 365

NOTE: These vectors were chosen to re�ect the distribution of d (¤, h) under scenario 4, so that d (¤, h, 1) D 400, d (¤, h, 2) D ¢ ¢ ¢ Dd (¤, h, 15) D 500, and d (¤, h, 16) D 600. Each weight and Ã¤ has been
multiplied by 100.
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.55;67; 80;79; 75/ under scenario 6. But the method selected
a dose within one level, (i.e., within §100 mg=m2; of the best
dose more than 99.5% of the time in all of these cases. These
results are similar to those obtained in the analogous but sim-
pler case where dose-� nding is based on a single binary toxicity
using the crm. Assuming that Pr(toxicityjj th level) D p

exp.®/
j ,

where ® » N.0;2/ for � xed probabilities .p1;p2; : : : ;p10/ D
.:05; :08; :15; :30; :45; :55; :63; :70; :75; :80/, we simulated
each of the nine trials obtained by the targets p¤ D :20; :30,
or .40 being achieved at 200, 500, or 800 mg=m2. De� ning the
best dose as that minimizing jpj ¡ p¤j, over these nine cases,
the percentages for selecting the best dose ranged from 44%
to 65%, but the crm selected a dose within one level of the best
with percentages 87% to 99%.

To assess between-physician variability empirically, repeat-
ing the elicitation process with another group of oncologists
would be useful but logistically dif� cult. However, a fourth soft
tissue sarcoma oncologist agreed to provide his TTB. We pre-
sented him with the hypothetical scenarios developed by the
other oncologistsand asked which action he would take in each
case. Thus, his responses and resulting target TTB were based
on the other oncologists’hypotheticalscenarios. His chosen ac-
tions agreed with those of the other three oncologists for 13 of
the 16 cohorts, with the differences being to repeat rather than
de-escalate for cohort 4, repeat rather than escalate for cohort 7,
and escalate rather than repeat for cohort 16. Because he would
repeat the dose for cohorts 1, 4, 7, and 9, his resulting target
TTB was .3:00 C 4:00 C 1:25 C 3:12/=4 D 2:84, a value only
.20 (8.6%) below the value of 3.04 used to conduct the trial.

6. CONCLUDING REMARKS

We have presented a new dose-� nding method that accom-
modates several different toxicitieswith severity levels of vary-
ing clinical importance. Our application to the soft tissue sar-
coma trial illustrates the method’s practicality, and our simula-
tion study shows that on average the algorithm performs well
under a wide variety of circumstances. The method requires
substantially more effort to implement than conventionaldose-
� ndingmethods, includingclose interactionwith the physicians
to establish toxicities, severity weights, and targetTTBs, as well
as the simulation study. We feel that this effort is well warranted
by our method’s advantages over conventionalmethods that re-
duce several toxicities to one binary variable.

Such a labor-intensive design process may not appeal to
some clinicians. The method is much easier to implement
in the case of one ordinal toxicity, however, and this may
serve as a bridge to more complex settings as the process of
physician–statistician collaboration evolves. This special case

still provides a substantial advantage over methods based on
one binary toxicity. A single ordinal Y takes on one of C C 1
severity values y0 < y1 < ¢ ¢ ¢< yC; there is one latent variable
Z » N.¯0 C ¯1x; 1/ with .Y D yk/ D .°k · Z <°kC1/; and
¼k.x; µ / D Pr.Y D ykjx; µ / D 8f°k ¡ .¯0 C ¯1x/g¡ 8f°kC1 ¡
.¯0 C ¯1x/g for k D 0; : : : ; C; where 0 D °1 < °2 < ¢ ¢ ¢< °C :

Only one vector of increasing severity weights, .w1; : : : ;wk/,
is elicited, the TTB D W; where W is univariate with Pr.W D
wk/ D ¼k.x; µ/ and Ã¤ is the elicited target for E.W jdata/ DPC

kD1 wk Ef¼k.x; µ/jdatag: For example, suppose that a single
ordinal toxicity is de� ned in terms of grades 0, 1, 2, 3, and 4
but has elicited severity weights 0, 1, 2, 3, and 6. If ¼ .a/.x/ D
.:50; :10; :10; :20; :10/ and ¼ .b/.x/ D .:10; :10; :50; :10; :20/

for a given dose x; then both of these probability vectors
yield the same conventionallyused criterion Pr.Y ¸ 3jx/ D :30
for dose-limiting (grade 3 or 4) toxicity, whereas ¼ .a/.x/ has
E.a/.TTB/ D 1:5 whereas ¼ .b/.x/ has E.b/.TTB/ D 2:6. This
illustrates the fact that even with only one toxicity, accounting
for multiple severity levels and eliciting severity weights pro-
vides a more informative evaluation of toxicity.
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